manipulation.py 72.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core
W
Wilber 已提交
18
from ..fluid.layer_helper import LayerHelper
Z
zhiboniu 已提交
19
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_, device_guard, dygraph_only
W
Wilber 已提交
20
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
# TODO: define functions to manipulate a tensor  
25 26 27 28
from ..fluid.layers import cast  # noqa: F401
from ..fluid.layers import slice  # noqa: F401
from ..fluid.layers import transpose  # noqa: F401
from ..fluid.layers import unstack  # noqa: F401
29

30 31
from ..fluid.layers import scatter_nd  # noqa: F401
from ..fluid.layers import shard_index  # noqa: F401
L
Leo Chen 已提交
32
from ..fluid import layers
33
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
34
import paddle
W
wanghuancoder 已提交
35
from paddle import _C_ops
36

37 38
__all__ = []

W
Wilber 已提交
39

Z
zhiboniu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
@dygraph_only
def tolist(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function translate the paddle.Tensor to python list.

    Args:
        x(Tensor): ``x`` is the Tensor we want to translate to list

    Returns:
        list: A list that contain the same value of current Tensor.

    Returns type:
        list: dtype is same as current Tensor

    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


setattr(core.VarBase, 'tolist', tolist)


76 77 78 79 80 81
def concat(x, axis=0, name=None):
    """

    This OP concatenates the input along the axis.

    Args:
82
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
L
liuyuhui 已提交
83
            float32, float64, int32, int64, uint8. All the Tensors in ``x`` must have same data type.
84 85 86 87
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
88 89 90 91 92
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
93
        Tensor: A Tensor with the same data type as ``x``.
94 95 96 97 98 99

    Examples:
        .. code-block:: python
            
            import paddle
            
100 101 102 103 104 105
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
106 107 108
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
109 110 111
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
112 113 114 115 116 117 118 119 120 121 122 123
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
def broadcast_tensors(input, name=None):
    """
    This OP broadcast a list of tensors following broadcast semantics

    .. note::
        If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        input(list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.

        name (str, optional): The default value is None. Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
    if in_dygraph_mode():
W
wanghuancoder 已提交
155
        return _C_ops.broadcast_tensors(input, num_inputs)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
            "At least 1 tensor is needed to perform broadcast_tensors")

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'broadcast_tensors')
        if x.dtype != input[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
                invalid = (output_shape_r[i] != shape[i] and
                           output_shape_r[i] != 1 and shape[i] != 1)
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
194
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
            helper.create_variable_for_type_inference(dtype=helper.input_dtype(
            )))
        i += 1

    inputs = {'X': input}
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out},
        attrs={})

    return out


Y
yaoxuefeng 已提交
219
def flip(x, axis, name=None):
W
Wilber 已提交
220
    """
Y
yaoxuefeng 已提交
221
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
222 223

    Args:
Y
yaoxuefeng 已提交
224
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
225
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
226
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
227 228 229 230
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
231
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
232 233 234 235 236 237

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
238 239 240 241

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
242
          img = paddle.to_tensor(x)
R
Roc 已提交
243 244
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
245

R
Roc 已提交
246 247
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
248
    """
R
Roc 已提交
249 250 251 252 253
    if isinstance(axis, int):
        axis = [axis]
    if in_dygraph_mode():
        return core.ops.flip(x, "axis", axis)

W
Wilber 已提交
254
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
255 256
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
257 258 259
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
260
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
261 262 263 264 265 266 267
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
268
        inputs={"X": x},
W
Wilber 已提交
269
        outputs={"Out": out},
Y
yaoxuefeng 已提交
270
        attrs={"axis": axis})
W
Wilber 已提交
271
    return out
272 273


274
def flatten(x, start_axis=0, stop_axis=-1, name=None):
275
    r"""
276 277 278 279
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

280 281 282 283
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, please 
    use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
313
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
314
                      float64, int8, int32, int64, uint8.
315 316 317 318 319 320
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
Y
yaoxuefeng 已提交
321
        Tensor: A tensor with the contents of the input tensor, with input \
322 323 324 325
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
Y
yaoxuefeng 已提交
326
        ValueError: If x is not a Tensor.
327 328 329 330 331 332 333 334 335
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
336

Y
yaoxuefeng 已提交
337 338
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
339

340 341
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
342 343 344 345

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
346 347
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
348
        raise ValueError("The input x should be a Tensor")
349

350 351 352 353
    if not in_dygraph_mode():
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64', 'uint8'],
            'flatten')
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

    if in_dygraph_mode():
W
wanghuancoder 已提交
372 373
        dy_out, _ = _C_ops.flatten_contiguous_range(x, 'start_axis', start_axis,
                                                    'stop_axis', stop_axis)
374 375
        return dy_out

376
    helper = LayerHelper('flatten', **locals())
377 378 379 380 381 382 383 384 385 386 387 388
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

W
wanghuancoder 已提交
414 415
    dy_out, _ = _C_ops.flatten_contiguous_range_(x, 'start_axis', start_axis,
                                                 'stop_axis', stop_axis)
416 417 418
    return dy_out


Y
yaoxuefeng 已提交
419
def roll(x, shifts, axis=None, name=None):
420
    """
Y
yaoxuefeng 已提交
421 422 423
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
424 425 426
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
427
        x (Tensor): The x tensor as input.
428
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
429 430
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
431 432

    Returns:
Y
yaoxuefeng 已提交
433
        Tensor: A Tensor with same data type as `x`.
434 435 436

    Examples:
        .. code-block:: python
C
Chen Long 已提交
437
            
438 439
            import paddle

440 441 442
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
443
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
444
            print(out_z1)
Y
yaoxuefeng 已提交
445 446 447 448
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
449
            print(out_z2)
Y
yaoxuefeng 已提交
450 451 452
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
453
    """
Y
yaoxuefeng 已提交
454
    origin_shape = x.shape
455 456
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
457 458 459 460 461 462 463 464 465 466
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
    if axis:
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))
S
sunli 已提交
467 468 469
    else:
        axis = []

470
    if in_dygraph_mode():
W
wanghuancoder 已提交
471
        return _C_ops.roll(x, 'axis', axis, 'shifts', shifts)
472

473 474 475
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
    check_type(shifts, 'shifts', (list, tuple), 'roll')
Y
yaoxuefeng 已提交
476
    out = helper.create_variable_for_type_inference(x.dtype)
477 478 479

    helper.append_op(
        type='roll',
Y
yaoxuefeng 已提交
480
        inputs={'X': x},
481
        outputs={'Out': out},
Y
yaoxuefeng 已提交
482
        attrs={'axis': axis,
483 484
               'shifts': shifts})
    return out
485 486


L
Leo Chen 已提交
487
def stack(x, axis=0, name=None):
488
    """
L
Leo Chen 已提交
489 490 491 492 493 494 495
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
531
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
532 533 534 535 536 537 538 539

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
540
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
541
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
542 543 544 545 546
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
547
    Returns:
L
Leo Chen 已提交
548
        Tensor: The stacked tensor with same data type as input.
549 550 551

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
552

553
            import paddle
554
            
L
Leo Chen 已提交
555 556 557
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Leo Chen 已提交
558 559
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
560
            print(out)
L
Leo Chen 已提交
561 562 563 564 565
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
    """
    return layers.stack(x, axis, name)
566 567


568
def split(x, num_or_sections, axis=0, name=None):
569 570
    """
    Split the input tensor into multiple sub-Tensors.
571
    
572
    Args:
573 574 575 576 577 578 579 580 581 582 583
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
584
    Returns:
585
        list(Tensor): The list of segmented Tensors.
586
    
587 588
    Example:
        .. code-block:: python
589
            
590 591
            import paddle
            
L
Leo Chen 已提交
592 593
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
594

L
Leo Chen 已提交
595 596 597 598
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
599 600

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
601 602 603
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
604 605

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
606 607 608
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
609
            
L
Leo Chen 已提交
610
            # axis is negative, the real axis is (rank(x) + axis)=1
611
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
612 613 614
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
615
    """
616 617
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
618 619


L
Leo Chen 已提交
620
def squeeze(x, axis=None, name=None):
621
    """
L
Leo Chen 已提交
622
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
623 624 625 626
    
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
627

L
Leo Chen 已提交
628 629 630
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
631 632 633 634 635 636

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
637 638
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
639
          Output:
L
Leo Chen 已提交
640
            out.shape = [3, 5]
641 642 643 644

        Case2:

          Input:
L
Leo Chen 已提交
645 646 647 648 649 650 651 652 653 654
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
655
          Output:
L
Leo Chen 已提交
656
            out.shape = [3, 5]
657

L
Leo Chen 已提交
658
        Case4:
659 660

          Input:
L
Leo Chen 已提交
661 662
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
663
          Output:
L
Leo Chen 已提交
664
            out.shape = [1, 3, 5]
665 666

    Args:
667
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
668
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
669 670 671
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
672 673 674
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
675
        Tensor: Squeezed Tensor with the same data type as input Tensor.
676 677 678

    Examples:
        .. code-block:: python
679

680
            import paddle
L
Leo Chen 已提交
681 682 683
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
684 685

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
686
            print(output.shape)  # [5, 10]
687

688 689 690 691
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

692
    """
L
Leo Chen 已提交
693 694 695 696 697 698
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
699

L
Leo Chen 已提交
700
    return layers.squeeze(x, axis, name)
701 702


703
@inplace_apis_in_dygraph_only
704 705 706 707 708 709 710 711 712 713 714 715
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

W
wanghuancoder 已提交
716
    out, _ = _C_ops.squeeze2_(x, 'axes', axis)
717
    return out
718 719


D
duanboqiang 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
def unique_consecutive(x,
                       return_inverse=False,
                       return_counts=False,
                       axis=None,
                       dtype="int64",
                       name=None):
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

    .. note:: This function is different from :func:`paddle.unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
        tuple: (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.

    Example:
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
            output = paddle.unique_consecutive(x) # 
            np_output = output.numpy() # [1 2 3 1 2]
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
            np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4]
            np_counts = inverse.numpy() # [2 2 1 2 1]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
            output = paddle.unique_consecutive(x, axis=0) # 
            np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
            output = paddle.unique_consecutive(x, axis=0) # 
            np_output = output.numpy()
            # [[2 1 3]
            #  [3 0 1]
            #  [2 1 3]]
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
    if in_dygraph_mode():
        out, inverse, counts = core.ops.unique_consecutive(
            x, 'dtype', attr_dtype, 'return_inverse', return_inverse,
            'return_counts', return_counts, 'axis', axis)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'],
                             'unique_consecutive')
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
    helper.append_op(
        type="unique_consecutive",
        inputs={"X": x},
        attrs=attrs,
        outputs=outputs)
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


Z
Zhang Ting 已提交
826 827 828 829 830
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
831
           dtype="int64",
Z
Zhang Ting 已提交
832
           name=None):
833
    r"""
Z
Zhang Ting 已提交
834 835 836 837 838 839 840 841 842 843 844
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
845 846
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
        tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python

            import paddle

860
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
861 862 863 864 865 866 867
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

868
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
869 870 871 872 873 874 875 876 877 878 879 880
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
881
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
Z
Zhang Ting 已提交
882
    if in_dygraph_mode():
W
wanghuancoder 已提交
883
        out, inverse, indices, counts = _C_ops.unique(
Z
Zhang Ting 已提交
884
            x, 'dtype', attr_dtype, 'return_index', return_index,
Z
Zhang Ting 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
            'return_inverse', return_inverse, 'return_counts', return_counts,
            'axis', axis, "is_sorted", True)
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
905
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
906 907 908 909 910
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
911
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
912 913 914 915 916 917 918 919
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
920 921
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
922
    inverse = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
923
        dtype=attr_dtype, stop_gradient=True)
924 925 926 927 928 929 930 931
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
        "Counts": counts
    }
Z
Zhang Ting 已提交
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs)

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


949
def unsqueeze(x, axis, name=None):
950
    """
951 952 953
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
954

955 956 957 958
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

959
    Args:
960 961 962 963 964 965
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
966 967

    Returns:
968
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
969 970 971

    Examples:
        .. code-block:: python
972

973 974
            import paddle

975 976 977 978 979 980 981 982
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
983

L
Leo Chen 已提交
984
            axis = paddle.to_tensor([0, 1, 2])
985 986
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
987 988 989 990 991 992

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
993
            
994 995
    """

996
    return layers.unsqueeze(x, axis, name)
997 998


999
@inplace_apis_in_dygraph_only
1000 1001 1002 1003 1004
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
1005 1006 1007 1008 1009 1010 1011 1012 1013
    if isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, Variable):
        axis = axis.numpy().tolist()
    elif isinstance(axis, (list, tuple)):
        axis = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in axis
        ]
W
wanghuancoder 已提交
1014
    out, _ = _C_ops.unsqueeze2_(x, 'axes', axis)
1015
    return out
1016 1017


1018
def gather(x, index, axis=None, name=None):
1019
    """
1020 1021
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
1022 1023 1024 1025 1026 1027

    .. code-block:: text


                Given:

1028
                x = [[1, 2],
1029 1030 1031
                     [3, 4],
                     [5, 6]]

1032 1033
                index = [1, 2]
                axis=[0]
1034 1035 1036

                Then:

1037
                out = [[3, 4],
1038 1039
                       [5, 6]] 

1040
    Args:
1041
        x (Tensor): The source input tensor with rank>=1. Supported data type is
1042 1043
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
1044
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
1045
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
1046 1047
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1048 1049

    Returns:
1050 1051
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
1052 1053 1054 1055 1056 1057
    Examples:

        .. code-block:: python

            import paddle

1058 1059
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
1060 1061
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
1062
    """
1063 1064
    if axis is None:
        axis = 0
1065

1066
    if in_dygraph_mode():
1067
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
W
wanghuancoder 已提交
1068
        return _C_ops.gather(x, index, None, "axis", axis, "overwrite", False)
1069 1070 1071 1072 1073

    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
1074

1075 1076 1077
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

1078
    helper = LayerHelper('gather', **locals())
1079
    dtype = helper.input_dtype('x')
1080
    out = helper.create_variable_for_type_inference(dtype)
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    if not isinstance(axis, Variable):
        helper.append_op(
            type="gather",
            inputs={"X": x,
                    "Index": index},
            attrs={'axis': axis,
                   'overwrite': False},
            outputs={"Out": out})
    else:
        helper.append_op(
            type="gather",
            inputs={"X": x,
                    "Index": index,
                    "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out})

1098
    return out
myq406450149's avatar
myq406450149 已提交
1099 1100 1101 1102


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
1103

myq406450149's avatar
myq406450149 已提交
1104
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
1105

myq406450149's avatar
myq406450149 已提交
1106
    Args:
1107 1108 1109
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. 
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
1110
    Returns:
1111
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
1112 1113 1114

    Example:
        .. code-block:: python
1115

myq406450149's avatar
myq406450149 已提交
1116
            import paddle
1117
            import numpy as np
myq406450149's avatar
myq406450149 已提交
1118
            # input is a variable which shape is [3, 4, 5]
1119 1120 1121
            np_input = np.random.rand(3, 4, 5).astype('float32')
            input = paddle.to_tensor(np_input)
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
1122 1123 1124
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
1125
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
1140
    if in_dygraph_mode():
W
wanghuancoder 已提交
1141
        return _C_ops.unbind(input, num, 'axis', axis)
1142 1143 1144 1145 1146 1147

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
myq406450149's avatar
myq406450149 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
1158 1159


S
ShenLiang 已提交
1160 1161 1162 1163 1164 1165
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
1166
    
S
ShenLiang 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
          If True, use the overwrite mode to update the output of the same index,
	      if False, use the accumulate mode to update the output of the same index.Default value is True.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle

1208 1209 1210
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1233
        return _C_ops.scatter(x, index, updates, 'overwrite', overwrite)
S
ShenLiang 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'scatter')
    check_type(overwrite, 'overwrite', bool, 'scatter')
    helper = LayerHelper('scatter', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": x,
                "Ids": index,
                "Updates": updates},
        attrs={'overwrite': overwrite},
        outputs={"Out": out})
    return out


1249
@inplace_apis_in_dygraph_only
1250 1251 1252 1253 1254
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
W
wanghuancoder 已提交
1255
    return _C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
1256 1257


1258
def scatter_nd_add(x, index, updates, name=None):
1259
    r"""
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
        x (Tensor): The x input. Its dtype should be float32, float64.
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            output = paddle.scatter_nd_add(x, index, updates)
    """
    return layers.scatter_nd_add(x, index, updates, name=None)


1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
1344
    
1345 1346 1347 1348 1349 1350 1351 1352
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
1353
            x = paddle.to_tensor(x_np)
1354

1355
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
    return paddle.fluid.layers.split(
        input=x, num_or_sections=chunks, dim=axis, name=name)


L
lilong12 已提交
1373 1374
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
1375 1376

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
1377
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
1378 1379 1380

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
1381
    Args:
L
lilong12 已提交
1382 1383 1384 1385 1386
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
        repeat_times (Tensor|tuple|list): The number of repeating times. If repeat_times is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
1387
    Returns:
L
lilong12 已提交
1388 1389
        N-D Tensor. The data type is the same as ``x``.

L
lilong12 已提交
1390 1391
    Examples:
        .. code-block:: python
L
lilong12 已提交
1392

L
lilong12 已提交
1393
            import paddle
L
lilong12 已提交
1394

1395
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1396
            out = paddle.tile(data, repeat_times=[2, 1])
1397
            np_out = out.numpy()
L
lilong12 已提交
1398
            # [[1, 2, 3], [1, 2, 3]]
L
lilong12 已提交
1399 1400

            out = paddle.tile(data, repeat_times=[2, 2])
1401
            np_out = out.numpy()
L
lilong12 已提交
1402 1403
            # [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]

1404
            repeat_times = paddle.to_tensor([2, 1], dtype='int32')
L
lilong12 已提交
1405
            out = paddle.tile(data, repeat_times=repeat_times)
1406
            np_out = out.numpy()
L
lilong12 已提交
1407 1408
            # [[1, 2, 3], [1, 2, 3]]
    """
1409
    if in_dygraph_mode():
W
wanghuancoder 已提交
1410
        return _C_ops.tile(x, 'repeat_times', repeat_times)
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
        assert len(repeat_times.shape) == 1, (
            'repeat_times must be an 1-D Tensor.')
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
1421
                type_tuple = (int, np.int32, np.int64)
1422 1423
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
1424

L
lilong12 已提交
1425 1426
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
L
lilong12 已提交
1427
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
1428 1429
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
1430
            "must set its stop_gradient to be True by "
1431 1432 1433
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
1434

L
lilong12 已提交
1435 1436 1437
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
1438 1439 1440 1441 1442 1443 1444 1445
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
1446
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
1447 1448 1449 1450 1451
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
1452
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
1464 1465


L
lilong12 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
1475
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

1486 1487
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
1488
            out = paddle.expand_as(data_x, data_y)
1489
            np_out = out.numpy()
L
lilong12 已提交
1490 1491
            # [[1, 2, 3], [1, 2, 3]]
    """
1492
    if in_dygraph_mode():
W
wanghuancoder 已提交
1493
        return _C_ops.expand_as_v2(x, 'target_shape', y.shape)
1494

L
lilong12 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
1505
    inputs = {"X": [x]}
L
lilong12 已提交
1506

1507
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
1508 1509
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
1510 1511 1512 1513 1514
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out})
L
lilong12 已提交
1515 1516 1517
    return out


1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1547
        return _C_ops.expand_v2(x, 'shape', shape)
1548 1549 1550 1551 1552 1553 1554 1555 1556

    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
1557
                type_tuple = (int, np.int32, np.int64)
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'broadcast_to')
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input.")

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
                    "All elements in shape of broadcast_to must be positive or -1."
                )
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


1605 1606 1607 1608 1609
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
1610
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
1611 1612 1613


    Args:
L
lilong12 已提交
1614 1615 1616 1617
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
1618 1619 1620
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
1621
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
1622 1623 1624 1625 1626 1627

    Examples:
        .. code-block:: python

            import paddle

1628
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1629
            out = paddle.expand(data, shape=[2, 3])
1630
            print(out)
1631 1632
            # [[1, 2, 3], [1, 2, 3]]
    """
1633
    if in_dygraph_mode():
W
wanghuancoder 已提交
1634
        return _C_ops.expand_v2(x, 'shape', shape)
1635

1636 1637 1638 1639 1640 1641 1642 1643
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
1644
                type_tuple = (int, np.int32, np.int64)
1645 1646 1647
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

1648
    check_variable_and_dtype(
1649 1650
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand')
1651
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
1652
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
1653 1654
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
1655
                         "some_var.stop_gradient = True, supporting "
1656 1657
                         "some_var as the input.")

1658 1659 1660
    inputs = {"X": [x]}
    attrs = {}

1661
    helper = LayerHelper('expand', **locals())
1662 1663 1664 1665 1666

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
1667
                attrs_expand_shape.append(-2)
1668 1669 1670
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
1671
                    "All elements in shape of expand must be positive or -1.")
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
1688 1689


1690 1691 1692 1693
def reshape(x, shape, name=None):
    """
    This operator changes the shape of ``x`` without changing its data.

1694 1695 1696 1697 1698
    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode. 
    If you want to use the Tensor copy version, please use `Tensor.clone` like 
    ``reshape_clone_x = x.reshape([-1]).clone()``.

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
    Some tricks exist when specifying the target shape.

    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

    2. 0 means the actual dimension value is going to be copied from the
    corresponding dimension of x. The index of 0s in shape can not exceed
    the dimension of x.

    Here are some examples to explain it.

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
    shape [6, 8] and leaving x's data unchanged.

    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
    dimensions.

    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.

    Args:
1729
        x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
        shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

1745 1746
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
1747

1748 1749 1750
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
1751

1752 1753
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
1754
            # the shape of out_2 is [4, 12].
1755

1756
            shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32"))
1757 1758 1759
            out = paddle.reshape(x, shape=shape_tensor)
            print(out)
            # the shape is [8, 6].
1760 1761 1762 1763 1764
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

1765 1766
    """
    return paddle.fluid.layers.reshape(x=x, shape=shape, name=name)
1767 1768


1769
@inplace_apis_in_dygraph_only
1770 1771 1772 1773 1774
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
1775 1776 1777 1778 1779
    if isinstance(shape, (list, tuple)):
        shape = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in shape
        ]
W
wanghuancoder 已提交
1780
        out, _ = _C_ops.reshape2_(x, None, 'shape', shape)
1781 1782 1783
        return out
    elif isinstance(shape, Variable):
        shape.stop_gradient = True
W
wanghuancoder 已提交
1784
        out, _ = _C_ops.reshape2_(x, shape)
1785
        return out
1786 1787


1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
1807 1808 1809 1810 1811 1812 1813
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
1814 1815 1816 1817

            * Case 1:
                index = [[1]]

1818 1819
                gather_nd(x, index)
                         = [x[1, :, :]]
1820 1821 1822 1823 1824 1825 1826
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

1827 1828
                gather_nd(x, index)
                         = [x[0, 2, :]]
1829 1830 1831 1832 1833
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

1834 1835
                gather_nd(x, index)
                         = [x[1, 2, 3]]
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Examples:

        .. code-block:: python
1851
            
1852 1853
            import paddle
            
1854 1855 1856
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
1857 1858 1859 1860 1861 1862
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """

    return paddle.fluid.layers.gather_nd(input=x, index=index, name=name)
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
    Args:
        x (Tensor): An N-D ``Tensor``. The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].                                
            # example 2:
            # attr starts is a list which contain tensor Tensor.
1943
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
1944 1945 1946 1947 1948 1949
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """

    return paddle.fluid.layers.strided_slice(
        input=x, axes=axes, starts=starts, ends=ends, strides=strides)