manipulation.py 170.9 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import Counter
W
Wilber 已提交
16

17
from ..static import Variable
18
from ..framework import core, in_dygraph_mode
19
from ..fluid.framework import _in_legacy_dygraph, _non_static_mode
20
from ..framework import LayerHelper
21
from ..framework import convert_np_dtype_to_dtype_, dygraph_only
22 23 24 25 26 27
from ..fluid.data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
28
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
29
import numpy as np
30

31
# TODO: define functions to manipulate a tensor
32
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
33
import paddle
34
from paddle import _C_ops, _legacy_C_ops
35 36 37 38 39
from ..common_ops_import import dygraph_utils, fill_constant, _varbase_creator
import warnings
from .creation import zeros
from .creation import _complex_to_real_dtype
from .creation import _real_to_complex_dtype
40

41 42
__all__ = []

W
Wilber 已提交
43

44 45 46 47 48 49 50 51
def cast(x, dtype):
    """

    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
52
        x (Tensor): An input N-D Tensor with data type bool, float16,
53
            float32, float64, int32, int64, uint8.
54
        dtype (np.dtype|str): Data type of the output:
55 56 57
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
L
Ligoml 已提交
58
        Tensor, A Tensor with the same shape as input's.
59 60 61 62 63 64 65 66 67 68 69 70

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
71
        return _C_ops.cast(x, dtype)
72 73 74 75

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
76
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
77 78
        return out

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
112 113 114

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
115 116 117 118 119 120 121 122
        dtype=dtype, stop_gradient=x.stop_gradient
    )
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
    )
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
160

161 162 163 164 165 166 167 168 169 170 171
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
L
Ligoml 已提交
172
        Tensor, A ``Tensor``. The data type is same as ``input``.
173 174 175 176 177 178 179 180 181 182 183 184 185

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
Z
zyfncg 已提交
186
            # sliced_1 is input[1:3, 0:2, 2:4].
187 188 189 190 191

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
Z
zyfncg 已提交
192
            # sliced_2 is input[1:3, 0:2, 2:4].
193 194 195 196 197 198 199 200 201 202
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
203 204
                    "Input axes should not be an empty list/tuple."
                )
205 206 207 208 209 210 211 212
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
213 214 215 216
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
217 218 219 220 221 222 223 224

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
225 226
                if isinstance(item, tmp_tensor_type)
                else item
227 228 229
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
230 231
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
232 233 234 235 236
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
237 238 239
                if isinstance(item, tmp_tensor_type)
                else item
                for item in ends
240 241
            ]
        elif isinstance(ends, tmp_tensor_type):
242
            tensor_t = ends.numpy()
243
            ends = [ele for ele in tensor_t]
244
            infer_flags = list(-1 for i in range(len(axes)))
245

246
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
247 248 249 250 251 252 253 254 255 256
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
257 258
                        "Input axes should not be an empty list/tuple."
                    )
259 260 261 262 263 264 265 266
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
267 268 269 270
                    "Input axes must be a python list or tuple, but reveived {}".format(
                        type(axes)
                    )
                )
271 272 273 274 275 276 277 278

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
279 280
                    if isinstance(item, tmp_tensor_type)
                    else item
281 282 283 284 285 286 287 288 289 290 291
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
292 293
                    if isinstance(item, tmp_tensor_type)
                    else item
294 295 296 297 298 299 300 301
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

302 303 304 305 306 307 308 309 310 311 312 313
            return _legacy_C_ops.slice(
                input,
                starts_tensor,
                ends_tensor,
                None,
                None,
                'axes',
                axes,
                'infer_flags',
                infer_flags,
                *attrs,
            )
314 315 316

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
317 318
            "Input starts must be an Variable, python list or tuple."
        )
319 320
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
321 322
            "Input ends must be an Variable, python list or tuple."
        )
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
369 370 371 372 373
        dtype=helper.input_dtype('input')
    )
    helper.append_op(
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
L
Ligoml 已提交
391
        Tensor, A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
429
        return _C_ops.transpose(x, perm)
430 431
    else:
        if _in_legacy_dygraph():
432
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
433 434
            return out

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
450 451 452 453 454 455 456 457
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
458 459
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
460 461 462 463 464
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
465 466
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
467 468 469 470

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
471 472 473 474 475 476
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    return out


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
L
Ligoml 已提交
495
        list(Tensor), The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.
496 497 498 499 500 501 502 503 504

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
505
    if in_dygraph_mode():
506
        if num is None:
507 508 509
            num = x.shape[axis]
        if num == 0:
            return []
510
        return _C_ops.unstack(x, axis, num)
511

512
    if _non_static_mode():
513
        if num is None:
514 515 516
            num = x.shape[axis]
        if num == 0:
            return []
517
        return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num)
518 519 520 521 522 523 524 525 526 527 528 529

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

530 531 532 533 534 535
    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis, 'num': num},
    )
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
586 587 588
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
589 590 591 592 593

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
594 595 596
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
597 598

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
599 600 601 602 603 604 605 606 607 608 609 610
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
654
        shape (list|tuple|Tensor, optional): The output shape is specified
655 656 657 658 659 660 661 662 663 664 665
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
666
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
667 668

    Returns:
L
Ligoml 已提交
669
        Tensor, The cropped Tensor has same data type with `x`.
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
700

701
    helper = LayerHelper('crop_tensor', **locals())
702 703 704 705 706 707 708 709 710
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
    check_type(
        shape, 'shape', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
711 712 713 714

    if offsets is None:
        offsets = [0] * len(x.shape)

P
PuQing 已提交
715 716 717
    if shape is None:
        shape = x.shape

718
    if in_dygraph_mode():
719
        return _C_ops.crop(x, shape, offsets)
720

721 722 723 724 725 726 727 728
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
729 730
                % type(shape_val)
            )
731 732 733
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
734 735
                % str(shape_val)
            )
736 737 738
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
739 740
                % str(shape_val)
            )
741 742 743 744 745

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
746 747
                % type(offset_val)
            )
748 749 750
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
751 752
                % str(offset_val)
            )
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
793 794 795
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
796 797 798 799 800 801 802 803 804
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

805 806 807 808 809 810
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
811 812 813
    return out


814 815 816 817 818 819 820 821 822
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
823 824
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
825 826

    Returns:
L
Ligoml 已提交
827
        x(Tensor), Tensor x filled with value inplace
828 829 830 831 832 833 834 835 836 837 838 839 840 841

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
842 843 844
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
845
    if in_dygraph_mode():
846
        return _C_ops.fill_(x, value)
847
    else:
848 849 850
        return _legacy_C_ops.fill_any_(
            x, "value_float", float(value), "value_int", int(value)
        )
851 852 853 854 855 856 857 858 859 860 861


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
862
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
863 864

    Returns:
L
Ligoml 已提交
865
        x (Tensor), Tensor x filled with zero inplace
866 867 868 869 870 871 872 873 874 875 876 877

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
878
    if in_dygraph_mode():
879
        return _C_ops.fill_(x, 0.0)
880
    else:
881 882 883
        return _legacy_C_ops.fill_any_(
            x, "value_float", 0.0, "value_int", int(0)
        )
884 885


886 887 888
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
889 890
    Note:
        This API is ONLY available in Dygraph mode.
891

892
    This function fill the value into the x Tensor's diagonal inplace.
893

894 895 896 897 898 899
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
900

901
    Returns:
L
Ligoml 已提交
902
        Tensor, Tensor with diagonal filled with value.
903

904 905 906 907 908 909 910
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
911

912 913 914
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
915 916 917 918 919 920
    check_dtype(
        dtype,
        'X',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'fill_diagonal_',
    )
921 922 923 924 925
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
926
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_ API'
927
    if len(inshape) > 2:
928 929 930
        assert (
            len(inshapeset) == 1
        ), 'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
Z
zhiboniu 已提交
931 932
    if in_dygraph_mode():
        if len(inshape) == 2:
933 934
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
935

936
    if len(inshape) == 2:
937 938 939 940 941 942
        return _legacy_C_ops.fill_diagonal_(
            x, 'value', value, 'offset', offset, 'wrap', wrap
        )
    return _legacy_C_ops.fill_diagonal_(
        x, 'value', value, 'offset', offset, 'wrap', True
    )
943 944


945 946
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
947 948 949 950 951 952 953
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
954 955 956 957 958 959 960
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
961 962 963 964
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
965
    predshape.append(diaglen)
966
    assert tuple(predshape) == tuple(
967 968
        y.shape
    ), "the y shape should be {}".format(predshape)
969 970 971 972
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
Z
zhiboniu 已提交
973
        if in_dygraph_mode():
974
            return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
975
        else:
976 977 978
            return _legacy_C_ops.fill_diagonal_tensor_(
                x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
            )
Z
zhiboniu 已提交
979
    if in_dygraph_mode():
980
        return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
981
    else:
982 983 984
        return _legacy_C_ops.fill_diagonal_tensor(
            x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
        )
985 986 987 988


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
989 990
    Note:
        This API is ONLY available in Dygraph mode.
991 992 993 994

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
995 996 997 998 999 1000
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1001 1002

    Returns:
L
Ligoml 已提交
1003
        Tensor, Tensor with diagonal filled with y.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1016 1017 1018
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1019 1020 1021 1022 1023 1024 1025


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1026 1027 1028 1029 1030 1031
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1032 1033

    Returns:
L
Ligoml 已提交
1034
        Tensor, Tensor with diagonal filled with y.
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1047 1048 1049
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1050 1051


Z
zhiboniu 已提交
1052 1053 1054
@dygraph_only
def tolist(x):
    """
1055 1056
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1057 1058 1059 1060

    This function translate the paddle.Tensor to python list.

    Args:
1061
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1062 1063

    Returns:
L
Ligoml 已提交
1064
        list, A list that contain the same value of current Tensor.
Z
zhiboniu 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


1083 1084 1085
def concat(x, axis=0, name=None):
    """

1086
    Concatenates the input along the axis.
1087 1088

    Args:
1089
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1090
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1091
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1092
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1093 1094
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1095
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1096 1097

    Returns:
L
Ligoml 已提交
1098
        Tensor, A Tensor with the same data type as ``x``.
1099 1100 1101

    Examples:
        .. code-block:: python
1102

1103
            import paddle
1104

1105 1106 1107 1108 1109 1110
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1111 1112 1113
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1114 1115 1116
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1117 1118 1119 1120 1121 1122 1123 1124 1125
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1126 1127 1128 1129 1130 1131 1132
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1133
        return _C_ops.concat(input, axis)
1134 1135 1136 1137 1138 1139 1140 1141

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
1142
        _legacy_C_ops.concat(input, out, 'axis', axis)
1143 1144 1145 1146 1147
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                [
                    'bool',
                    'float16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'int8',
                    'unit8',
                ],
                'concat',
            )
1163 1164
            if x.dtype != input[0].dtype:
                raise TypeError(
1165 1166
                    "All the Tensors in the input must have the same data type."
                )
1167 1168 1169 1170 1171 1172
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
1173 1174 1175 1176 1177
            axis.dtype,
            'axis',
            ['int32', 'int64'],
            'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor",
1178
        )
1179 1180 1181 1182 1183 1184 1185 1186 1187

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

1188 1189 1190 1191
        assert len(input) == 1, (
            "If the elements of 'input' in concat are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(input)
        )
1192
        out_index = helper.create_variable_for_type_inference(dtype="int32")
1193 1194 1195 1196 1197 1198
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': False},
        )
1199 1200 1201 1202 1203
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
1204 1205 1206
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis
1207

1208 1209 1210
        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
        )
1211
    return out
1212 1213


1214 1215
def broadcast_tensors(input, name=None):
    """
1216
    Broadcast a list of tensors following broadcast semantics
1217

1218
    Note:
1219 1220 1221
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1222 1223

    Args:
1224
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1225 1226
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1227
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1228 1229

    Returns:
L
Ligoml 已提交
1230
        list(Tensor), The list of broadcasted tensors following the same order as ``input``.
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1244
    if paddle.framework.in_dygraph_mode():
1245
        return _C_ops.broadcast_tensors(input)
1246
    if paddle.framework._non_static_mode():
1247
        return _legacy_C_ops.broadcast_tensors(input, num_inputs)
1248 1249 1250 1251

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
1252 1253
            "At least 1 tensor is needed to perform broadcast_tensors"
        )
1254 1255 1256 1257

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
1258 1259
            x,
            'input[' + str(id) + ']',
1260
            ['bool', 'float32', 'float64', 'int32', 'int64'],
1261 1262
            'broadcast_tensors',
        )
1263 1264
        if x.dtype != input[0].dtype:
            raise TypeError(
1265 1266
                "All the Tensors in the input must have the same data type."
            )
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
1284 1285 1286 1287 1288
                invalid = (
                    output_shape_r[i] != shape[i]
                    and output_shape_r[i] != 1
                    and shape[i] != 1
                )
1289 1290 1291 1292
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1293
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
1306
            helper.create_variable_for_type_inference(
1307 1308 1309
                dtype=helper.input_dtype()
            )
        )
1310 1311 1312
        i += 1

    inputs = {'X': input}
1313 1314 1315
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out}, attrs={}
    )
1316 1317 1318 1319

    return out


Y
yaoxuefeng 已提交
1320
def flip(x, axis, name=None):
W
Wilber 已提交
1321
    """
Y
yaoxuefeng 已提交
1322
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1323 1324

    Args:
Y
yaoxuefeng 已提交
1325
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1326
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1327
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1328
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1329 1330

    Returns:
L
Ligoml 已提交
1331
        Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1332 1333 1334 1335 1336

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1337 1338

          image_shape=(3, 2, 2)
1339
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1340 1341
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1342

R
Roc 已提交
1343 1344
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1345
    """
R
Roc 已提交
1346 1347
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1348 1349

    if in_dygraph_mode():
1350
        return _C_ops.flip(x, axis)
H
hong 已提交
1351

Z
zhiboniu 已提交
1352
    if paddle.in_dynamic_mode():
1353
        return _legacy_C_ops.flip(x, "axis", axis)
R
Roc 已提交
1354

W
Wilber 已提交
1355
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1356 1357
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
1358 1359 1360 1361 1362 1363
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'flip',
    )
Y
yaoxuefeng 已提交
1364
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1365 1366 1367 1368 1369
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

1370 1371 1372
    helper.append_op(
        type="flip", inputs={"X": x}, outputs={"Out": out}, attrs={"axis": axis}
    )
W
Wilber 已提交
1373
    return out
1374 1375


Z
zmxdream 已提交
1376 1377
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1378
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1379 1380 1381

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1382
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1383 1384
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1385 1386 1387 1388
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
1389
        Tensor, Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.
Z
zmxdream 已提交
1390 1391 1392 1393 1394 1395 1396 1397

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1398
          print(data)
Z
zmxdream 已提交
1399 1400 1401
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1402
          y = paddle.rot90(data, 1, [0, 1])
1403
          print(y)
Z
zmxdream 已提交
1404 1405 1406
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1407
          y= paddle.rot90(data, -1, [0, 1])
1408
          print(y)
Z
zmxdream 已提交
1409 1410 1411
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1412 1413
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1414
          print(data2)
Z
zmxdream 已提交
1415 1416 1417 1418 1419
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1420
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1421 1422 1423 1424 1425
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1426 1427 1428 1429 1430
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
1431 1432 1433 1434 1435 1436
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1437 1438 1439 1440 1441
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1442 1443
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
1444 1445 1446
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1447
    if input_total_dims < 2:
1448 1449
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
1450 1451 1452
                input_total_dims
            )
        )
Z
zmxdream 已提交
1453 1454 1455

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1456 1457 1458 1459
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1460 1461

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1462 1463 1464
        raise ValueError(
            "Rotation axis0 out of range, axis0 = {}".format(axes[0])
        )
Z
zmxdream 已提交
1465
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1466 1467 1468
        raise ValueError(
            "Rotation axis1 out of range, axis1 = {}".format(axes[1])
        )
Z
zmxdream 已提交
1469

Z
zmxdream 已提交
1470
    k %= 4
Z
zmxdream 已提交
1471 1472 1473 1474 1475 1476
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
1477 1478 1479 1480
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1481 1482 1483 1484 1485 1486 1487
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1488
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1489
    r"""
1490 1491
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1492
    Note:
1493
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1494
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1525
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1526
                      float64, int8, int32, int64, uint8.
1527 1528
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1529
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1530 1531

    Returns:
L
Ligoml 已提交
1532
        Tensor, A tensor with the contents of the input tensor, with input \
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1543

Y
yaoxuefeng 已提交
1544 1545
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1546

1547 1548
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1549 1550 1551 1552

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1553 1554
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1555
        raise ValueError("The input x should be a Tensor")
1556

Z
zhiboniu 已提交
1557
    if not paddle.in_dynamic_mode():
1558
        check_variable_and_dtype(
1559 1560
            x,
            'x',
1561
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
1562 1563
            'flatten',
        )
1564 1565

    x_dim = len(x.shape)
1566 1567 1568 1569 1570
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1571
        raise ValueError(
1572 1573 1574 1575 1576 1577 1578
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1579
        raise ValueError(
1580 1581
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1582 1583 1584 1585 1586 1587 1588
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1589
    if in_dygraph_mode():
1590
        return _C_ops.flatten(x, start_axis, stop_axis)
1591 1592

    if _in_legacy_dygraph():
1593
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range(
1594 1595
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1596 1597
        return dy_out

1598
    helper = LayerHelper('flatten', **locals())
1599 1600
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
1601 1602 1603 1604 1605 1606
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out, 'XShape': x_shape},
        attrs={"start_axis": start_axis, "stop_axis": stop_axis},
    )
1607 1608 1609
    return out


1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1620 1621 1622 1623 1624
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1625
        raise ValueError(
1626 1627 1628 1629 1630 1631 1632
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1633
        raise ValueError(
1634 1635
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1636 1637 1638 1639 1640 1641 1642
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1643
    if in_dygraph_mode():
1644
        return _C_ops.flatten_(x, start_axis, stop_axis)
1645 1646

    if _in_legacy_dygraph():
1647
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range_(
1648 1649
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1650
        return dy_out
1651 1652


Y
yaoxuefeng 已提交
1653
def roll(x, shifts, axis=None, name=None):
1654
    """
1655 1656 1657
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1658 1659 1660
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1661
        x (Tensor): The x tensor as input.
1662
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1663
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1664
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1665 1666 1667
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1668 1669

    Returns:
L
Ligoml 已提交
1670
        Tensor, A Tensor with same data type as `x`.
1671 1672 1673

    Examples:
        .. code-block:: python
1674

1675 1676
            import paddle

1677 1678 1679
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1680
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1681
            print(out_z1)
Y
yaoxuefeng 已提交
1682 1683 1684 1685
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1686
            print(out_z2)
Y
yaoxuefeng 已提交
1687 1688 1689
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1690 1691 1692 1693 1694
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1695
    """
Y
yaoxuefeng 已提交
1696
    origin_shape = x.shape
1697 1698
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1699 1700 1701 1702
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1703
    if axis is not None:
Y
yaoxuefeng 已提交
1704 1705 1706
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1707 1708 1709 1710
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1711 1712 1713
    else:
        axis = []

F
From00 已提交
1714
    if in_dygraph_mode():
1715
        return _C_ops.roll(x, shifts, axis)
F
From00 已提交
1716 1717

    if _in_legacy_dygraph():
1718
        return _legacy_C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1719

1720 1721
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1722

Y
yaoxuefeng 已提交
1723
    out = helper.create_variable_for_type_inference(x.dtype)
1724

1725
    if isinstance(shifts, Variable):
1726 1727 1728 1729 1730 1731
        helper.append_op(
            type='roll',
            inputs={'X': x, "ShiftsTensor": shifts},
            outputs={'Out': out},
            attrs={'axis': axis},
        )
1732 1733
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
1734 1735 1736 1737 1738 1739
        helper.append_op(
            type='roll',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'shifts': shifts},
        )
1740
    return out
1741 1742


L
Leo Chen 已提交
1743
def stack(x, axis=0, name=None):
1744
    """
1745
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1746
    All tensors must be of the same shape and same dtype.
1747 1748 1749

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1750
    tensor is [A, N, B], etc.
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1787
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1788 1789 1790 1791 1792 1793 1794 1795

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1796
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1797
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1798
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1799
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1800
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1801
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1802

1803
    Returns:
L
Ligoml 已提交
1804
        Tensor, The stacked tensor with same data type as input.
1805

1806
    Example:
1807
        .. code-block:: python
L
Leo Chen 已提交
1808

1809
            import paddle
1810

L
Leo Chen 已提交
1811 1812 1813
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1814

L
Leo Chen 已提交
1815 1816
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1817
            print(out)
L
Leo Chen 已提交
1818 1819 1820
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1821

1822 1823 1824 1825 1826 1827
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1828
    """
1829 1830 1831
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1832
        return _C_ops.stack(x, axis)
1833 1834

    if _in_legacy_dygraph():
1835
        return _legacy_C_ops.stack(x, 'axis', axis)
1836 1837 1838 1839

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
1840 1841 1842 1843
        if (
            isinstance(x, Variable)
            and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1844 1845
            x = [x]
        else:
1846
            raise TypeError(
1847 1848 1849 1850 1851 1852 1853 1854
                "The type of '%s' in %s must be %s, but received %s"
                % (
                    'x',
                    'stack',
                    'list[Tensor], tuple[Tensor] or TensorArray',
                    type(x),
                )
            )
1855 1856 1857 1858 1859

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
1860 1861 1862 1863
        assert len(x) == 1, (
            "If the elements of 'x' in stack are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(x)
        )
1864 1865 1866
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
            check_variable_and_dtype(
                i,
                'x',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'stack',
            )

        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': True},
        )
1880
    else:
1881 1882 1883 1884 1885 1886
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis},
        )
1887 1888

    return out
1889 1890


1891
def split(x, num_or_sections, axis=0, name=None):
1892 1893
    """
    Split the input tensor into multiple sub-Tensors.
1894

1895
    Args:
1896
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1897
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1898 1899 1900 1901
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1902
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
1903 1904 1905 1906
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1907
    Returns:
L
Ligoml 已提交
1908
        list(Tensor), The list of segmented Tensors.
1909

1910 1911
    Example:
        .. code-block:: python
1912

1913
            import paddle
1914

L
Leo Chen 已提交
1915 1916
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1917

L
Leo Chen 已提交
1918 1919 1920 1921
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1922 1923

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1924 1925 1926
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1927 1928

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1929 1930 1931
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1932

L
Leo Chen 已提交
1933
            # axis is negative, the real axis is (rank(x) + axis)=1
1934
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1935 1936 1937
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1938
    """
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1960 1961 1962
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
1963 1964 1965 1966 1967 1968
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
1969 1970
                "received %s." % (type(num_or_sections))
            )
1971
        if in_dygraph_mode():
C
Charles-hit 已提交
1972 1973 1974 1975
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
1976 1977
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
1978
            _legacy_C_ops.split(input, out, *attrs)
1979
            return out
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'uint8',
            'int8',
        ],
        'split',
    )
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
2015
                assert isinstance(dim_size, int)
2016 2017 2018
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
2019 2020 2021
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2022 2023
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
2024 2025 2026
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
2041 2042 2043 2044 2045 2046
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
2047 2048 2049
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
2050 2051 2052
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
2053 2054
        num = len(num_or_sections)
        attrs['sections'] = list(
2055 2056 2057 2058 2059
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
2060 2061
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
2062 2063
                num_or_sections
            )
2064 2065 2066 2067 2068

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2069 2070 2071
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
2072
    return outs
2073 2074


2075 2076 2077
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
2078

2079 2080
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
2081
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
2082 2083 2084 2085 2086 2087 2088 2089
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
2090

2091 2092
    Example:
        .. code-block:: python
2093

2094
            import paddle
2095

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=2)
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
2112 2113 2114 2115
            "The input tensor's dimension must be greater than 1, but got {}".format(
                x.ndim
            )
        )
2116 2117 2118
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
2119
def squeeze(x, axis=None, name=None):
2120
    """
2121 2122 2123 2124
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2125
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2126

2127 2128
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2129
    If axis is not provided, all dims equal of size 1 will be removed.
2130 2131 2132 2133 2134 2135

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2136 2137
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2138
          Output:
L
Leo Chen 已提交
2139
            out.shape = [3, 5]
2140 2141 2142 2143

        Case2:

          Input:
L
Leo Chen 已提交
2144 2145 2146 2147
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
2148

L
Leo Chen 已提交
2149 2150 2151
        Case4:

          Input:
2152
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2153
            axis = [0, 2, 3]
2154
          Output:
L
Leo Chen 已提交
2155
            out.shape = [3, 5]
2156

L
Leo Chen 已提交
2157
        Case4:
2158 2159

          Input:
2160
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2161
            axis = [-2]
2162
          Output:
L
Leo Chen 已提交
2163
            out.shape = [1, 3, 5]
2164 2165

    Args:
2166
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2167
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2168 2169 2170
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2171 2172 2173
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
L
Ligoml 已提交
2174
        Tensor, Squeezed Tensor with the same data type as input Tensor.
2175 2176 2177

    Examples:
        .. code-block:: python
2178

2179
            import paddle
2180

L
Leo Chen 已提交
2181 2182
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2183 2184

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2185
            print(output.shape)  # [5, 10]
2186

2187 2188 2189 2190
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2191
    """
L
Leo Chen 已提交
2192 2193 2194 2195 2196 2197
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2198

2199 2200 2201
    input = x
    axes = axis
    if in_dygraph_mode():
2202
        return _C_ops.squeeze(input, axes)
2203
    if _in_legacy_dygraph():
2204
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
2205 2206 2207
        return out

    helper = LayerHelper("squeeze", **locals())
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'squeeze',
    )
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

2236 2237
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2238 2239 2240 2241 2242 2243
    helper.append_op(
        type="squeeze2",
        inputs={"X": input},
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2244 2245

    return out
2246 2247


2248
@inplace_apis_in_dygraph_only
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2261 2262 2263
    input = x
    axes = axis
    if in_dygraph_mode():
2264
        return _C_ops.squeeze_(input, axes)
2265
    if _in_legacy_dygraph():
2266
        out, _ = _legacy_C_ops.squeeze2_(input, 'axes', axes)
2267
        return out
2268 2269


2270 2271 2272 2273 2274 2275 2276 2277
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
D
duanboqiang 已提交
2278 2279 2280
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

2281 2282
    Note:
        This function is different from :func:`paddle.unique` in the sense that this function
D
duanboqiang 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
L
Ligoml 已提交
2299
        tuple (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.
D
duanboqiang 已提交
2300 2301 2302 2303

    Example:
        .. code-block:: python

2304
            import paddle
D
duanboqiang 已提交
2305 2306

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2307
            output = paddle.unique_consecutive(x) #
2308 2309 2310 2311
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2312
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2313 2314 2315 2316 2317 2318
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2319 2320

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2321
            output = paddle.unique_consecutive(x, axis=0) #
2322 2323 2324 2325 2326
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2327 2328

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2329
            output = paddle.unique_consecutive(x, axis=0) #
2330 2331 2332 2333 2334
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2335 2336 2337 2338 2339 2340 2341
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2342
    if in_dygraph_mode():
2343
        out, inverse, counts = _C_ops.unique_consecutive(
2344 2345
            x, return_inverse, return_counts, axis, attr_dtype
        )
2346 2347 2348 2349 2350 2351 2352 2353 2354
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    elif paddle.in_dynamic_mode():
2355
        out, inverse, counts = _legacy_C_ops.unique_consecutive(
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
            x,
            'dtype',
            attr_dtype,
            'return_inverse',
            return_inverse,
            'return_counts',
            return_counts,
            'axis',
            axis,
        )
D
duanboqiang 已提交
2366 2367 2368 2369 2370 2371 2372 2373
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
2374 2375 2376 2377 2378 2379
    check_variable_and_dtype(
        x,
        "input",
        ['float32', 'float64', 'int32', 'int64'],
        'unique_consecutive',
    )
D
duanboqiang 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
2392 2393 2394 2395 2396 2397 2398 2399 2400
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
D
duanboqiang 已提交
2401 2402 2403 2404 2405 2406
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
2407 2408 2409
    helper.append_op(
        type="unique_consecutive", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
D
duanboqiang 已提交
2410 2411 2412 2413 2414
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


2415 2416 2417 2418 2419 2420 2421 2422 2423
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2424
    r"""
Z
Zhang Ting 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2436 2437
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2438 2439 2440
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2441
    Returns:
2442
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2443 2444 2445 2446 2447
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2448

Z
Zhang Ting 已提交
2449 2450
            import paddle

2451
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2452 2453 2454
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2455 2456 2457 2458 2459 2460 2461 2462 2463
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2464

2465
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2466
            unique = paddle.unique(x)
2467 2468 2469
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2470 2471

            unique = paddle.unique(x, axis=0)
2472 2473 2474 2475
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2476 2477 2478 2479 2480
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2481
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2482 2483
    if _non_static_mode():
        if in_dygraph_mode():
2484
            out, indices, inverse, counts = _C_ops.unique(
2485 2486
                x, return_index, return_inverse, return_counts, axis, attr_dtype
            )
2487
        if _in_legacy_dygraph():
2488
            out, inverse, indices, counts = _legacy_C_ops.unique(
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
                x,
                'dtype',
                attr_dtype,
                'return_index',
                return_index,
                'return_inverse',
                return_inverse,
                'return_counts',
                return_counts,
                'axis',
                axis,
                "is_sorted",
                True,
            )
Z
Zhang Ting 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

2516 2517 2518
    check_variable_and_dtype(
        x, "input", ['float32', 'float64', 'int32', 'int64'], 'unique'
    )
Z
Zhang Ting 已提交
2519 2520 2521
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2522
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2523 2524 2525 2526 2527
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2528
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2529 2530 2531 2532
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
2533
        "is_sorted": True,
Z
Zhang Ting 已提交
2534
    }
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
2547 2548 2549 2550
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
2551
        "Counts": counts,
2552
    }
Z
Zhang Ting 已提交
2553 2554 2555 2556 2557 2558 2559 2560
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

2561 2562 2563
    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
Z
Zhang Ting 已提交
2564 2565 2566 2567 2568 2569 2570

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2571
def unsqueeze(x, axis, name=None):
2572
    """
2573 2574 2575
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2576

2577 2578
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2579 2580
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2581
    Args:
2582
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2583 2584
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2585 2586 2587
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2588 2589

    Returns:
L
Ligoml 已提交
2590
        Tensor, Unsqueezed Tensor with the same data type as input Tensor.
2591 2592 2593

    Examples:
        .. code-block:: python
2594

2595 2596
            import paddle

2597 2598
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2599

2600 2601
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2602 2603

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2604
            print(out2.shape)  # [1, 5, 1, 10]
2605

L
Leo Chen 已提交
2606
            axis = paddle.to_tensor([0, 1, 2])
2607
            out3 = paddle.unsqueeze(x, axis=axis)
2608
            print(out3.shape)  # [1, 1, 1, 5, 10]
2609 2610 2611 2612 2613 2614

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2615

2616
    """
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
2630
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2631
            return out
2632
        return _C_ops.unsqueeze(input, axes)
2633 2634

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2669 2670 2671 2672 2673 2674
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2675

2676
    return out
2677 2678


2679
@inplace_apis_in_dygraph_only
2680 2681 2682 2683 2684
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2685 2686 2687 2688 2689 2690 2691 2692
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
        axes = axes.numpy().tolist()
    elif isinstance(axes, (list, tuple)):
        axes = [
2693
            item.numpy().item(0) if isinstance(item, Variable) else item
2694
            for item in axes
2695
        ]
2696
    if in_dygraph_mode():
2697 2698
        return _C_ops.unsqueeze_(input, axes)
    out, _ = _legacy_C_ops.unsqueeze2_(input, 'axes', axes)
2699
    return out
2700 2701


2702
def gather(x, index, axis=None, name=None):
2703
    """
2704 2705
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2706 2707 2708 2709 2710 2711

    .. code-block:: text


                Given:

2712
                x = [[1, 2],
2713 2714 2715
                     [3, 4],
                     [5, 6]]

2716 2717
                index = [1, 2]
                axis=[0]
2718 2719 2720

                Then:

2721
                out = [[3, 4],
2722
                       [5, 6]]
2723

2724
    Args:
2725
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2726 2727
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2728
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
2729
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2730 2731
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2732 2733

    Returns:
L
Ligoml 已提交
2734
        output (Tensor), The output is a tensor with the same rank as ``x``.
2735

2736 2737 2738 2739 2740 2741
    Examples:

        .. code-block:: python

            import paddle

2742 2743
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2744 2745
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2746
    """
2747 2748
    if axis is None:
        axis = 0
2749

2750
    if in_dygraph_mode():
2751
        return _C_ops.gather(x, index, axis)
2752
    if _in_legacy_dygraph():
2753
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
2754 2755 2756
        return _legacy_C_ops.gather(
            x, index, None, "axis", axis, "overwrite", False
        )
2757 2758

    check_variable_and_dtype(
2759 2760
        x,
        'x',
2761
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
2762 2763
        'gather',
    )
2764
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2765

2766 2767 2768
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2769
    helper = LayerHelper('gather', **locals())
2770
    dtype = helper.input_dtype('x')
2771
    out = helper.create_variable_for_type_inference(dtype)
2772
    if not isinstance(axis, Variable):
2773 2774 2775 2776 2777 2778
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index},
            attrs={'axis': axis, 'overwrite': False},
            outputs={"Out": out},
        )
2779
    else:
2780 2781 2782 2783 2784 2785
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index, "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out},
        )
2786

2787
    return out
myq406450149's avatar
myq406450149 已提交
2788 2789 2790 2791


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2792

myq406450149's avatar
myq406450149 已提交
2793
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2794

myq406450149's avatar
myq406450149 已提交
2795
    Args:
2796
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
2797
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2798
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2799
    Returns:
L
Ligoml 已提交
2800
        list(Tensor), The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2801 2802 2803

    Example:
        .. code-block:: python
2804

myq406450149's avatar
myq406450149 已提交
2805
            import paddle
2806

C
Chen Long 已提交
2807 2808
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2809

2810
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2811 2812 2813
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2814

2815
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2816 2817 2818 2819 2820
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2821
    if in_dygraph_mode():
2822
        return _C_ops.unbind(input, axis)
2823

myq406450149's avatar
myq406450149 已提交
2824
    if not isinstance(axis, (int)):
2825 2826 2827
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
2828 2829 2830 2831 2832
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2833
    if _in_legacy_dygraph():
2834
        return _legacy_C_ops.unbind(input, num, 'axis', axis)
2835 2836 2837 2838

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
2839 2840 2841
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
2842 2843 2844 2845
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2846 2847 2848 2849 2850 2851
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
2852
    return outs
L
lilong12 已提交
2853 2854


S
ShenLiang 已提交
2855 2856 2857 2858
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2859

S
ShenLiang 已提交
2860
    .. code-block:: python
2861

S
ShenLiang 已提交
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

2883
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2884 2885 2886 2887 2888 2889
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
2890 2891
        overwrite (bool): The mode that updating the output when there are same indices.

S
sunzhongkai588 已提交
2892
            If True, use the overwrite mode to update the output of the same index,
2893
            if False, use the accumulate mode to update the output of the same index.Default value is True.
2894

S
ShenLiang 已提交
2895
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2896

S
ShenLiang 已提交
2897
    Returns:
L
Ligoml 已提交
2898
        Tensor, The output is a Tensor with the same shape as x.
S
ShenLiang 已提交
2899 2900 2901

    Examples:
        .. code-block:: python
2902

S
ShenLiang 已提交
2903 2904
            import paddle

2905 2906 2907
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2908

S
ShenLiang 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2929
    if in_dygraph_mode():
2930
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2931 2932
    else:
        if _in_legacy_dygraph():
2933 2934 2935
            return _legacy_C_ops.scatter(
                x, index, updates, 'overwrite', overwrite
            )
J
Jiabin Yang 已提交
2936 2937
        else:
            check_variable_and_dtype(
2938 2939 2940 2941 2942
                x,
                'dtype',
                ['float32', 'float64', 'float16', 'int32', 'int64'],
                'scatter',
            )
J
Jiabin Yang 已提交
2943 2944 2945
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
2946 2947 2948 2949 2950 2951
            helper.append_op(
                type="scatter",
                inputs={"X": x, "Ids": index, "Updates": updates},
                attrs={'overwrite': overwrite},
                outputs={"Out": out},
            )
J
Jiabin Yang 已提交
2952
            return out
S
ShenLiang 已提交
2953 2954


2955
@inplace_apis_in_dygraph_only
2956 2957 2958 2959 2960
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2961
    if in_dygraph_mode():
2962 2963
        return _C_ops.scatter_(x, index, updates, overwrite)
    return _legacy_C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
2964 2965


2966
def scatter_nd_add(x, index, updates, name=None):
2967
    r"""
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
3009
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
3010 3011 3012 3013 3014 3015 3016
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3017
        output (Tensor), The output is a tensor with the same shape and dtype as x.
3018 3019 3020 3021 3022 3023 3024 3025 3026

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
3027 3028 3029
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
3030

3031
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
3032 3033
            print(output.shape)
            # [3, 5, 9, 10]
3034
    """
3035
    if in_dygraph_mode():
3036
        return _C_ops.scatter_nd_add(x, index, updates)
3037 3038
    else:
        if _in_legacy_dygraph():
3039
            op = getattr(_legacy_C_ops, 'scatter_nd_add')
3040 3041 3042 3043 3044 3045 3046 3047
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
3048 3049 3050 3051 3052
            helper.append_op(
                type="scatter_nd_add",
                inputs={"X": x, "Index": index, "Updates": updates},
                outputs={"Out": output},
            )
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3078
        output (Tensor), The output is a tensor with the same type as :attr:`updates` .
3079 3080 3081 3082 3083 3084 3085

    Examples:

        .. code-block:: python

            import paddle

3086 3087 3088
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3089 3090 3091 3092 3093 3094
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3095 3096


3097 3098 3099
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
3100

3101 3102 3103
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
3104
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
3105 3106 3107 3108 3109
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
L
Ligoml 已提交
3110
        list(Tensor), The list of segmented Tensors.
3111

3112
    Examples:
3113
        .. code-block:: python
3114

3115
            import paddle
3116

3117
            x = paddle.rand([3, 9, 5])
3118

3119
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3120 3121 3122 3123
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

3124

3125 3126 3127 3128 3129 3130 3131 3132
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3133
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3134 3135


L
lilong12 已提交
3136 3137
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3138 3139

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3140
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3141 3142 3143

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3144
    Args:
L
lilong12 已提交
3145
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
3146
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3147 3148 3149
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3150
    Returns:
3151
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3152

L
lilong12 已提交
3153 3154
    Examples:
        .. code-block:: python
L
lilong12 已提交
3155

L
lilong12 已提交
3156
            import paddle
L
lilong12 已提交
3157

3158
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3159
            out = paddle.tile(data, repeat_times=[2, 1])
3160 3161 3162 3163
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3164

3165
            out = paddle.tile(data, repeat_times=(2, 2))
3166 3167 3168 3169
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3170

3171
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3172
            out = paddle.tile(data, repeat_times=repeat_times)
3173 3174 3175
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3176
    """
H
hong 已提交
3177
    if in_dygraph_mode():
3178
        if isinstance(repeat_times, core.eager.Tensor):
3179 3180 3181
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3182 3183
            repeat_times = repeat_times.numpy().tolist()

3184
        return _C_ops.tile(x, repeat_times)
H
hong 已提交
3185 3186

    if _in_legacy_dygraph():
3187
        return _legacy_C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
3188

3189 3190
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
3191 3192 3193
        assert (
            len(repeat_times.shape) == 1
        ), 'repeat_times must be an 1-D Tensor.'
3194 3195 3196
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
3197 3198 3199
                assert (
                    len(elem.shape) == 1
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3200
            else:
T
tianshuo78520a 已提交
3201
                type_tuple = (int, np.int32, np.int64)
3202 3203 3204
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3205

3206 3207 3208
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile'
    )
3209
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
L
lilong12 已提交
3210 3211
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
3212
            "must set its stop_gradient to be True by "
3213 3214
            "some_var.stop_gradient == True supporting some_var is the input."
        )
3215 3216

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3217

L
lilong12 已提交
3218 3219 3220
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
3221 3222 3223 3224 3225 3226 3227
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
3228 3229 3230
                assert (
                    times > 0
                ), "All elements in repeat_times must be positive for tile."
L
lilong12 已提交
3231 3232 3233 3234
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
3235 3236
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
3237 3238 3239
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
3240
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
3241 3242
                repeat_times
            )
L
lilong12 已提交
3243 3244 3245

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3246 3247 3248
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
L
lilong12 已提交
3249
    return out
3250 3251


L
lilong12 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3261
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3262 3263 3264
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3265
        N-D Tensor, A Tensor with the same shape as ``y``. The data type is the same as ``x``.
L
lilong12 已提交
3266 3267 3268 3269 3270 3271

    Examples:
        .. code-block:: python

            import paddle

3272 3273
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3274
            out = paddle.expand_as(data_x, data_y)
3275 3276 3277 3278
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3279
    """
H
hong 已提交
3280
    if in_dygraph_mode():
3281
        return _C_ops.expand_as(x, None, y.shape)
H
hong 已提交
3282

H
hong 已提交
3283
    if _non_static_mode():
3284
        return _legacy_C_ops.expand_as_v2(x, 'target_shape', y.shape)
3285

3286 3287 3288
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as'
    )
L
lilong12 已提交
3289 3290
    check_type(y, 'y', Variable, 'expand_as')

3291
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
L
lilong12 已提交
3292 3293 3294 3295
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
3296 3297
            "some_var as the input 'x'."
        )
3298
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3299

3300
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
3301 3302
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3303 3304 3305 3306 3307 3308
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out},
    )
L
lilong12 已提交
3309 3310 3311
    return out


3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3323
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3324
            The value -1 in shape means keeping the corresponding dimension unchanged.
3325
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3326
    Returns:
L
Ligoml 已提交
3327
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3339
    if in_dygraph_mode():
3340
        return _C_ops.expand(x, shape)
3341
    if _in_legacy_dygraph():
3342
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3343 3344

    if isinstance(shape, Variable):
3345
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3346 3347 3348
    else:
        for elem in shape:
            if isinstance(elem, Variable):
3349 3350 3351
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3352
            else:
T
tianshuo78520a 已提交
3353
                type_tuple = (int, np.int32, np.int64)
3354 3355 3356
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3357

3358 3359 3360
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'broadcast_to'
    )
3361
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
3362
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
3363 3364 3365 3366
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
3367 3368
            "some_var as the input."
        )
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
3382 3383 3384
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of broadcast_to must be positive or -1."
3385 3386 3387 3388 3389 3390 3391 3392 3393
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
3394 3395
                shape
            )
3396 3397 3398

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3399 3400 3401
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3402 3403 3404
    return out


3405 3406 3407 3408 3409
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3410
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1.
3411 3412 3413


    Args:
C
Chen Long 已提交
3414
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3415
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3416
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3417
            The value -1 in shape means keeping the corresponding dimension unchanged.
3418 3419 3420
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3421
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3422 3423 3424 3425 3426 3427

    Examples:
        .. code-block:: python

            import paddle

3428
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3429
            out = paddle.expand(data, shape=[2, 3])
3430
            print(out)
3431 3432
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3433
    if in_dygraph_mode():
3434
        return _C_ops.expand(x, shape)
H
hong 已提交
3435

Z
zhiboniu 已提交
3436
    if paddle.in_dynamic_mode():
3437
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3438

3439
    if isinstance(shape, Variable):
3440
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3441 3442 3443
    else:
        for elem in shape:
            if isinstance(elem, Variable):
3444 3445 3446
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3447
            else:
T
tianshuo78520a 已提交
3448
                type_tuple = (int, np.int32, np.int64)
3449 3450 3451
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3452

3453
    check_variable_and_dtype(
3454 3455 3456 3457 3458
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand',
    )
3459
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
3460
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
3461 3462 3463 3464 3465 3466
        raise ValueError(
            "When the data type of input 'x' for expand is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input."
        )
3467

3468 3469 3470
    inputs = {"X": [x]}
    attrs = {}

3471
    helper = LayerHelper('expand', **locals())
3472 3473 3474 3475 3476

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3477
                attrs_expand_shape.append(-2)
3478 3479
            else:
                attrs_expand_shape.append(shape)
3480 3481 3482
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of expand must be positive or -1."
3483 3484 3485 3486 3487 3488 3489 3490 3491
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
3492 3493
                shape
            )
3494 3495 3496

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3497 3498 3499
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3500
    return out
L
lilong12 已提交
3501 3502


3503 3504
def reshape(x, shape, name=None):
    """
3505
    Changes the shape of ``x`` without changing its data.
3506

3507
    Note that the output Tensor will share data with origin Tensor and doesn't
3508 3509
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3510 3511
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3512 3513
    Some tricks exist when specifying the target shape.

3514
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3515

3516
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3517 3518 3519

    Here are some examples to explain it.

3520
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3521

3522
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3523

3524
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3525 3526

    Args:
3527 3528
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3529 3530
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3531
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3532 3533

    Returns:
L
Ligoml 已提交
3534
        Tensor, A reshaped Tensor with the same data type as ``x``.
3535 3536 3537 3538 3539 3540

    Examples:
        .. code-block:: python

            import paddle

3541 3542
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3543

3544 3545 3546
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3547

3548 3549
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3550
            # the shape of out_2 is [4, 12].
3551

3552
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3553
            out = paddle.reshape(x, shape=shape_tensor)
3554
            print(out.shape)
3555
            # the shape is [8, 6].
3556 3557 3558 3559 3560
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3561
    """
3562 3563 3564 3565 3566 3567
    actual_shape = None
    act = None
    inplace = False

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
3568
        # TODO(zhiqiu): enable inplace in dygraph mode.
3569 3570 3571 3572 3573 3574
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        if isinstance(shape, (list, tuple)):
            shape = [
3575
                item.numpy().item(0)
3576 3577 3578
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3579
            ]
3580
            out = _C_ops.reshape(x, shape)
3581 3582
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3583
            out = _C_ops.reshape(x, shape)
3584 3585 3586
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3587 3588
                " got '{}.'".format(type(shape))
            )
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602

        return dygraph_utils._append_activation_in_dygraph(out, act)
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if inplace:
                warnings.warn(
                    "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
                )
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
3603
                out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape)
3604 3605
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
3606
                out, _ = _legacy_C_ops.reshape2(x, shape)
3607 3608 3609
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
3610 3611
                    " got '{}.'".format(type(shape))
                )
3612 3613 3614

            return dygraph_utils._append_activation_in_dygraph(out, act)

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
    check_variable_and_dtype(
        x,
        'x',
        [
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'bool',
            'uint16',
        ],
        'reshape',
    )
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
3653 3654
                        % dim_idx
                    )
3655 3656 3657 3658 3659
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
3660 3661 3662
                        "But received shape[%d] = 0, X's dimensions = %d."
                        % (dim_idx, len(x.shape))
                    )
3663 3664 3665 3666
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
3667 3668 3669
                        "But received shape[%d] = %s."
                        % (dim_idx, str(dim_size))
                    )
3670 3671 3672 3673 3674 3675 3676 3677
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
3678 3679 3680 3681
        assert len(shape) > 0, (
            "The size of 'shape' in reshape can't be zero, "
            "but received %s." % len(shape)
        )
3682 3683 3684 3685 3686 3687 3688
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

3689 3690 3691 3692 3693
    out = (
        x
        if inplace
        else helper.create_variable_for_type_inference(dtype=x.dtype)
    )
3694
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
3695 3696 3697 3698 3699 3700
    helper.append_op(
        type="reshape2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
3701 3702

    return helper.append_activation(out)
3703 3704


3705
@inplace_apis_in_dygraph_only
3706 3707 3708 3709 3710
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3711 3712 3713 3714 3715
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0)
3716 3717 3718
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3719
            ]
3720
            out = _C_ops.reshape_(x, shape)
3721 3722
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3723
            out = _C_ops.reshape_(x, shape)
3724 3725 3726
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3727 3728
                " got '{}.'".format(type(shape))
            )
3729

3730
        return out
3731 3732 3733 3734 3735 3736
    else:
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
3737
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape)
3738 3739 3740 3741 3742 3743 3744 3745 3746
            return out
        elif isinstance(shape, Variable):
            shape.stop_gradient = True
            # NOTE(pangyoki): Cannot support the case where the shape Tensor
            # is negative. In the infer_shape stage, the input's dim will
            # be changed to a negative number.
            # Thus, convert Shape Tensor to list firstly and then call
            # reshape inplace op.
            shape_list = shape.numpy().tolist()
3747
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape_list)
3748
            return out
3749 3750


3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3770 3771 3772 3773 3774 3775 3776
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3777 3778 3779 3780

            * Case 1:
                index = [[1]]

3781 3782
                gather_nd(x, index)
                         = [x[1, :, :]]
3783 3784 3785 3786 3787 3788 3789
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3790 3791
                gather_nd(x, index)
                         = [x[0, 2, :]]
3792 3793 3794 3795 3796
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3797 3798
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3799 3800 3801 3802 3803 3804
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3805
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3806 3807

    Returns:
L
Ligoml 已提交
3808
        output (Tensor), A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3809

3810 3811 3812
    Examples:

        .. code-block:: python
3813

3814
            import paddle
3815

3816 3817 3818
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3819

3820 3821 3822
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3823
    if in_dygraph_mode():
3824
        return _C_ops.gather_nd(x, index)
3825 3826
    else:
        if _in_legacy_dygraph():
3827
            return _legacy_C_ops.gather_nd(x, index)
3828
    check_variable_and_dtype(
3829 3830 3831 3832 3833
        x,
        'x',
        ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np',
    )
3834 3835 3836 3837
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
3838 3839 3840 3841 3842
    helper.append_op(
        type="gather_nd",
        inputs={"X": x, "Index": index},
        outputs={"Out": output},
    )
3843
    return output
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3892

3893
    Args:
3894
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3906
        Tensor, A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3921
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3922 3923
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3924
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3925 3926 3927
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3928
    if in_dygraph_mode():
3929
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3930

3931 3932
    helper = LayerHelper('strided_slice', **locals())

3933
    check_variable_and_dtype(
3934 3935 3936 3937 3938
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'strided_slice',
    )
3939 3940 3941 3942 3943 3944 3945
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
3946 3947 3948
            check_dtype(
                list_input.dtype, input_name, ['int32'], 'strided_slice'
            )
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
3967
                assert isinstance(dim, int)
3968 3969 3970 3971 3972 3973 3974 3975 3976
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

3977
    if _in_legacy_dygraph():
3978 3979 3980 3981 3982 3983
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
3984
            'infer_flags': infer_flags,
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
4039 4040 4041 4042 4043
        dtype=helper.input_dtype('x')
    )
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
4044 4045

    return out
F
From00 已提交
4046 4047 4048 4049


def tensordot(x, y, axes=2, name=None):
    r"""
4050
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
4051 4052 4053 4054 4055 4056

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

4057
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4058
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
4059 4060

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4061
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
4062 4063 4064 4065

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4066
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
4067 4068 4069

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4070
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
4071
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4072 4073
                             For more information, please refer to :ref:`api_guide_Name` .

4074
    Return:
L
Ligoml 已提交
4075
        Output (Tensor), The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4076
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
4077

F
From00 已提交
4078
    NOTES:
4079
        1. This function supports tensor broadcast,
F
From00 已提交
4080
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
4081 4082 4083 4084 4085
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4086
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
4087

F
From00 已提交
4088 4089 4090 4091 4092 4093 4094 4095
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
4096
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
4158
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4159 4160 4161 4162 4163 4164 4165 4166 4167
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
4168
        if paddle.in_dynamic_mode():
F
From00 已提交
4169 4170
            return tolist(var)
        raise TypeError(
4171 4172 4173
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4174 4175 4176 4177 4178 4179 4180
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
4181 4182 4183 4184
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
4224 4225 4226 4227 4228
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
4256 4257
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4258
    y = y.transpose(perm=perm_y).reshape(
4259 4260
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4261 4262
    out = x.matmul(y).reshape(shape_out)
    return out
4263 4264 4265


def as_complex(x, name=None):
4266 4267
    """Transform a real tensor to a complex tensor.

4268 4269 4270
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

4271
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4272 4273 4274 4275 4276 4277 4278 4279
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4280
        Tensor, The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
4281

4282 4283 4284 4285 4286 4287
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4288
            print(y)
4289

4290 4291 4292
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4293
    """
4294 4295
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4296 4297
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_complex(x)
4298 4299 4300 4301 4302 4303

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
4304 4305
        dtype=_real_to_complex_dtype(x.dtype)
    )
4306 4307 4308 4309 4310 4311 4312
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
4313 4314 4315
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4327
        Tensor, The output. Data type is 'float32' or 'float64', with the same precision as the input.
4328

4329 4330 4331 4332 4333 4334 4335
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4336
            print(z)
4337

4338 4339 4340 4341
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4342

4343 4344 4345
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4346
    """
4347 4348
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4349 4350
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_real(x)
4351 4352 4353 4354 4355 4356

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
4357 4358
        dtype=_complex_to_real_dtype(x.dtype)
    )
4359 4360 4361
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4362 4363


K
kuizhiqing 已提交
4364 4365 4366 4367 4368 4369 4370 4371 4372
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4373
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4374 4375 4376 4377 4378
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4379
        Tensor, A Tensor with same data type as ``x``.
K
kuizhiqing 已提交
4380

4381 4382 4383 4384 4385
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4404 4405
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4406 4407
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4408 4409

    helper = LayerHelper("repeat_interleave", **locals())
4410 4411 4412 4413 4414 4415
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4416 4417 4418

    out = helper.create_variable_for_type_inference(x.dtype)

4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4431 4432 4433
    return out


4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4448
        Tensor, A new tensor whose axis have been moved.
4449 4450 4451

    Examples:
        .. code-block:: python
4452

4453 4454 4455 4456 4457 4458 4459
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4460
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4461
            # [3, 2]
4462 4463 4464 4465 4466
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
4467 4468
        dst
    ), "'source' must have the same number with 'destination'"
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
4485 4486 4487
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4488
        if axis[0] < 0:
4489 4490 4491
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4492 4493
            src[i] += ndim
        else:
4494 4495 4496
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4497

4498 4499 4500
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4501
        if axis[1] < 0:
4502 4503 4504
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4505 4506
            dst[i] += ndim
        else:
4507 4508 4509
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4510 4511 4512 4513 4514 4515 4516
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4517
    if in_dygraph_mode():
4518
        out = _C_ops.transpose(x, perm)
4519 4520 4521
        return out

    if _in_legacy_dygraph():
4522
        out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
4523 4524
        return out

4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'moveaxis',
    )
4540 4541 4542 4543

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
4544 4545 4546 4547 4548 4549
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
4550
    return out
4551 4552


4553 4554 4555
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
4556 4557 4558
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4559
    else:
4560 4561 4562
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4563 4564 4565 4566 4567 4568
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4569
    # This function is used in take/put_along_axis
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4580 4581 4582 4583 4584
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4585
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4586
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4587
            and need to broadcast against arr. Supported data type are int and int64.
4588
        axis (int) : The axis to take 1d slices along.
4589

4590
    Returns:
L
Ligoml 已提交
4591
        Tensor, The indexed element, same dtype with arr
4592

4593 4594 4595 4596 4597
    Examples:
        .. code-block:: python

            import paddle

4598 4599
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4600 4601 4602 4603 4604
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4605
    if len(arr.shape) != len(indices.shape):
4606
        raise ValueError(
4607 4608
            "`indices` and `arr` must have the same number of dimensions!"
        )
4609 4610 4611 4612 4613
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4614
    if _non_static_mode():
4615
        indices = paddle.broadcast_to(indices, broadcast_shape)
4616 4617 4618 4619
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4620
        if not _in_legacy_dygraph():
4621 4622
            return _C_ops.take_along_axis(arr, indices, axis)
        return _legacy_C_ops.take_along_axis(arr, indices, 'Axis', axis)
4623
    check_variable_and_dtype(
4624 4625 4626 4627 4628 4629 4630 4631
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'take_along_axis'
    )
4632
    indices = paddle.broadcast_to(indices, broadcast_shape)
4633 4634 4635 4636
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4637 4638 4639
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4640 4641 4642 4643 4644 4645
    helper.append_op(
        type="take_along_axis",
        inputs={"Input": arr, "Index": indices},
        attrs={"Axis": axis},
        outputs={"Result": result},
    )
4646
    return result
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4657
        axis (int) : The axis to put 1d slices along.
G
gouzil 已提交
4658 4659 4660
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
L
Ligoml 已提交
4661
        Tensor, The indexed element, same dtype with arr
4662

4663 4664 4665 4666 4667
    Examples:
        .. code-block:: python

            import paddle

4668 4669
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4670 4671 4672 4673 4674 4675 4676 4677
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4678
    if len(arr.shape) != len(indices.shape):
4679
        raise ValueError(
4680 4681
            "`indices` and `arr` must have the same number of dimensions!"
        )
4682 4683
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4684
    if _non_static_mode():
4685 4686 4687 4688 4689
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4690 4691 4692
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4693
        if in_dygraph_mode():
4694
            return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
4695 4696 4697
        return _legacy_C_ops.put_along_axis(
            arr, indices, values, "Axis", axis, "Reduce", reduce
        )
4698 4699

    check_variable_and_dtype(
4700 4701 4702 4703 4704 4705 4706 4707
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'put_along_axis'
    )
4708 4709 4710
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4711 4712 4713
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4714 4715 4716 4717 4718 4719
    helper.append_op(
        type="put_along_axis",
        inputs={"Input": arr, "Index": indices, "Value": values},
        attrs={"Axis": axis, "Reduce": reduce},
        outputs={"Result": result},
    )
4720 4721 4722 4723 4724 4725
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4726
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4727 4728
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4729
    if len(arr.shape) != len(indices.shape):
4730
        raise ValueError(
4731 4732
            "`indices` and `arr` must have the same number of dimensions!"
        )
4733 4734
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4735 4736 4737 4738 4739
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4740 4741 4742
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4743
    if in_dygraph_mode():
4744
        return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
4745 4746 4747
    return _legacy_C_ops.put_along_axis_(
        arr, indices, values, "Axis", axis, "Reduce", reduce
    )
4748 4749


L
Li Min 已提交
4750 4751 4752 4753 4754 4755 4756 4757
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4758
        axis (int): The dimension in which we index.
L
Li Min 已提交
4759 4760 4761 4762
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
L
Ligoml 已提交
4763
        Tensor, same dimention and dtype with x.
L
Li Min 已提交
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4775 4776 4777 4778 4779
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4780 4781 4782 4783 4784 4785
    """
    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4797
    check_variable_and_dtype(
4798 4799 4800 4801 4802
        value,
        'add_value',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4803 4804 4805

    out = helper.create_variable_for_type_inference(x.dtype)

4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4816 4817 4818 4819 4820 4821 4822
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4823
    Please refer to :ref:`api_paddle_index_add`.
4824

L
Li Min 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4835 4836 4837 4838 4839
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4840 4841 4842 4843
    """
    return _C_ops.index_add_(x, index, value, axis)


4844 4845 4846 4847 4848 4849 4850
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
4851
    'tolist': tolist,
4852 4853 4854 4855
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)