manipulation.py 57.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core
W
Wilber 已提交
18
from ..fluid.layer_helper import LayerHelper
19
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_, device_guard
W
Wilber 已提交
20
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
import six
25
# TODO: define functions to manipulate a tensor  
26 27 28 29 30
from ..fluid.layers import cast  #DEFINE_ALIAS
from ..fluid.layers import slice  #DEFINE_ALIAS
from ..fluid.layers import transpose  #DEFINE_ALIAS
from ..fluid.layers import unstack  #DEFINE_ALIAS

31 32
from ..fluid.layers import scatter_nd  #DEFINE_ALIAS
from ..fluid.layers import shard_index  #DEFINE_ALIAS
L
Leo Chen 已提交
33
from ..fluid import layers
34
import paddle
35

W
Wilber 已提交
36
__all__ = [
37 38 39
    'cast',
    'concat',
    'expand',
L
lilong12 已提交
40
    'broadcast_to',
41 42 43 44 45 46 47 48 49 50 51 52
    'expand_as',
    'flatten',
    'gather',
    'gather_nd',
    'reshape',
    'reverse',
    'scatter',
    'scatter_nd_add',
    'scatter_nd',
    'shard_index',
    'slice',
    'split',
53
    'chunk',
54 55 56 57 58 59 60 61 62 63
    'squeeze',
    'stack',
    'strided_slice',
    'transpose',
    'unique',
    'unsqueeze',
    'unstack',
    'flip',
    'unbind',
    'roll',
L
lilong12 已提交
64
    'tile',
W
Wilber 已提交
65 66 67
]


68 69 70 71 72 73
def concat(x, axis=0, name=None):
    """

    This OP concatenates the input along the axis.

    Args:
74 75
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16, 
            float32, float64, int32, int64. All the Tensors in ``x`` must have same data type.
76 77 78 79
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
80 81 82 83 84
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
85
        Tensor: A Tensor with the same data type as ``x``.
86 87 88 89 90 91

    Examples:
        .. code-block:: python
            
            import paddle
            
92 93 94 95 96 97
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
98 99 100
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
101 102 103
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
104 105 106 107 108 109 110 111 112
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
113
    check_type(x, 'x', (list, tuple), 'concat')
114 115 116
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


Y
yaoxuefeng 已提交
117
def flip(x, axis, name=None):
W
Wilber 已提交
118
    """
119 120
	:alias_main: paddle.flip
	:alias: paddle.flip,paddle.tensor.flip,paddle.tensor.manipulation.flip
S
swtkiwi 已提交
121

W
Wilber 已提交
122

Y
yaoxuefeng 已提交
123
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
124 125

    Args:
Y
yaoxuefeng 已提交
126
        x (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
127
            should be float32, float64, int32, int64, bool.
Y
yaoxuefeng 已提交
128
        axis (list): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
129 130 131 132
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
133
        Variable: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
134 135 136 137 138 139

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
140

141
          paddle.disable_static()
Y
yaoxuefeng 已提交
142 143 144 145

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
146
          img = paddle.to_tensor(x)
Y
yaoxuefeng 已提交
147 148 149
          out = paddle.flip(img, [0,1])

          print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
W
Wilber 已提交
150 151
    """
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
152 153
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
154 155 156
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
157
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
158 159 160 161 162 163 164
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
165
        inputs={"X": x},
W
Wilber 已提交
166
        outputs={"Out": out},
Y
yaoxuefeng 已提交
167
        attrs={"axis": axis})
W
Wilber 已提交
168
    return out
169 170


171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
def flatten(x, start_axis=0, stop_axis=-1, name=None):
    """
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
206
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
207 208 209 210 211 212 213
                      float64, int8, int32, int64.
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
Y
yaoxuefeng 已提交
214
        Tensor: A tensor with the contents of the input tensor, with input \
215 216 217 218
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
Y
yaoxuefeng 已提交
219
        ValueError: If x is not a Tensor.
220 221 222 223 224 225 226 227 228 229
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
            
Y
yaoxuefeng 已提交
230 231 232
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
            
233 234 235 236
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
237
        raise ValueError("The input x should be a Tensor")
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64'], 'flatten')
    helper = LayerHelper('flatten', **locals())

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

    if in_dygraph_mode():
        dy_out, _ = core.ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
        return dy_out

    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


Y
yaoxuefeng 已提交
276
def roll(x, shifts, axis=None, name=None):
277
    """
278 279
	:alias_main: paddle.roll
	:alias: paddle.roll,paddle.tensor.roll,paddle.tensor.manipulation.roll
S
swtkiwi 已提交
280

Y
yaoxuefeng 已提交
281 282 283
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
284 285 286
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
287
        x (Tensor): The x tensor variable as input.
288
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
289 290
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
291 292

    Returns:
Y
yaoxuefeng 已提交
293
        Tensor: A Tensor with same data type as `x`.
294 295 296 297 298

    Examples:
        .. code-block:: python
            import paddle

299 300 301
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
302 303 304 305 306 307 308 309 310 311
            out_z1 = paddle.roll(x, shifts=1)
            print(out_z1.numpy())
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
            print(out_z2.numpy())
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
312 313
    """
    helper = LayerHelper("roll", **locals())
Y
yaoxuefeng 已提交
314
    origin_shape = x.shape
315 316
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
    if axis:
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))

    if axis:
        check_type(axis, 'axis', (list, tuple), 'roll')
330 331 332
    check_type(shifts, 'shifts', (list, tuple), 'roll')

    if in_dygraph_mode():
Y
yaoxuefeng 已提交
333 334 335 336
        if axis is None:
            x = core.ops.reshape(x, 'shape', [-1, 1])
            axis = [0]
        out = core.ops.roll(x, 'axis', axis, 'shifts', shifts)
337 338
        return core.ops.reshape(out, 'shape', origin_shape)

Y
yaoxuefeng 已提交
339
    out = helper.create_variable_for_type_inference(x.dtype)
340

Y
yaoxuefeng 已提交
341 342 343
    if axis is None:
        x = reshape(x, shape=[-1, 1])
        axis = [0]
344 345 346

    helper.append_op(
        type='roll',
Y
yaoxuefeng 已提交
347
        inputs={'X': x},
348
        outputs={'Out': out},
Y
yaoxuefeng 已提交
349
        attrs={'axis': axis,
350
               'shifts': shifts})
351
    out = layers.reshape(out, shape=origin_shape)
352
    return out
353 354


L
Leo Chen 已提交
355
def stack(x, axis=0, name=None):
356
    """
357
	:alias_main: paddle.stack
L
Leo Chen 已提交
358
	:alias: paddle.stack, paddle.tensor.stack, paddle.tensor.manipulation.stack
S
swtkiwi 已提交
359

L
Leo Chen 已提交
360 361 362 363 364 365 366
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
402
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
403 404 405 406 407 408 409 410

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
411
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
412
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
413 414 415 416 417
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
418
    Returns:
L
Leo Chen 已提交
419
        Tensor: The stacked tensor with same data type as input.
420 421 422

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
423

424
            import paddle
425
            
426
            paddle.disable_static()
L
Leo Chen 已提交
427 428 429
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Leo Chen 已提交
430 431 432 433 434 435 436 437
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
            print(out.numpy())
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
    """
    return layers.stack(x, axis, name)
438 439


440
def split(x, num_or_sections, axis=0, name=None):
441 442
    """
    Split the input tensor into multiple sub-Tensors.
443
    
444
    Args:
445 446 447 448 449 450 451 452 453 454 455
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
456
    Returns:
457
        list(Tensor): The list of segmented Tensors.
458
    
459 460
    Example:
        .. code-block:: python
461
            
462 463 464
            import numpy as np
            import paddle
            
465 466
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
W
wangchaochaohu 已提交
467
            x = paddle.to_tensor(x_np)
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

            out0, out1, out22 = paddle.split(x, num_or_sections=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
490
    """
491 492
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
493 494


L
Leo Chen 已提交
495
def squeeze(x, axis=None, name=None):
496
    """
497
	:alias_main: paddle.squeeze
L
Leo Chen 已提交
498
	:alias: paddle.squeeze, paddle.tensor.squeeze, paddle.tensor.manipulation.squeeze
S
swtkiwi 已提交
499

L
Leo Chen 已提交
500
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
501

L
Leo Chen 已提交
502 503 504
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
505 506 507 508 509 510

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
511 512
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
513
          Output:
L
Leo Chen 已提交
514
            out.shape = [3, 5]
515 516 517 518

        Case2:

          Input:
L
Leo Chen 已提交
519 520 521 522 523 524 525 526 527 528
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
529
          Output:
L
Leo Chen 已提交
530
            out.shape = [3, 5]
531

L
Leo Chen 已提交
532
        Case4:
533 534

          Input:
L
Leo Chen 已提交
535 536
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
537
          Output:
L
Leo Chen 已提交
538
            out.shape = [1, 3, 5]
539 540

    Args:
541
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
L
Leo Chen 已提交
542
        axis (int|list|tuple, optional): An integer or list of integers, indicating the dimensions to be squeezed. Default is None.
543 544 545
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
546 547 548
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
549
        Tensor: Squeezed Tensor with the same data type as input Tensor.
550 551 552

    Examples:
        .. code-block:: python
553

554 555
            import paddle

556
            paddle.disable_static()
L
Leo Chen 已提交
557 558 559 560
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
            # output.shape [5, 10]
561 562

    """
L
Leo Chen 已提交
563 564 565 566 567 568
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
569

L
Leo Chen 已提交
570
    return layers.squeeze(x, axis, name)
571 572


Z
Zhang Ting 已提交
573 574 575 576 577
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
578
           dtype="int64",
Z
Zhang Ting 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591
           name=None):
    """
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
592 593
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
        tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python

            import paddle

607
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
608 609 610 611 612 613 614
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

615
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
616 617 618 619 620 621 622 623 624 625 626 627
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
628
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
Z
Zhang Ting 已提交
629 630
    if in_dygraph_mode():
        out, inverse, indices, counts = core.ops.unique(
Z
Zhang Ting 已提交
631
            x, 'dtype', attr_dtype, 'return_index', return_index,
Z
Zhang Ting 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
            'return_inverse', return_inverse, 'return_counts', return_counts,
            'axis', axis, "is_sorted", True)
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
652
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
653 654 655 656 657
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
658
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
659 660 661 662 663 664 665 666
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
667 668
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
669
    inverse = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
670
        dtype=attr_dtype, stop_gradient=True)
671 672 673 674 675 676 677 678
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
        "Counts": counts
    }
Z
Zhang Ting 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs)

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


696
def unsqueeze(x, axis, name=None):
697
    """
698
	:alias_main: paddle.unsqueeze
699
	:alias: paddle.unsqueeze, paddle.tensor.unsqueeze, paddle.tensor.manipulation.unsqueeze
700

701 702 703
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
704 705

    Args:
706 707 708 709 710 711
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
712 713

    Returns:
714
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
715 716 717

    Examples:
        .. code-block:: python
718

719 720
            import paddle

721
            paddle.disable_static()
722 723 724 725 726 727 728 729
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
730

731 732 733 734
            axis = paddle.fluid.dygraph.to_variable([0, 1, 2])
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
            
735 736
    """

737
    return layers.unsqueeze(x, axis, name)
738 739


740
def gather(x, index, axis=None, name=None):
741
    """
742 743
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
744 745 746 747 748 749

    .. code-block:: text


                Given:

750
                x = [[1, 2],
751 752 753
                     [3, 4],
                     [5, 6]]

754 755
                index = [1, 2]
                axis=[0]
756 757 758

                Then:

759
                out = [[3, 4],
760 761
                       [5, 6]] 

762
    Args:
763
        x (Tensor): The source input tensor with rank>=1. Supported data type is
764 765
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
766
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
767
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
768 769
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
770 771

    Returns:
772 773
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
774 775 776 777 778 779
    Examples:

        .. code-block:: python

            import paddle

780 781
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
782 783
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
784
    """
785 786 787
    if axis is None:
        axis = 0
    axis_tensor = axis
788
    if not isinstance(axis, Variable) and axis == 0:
789
        return paddle.fluid.layers.gather(input=x, index=index, overwrite=False)
790
    if not isinstance(axis, Variable):
791
        with device_guard("cpu"):
792 793
            axis_tensor = fill_constant(
                shape=[1], dtype='int64', value=axis, force_cpu=True)
794 795 796 797 798 799 800 801 802 803 804 805
    if in_dygraph_mode():
        return core.ops.gather(x, index, axis_tensor)

    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
    else:
        check_type(axis, 'axis', (int), 'gather')

806
    helper = LayerHelper('gather', **locals())
807
    dtype = helper.input_dtype('x')
808 809 810
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="gather",
811 812 813 814
        inputs={"X": x,
                "Index": index,
                "Axis": axis_tensor},
        outputs={"Out": out})
815
    return out
myq406450149's avatar
myq406450149 已提交
816 817 818 819


def unbind(input, axis=0):
    """
820 821
	:alias_main: paddle.tensor.unbind
	:alias: paddle.tensor.unbind,paddle.tensor.manipulation.unbind
S
swtkiwi 已提交
822

myq406450149's avatar
myq406450149 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
       
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
873 874


S
ShenLiang 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
          If True, use the overwrite mode to update the output of the same index,
	      if False, use the accumulate mode to update the output of the same index.Default value is True.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle
            paddle.disable_static()

923 924 925
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
    if in_dygraph_mode():
        return core.ops.scatter(x, index, updates, 'overwrite', overwrite)

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'scatter')
    check_type(overwrite, 'overwrite', bool, 'scatter')
    helper = LayerHelper('scatter', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": x,
                "Ids": index,
                "Updates": updates},
        attrs={'overwrite': overwrite},
        outputs={"Out": out})
    return out


964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
def scatter_nd_add(x, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
        x (Tensor): The x input. Its dtype should be float32, float64.
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            output = paddle.scatter_nd_add(x, index, updates)
    """
    return layers.scatter_nd_add(x, index, updates, name=None)


1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
1050
    
1051 1052 1053 1054 1055 1056 1057 1058
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
1059
            x = paddle.to_tensor(x_np)
1060

1061
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
    return paddle.fluid.layers.split(
        input=x, num_or_sections=chunks, dim=axis, name=name)


L
lilong12 已提交
1079 1080
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
1081 1082

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
1083
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
1084 1085 1086

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
1087
    Args:
L
lilong12 已提交
1088 1089 1090 1091 1092
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
        repeat_times (Tensor|tuple|list): The number of repeating times. If repeat_times is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
1093
    Returns:
L
lilong12 已提交
1094 1095
        N-D Tensor. The data type is the same as ``x``.

L
lilong12 已提交
1096 1097
    Examples:
        .. code-block:: python
L
lilong12 已提交
1098

L
lilong12 已提交
1099
            import paddle
L
lilong12 已提交
1100

1101
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1102
            out = paddle.tile(data, repeat_times=[2, 1])
1103
            np_out = out.numpy()
L
lilong12 已提交
1104
            # [[1, 2, 3], [1, 2, 3]]
L
lilong12 已提交
1105 1106

            out = paddle.tile(data, repeat_times=[2, 2])
1107
            np_out = out.numpy()
L
lilong12 已提交
1108 1109
            # [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]

1110
            repeat_times = paddle.to_tensor([2, 1], dtype='int32')
L
lilong12 已提交
1111
            out = paddle.tile(data, repeat_times=repeat_times)
1112
            np_out = out.numpy()
L
lilong12 已提交
1113 1114
            # [[1, 2, 3], [1, 2, 3]]
    """
1115 1116
    if in_dygraph_mode():
        return core.ops.tile(x, 'repeat_times', repeat_times)
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
        assert len(repeat_times.shape) == 1, (
            'repeat_times must be an 1-D Tensor.')
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
                if six.PY3:
                    type_tuple = (int, np.int32, np.int64)
                elif six.PY2:
                    type_tuple = (int, long, np.int32, np.int64)
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
1133

L
lilong12 已提交
1134 1135
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
L
lilong12 已提交
1136
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
1137 1138
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
1139
            "must set its stop_gradient to be True by "
1140 1141 1142
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
1143

L
lilong12 已提交
1144 1145 1146
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
1147 1148 1149 1150 1151 1152 1153 1154
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
1155
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
1156 1157 1158 1159 1160
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
1161
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
1173 1174


L
lilong12 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
1184
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

1195 1196
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
1197
            out = paddle.expand_as(data_x, data_y)
1198
            np_out = out.numpy()
L
lilong12 已提交
1199 1200
            # [[1, 2, 3], [1, 2, 3]]
    """
1201 1202 1203
    if in_dygraph_mode():
        return core.ops.expand_as_v2(x, y)

L
lilong12 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
    inputs = {"X": [x], "target_tensor": [y]}

1216
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
1217 1218 1219 1220 1221 1222
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='expand_as_v2', inputs=inputs, outputs={'Out': out})
    return out


1223 1224 1225 1226 1227
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
1228
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
1229 1230 1231


    Args:
L
lilong12 已提交
1232 1233 1234 1235
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
1236 1237 1238
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
1239
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
1240 1241 1242 1243 1244 1245

    Examples:
        .. code-block:: python

            import paddle

L
lilong12 已提交
1246
            paddle.disable_static()
1247
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1248
            out = paddle.expand(data, shape=[2, 3])
1249
            out = out.numpy()
1250 1251
            # [[1, 2, 3], [1, 2, 3]]
    """
1252 1253 1254
    if in_dygraph_mode():
        return core.ops.expand_v2(x, 'shape', shape)

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
                if six.PY3:
                    type_tuple = (int, np.int32, np.int64)
                elif six.PY2:
                    type_tuple = (int, long, np.int32, np.int64)
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

1270 1271 1272
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
1273
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
1274 1275
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
1276
                         "some_var.stop_gradient = True, supporting "
1277 1278
                         "some_var as the input.")

1279 1280 1281
    inputs = {"X": [x]}
    attrs = {}

1282
    helper = LayerHelper('expand', **locals())
1283 1284 1285 1286 1287 1288 1289 1290 1291

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
1292
                    "All elements in shape of expand must be positive or -1.")
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
1309 1310 1311


broadcast_to = expand
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347


def reshape(x, shape, name=None):
    """
    This operator changes the shape of ``x`` without changing its data.

    Some tricks exist when specifying the target shape.

    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

    2. 0 means the actual dimension value is going to be copied from the
    corresponding dimension of x. The index of 0s in shape can not exceed
    the dimension of x.

    Here are some examples to explain it.

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
    shape [6, 8] and leaving x's data unchanged.

    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
    dimensions.

    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.

    Args:
1348
        x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
        shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

1364 1365 1366 1367 1368 1369 1370
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
1371 1372
            # the shape of out_2 is [4, 12].
            shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32"))
1373 1374 1375
            out = paddle.reshape(x, shape=shape_tensor)
            print(out)
            # the shape is [8, 6].
1376 1377
    """
    return paddle.fluid.layers.reshape(x=x, shape=shape, name=name)
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398


def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
1399 1400 1401 1402 1403 1404 1405
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
1406 1407 1408 1409

            * Case 1:
                index = [[1]]

1410 1411
                gather_nd(x, index)
                         = [x[1, :, :]]
1412 1413 1414 1415 1416 1417 1418
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

1419 1420
                gather_nd(x, index)
                         = [x[0, 2, :]]
1421 1422 1423 1424 1425
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

1426 1427
                gather_nd(x, index)
                         = [x[1, 2, 3]]
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Examples:

        .. code-block:: python
1443
            
1444 1445
            import paddle
            
1446 1447 1448
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
1449 1450 1451 1452 1453 1454
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """

    return paddle.fluid.layers.gather_nd(input=x, index=index, name=name)
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
    Args:
        x (Tensor): An N-D ``Tensor``. The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].                                
            # example 2:
            # attr starts is a list which contain tensor Tensor.
1535
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
1536 1537 1538 1539 1540 1541
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """

    return paddle.fluid.layers.strided_slice(
        input=x, axes=axes, starts=starts, ends=ends, strides=strides)