manipulation.py 171.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15
from __future__ import print_function
16
from collections import Counter
W
Wilber 已提交
17

Z
zhiboniu 已提交
18
from ..static import Variable, device_guard
19 20 21
from ..framework import core, in_dygraph_mode
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check, _non_static_mode
from ..framework import LayerHelper
Z
zhiboniu 已提交
22
from ..framework import OpProtoHolder, convert_np_dtype_to_dtype_, dygraph_only
W
Wilber 已提交
23
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
24
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
25
import numpy as np
26
# TODO: define functions to manipulate a tensor
27
from ..fluid.layers.nn import _elementwise_op_in_dygraph
28
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
29
import paddle
30
from paddle import _C_ops, _legacy_C_ops
31 32 33 34 35
from ..common_ops_import import dygraph_utils, fill_constant, _varbase_creator
import warnings
from .creation import zeros
from .creation import _complex_to_real_dtype
from .creation import _real_to_complex_dtype
36

37 38
__all__ = []

W
Wilber 已提交
39

40 41 42 43 44 45 46 47
def cast(x, dtype):
    """

    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
48
        x (Tensor): An input N-D Tensor with data type bool, float16,
49
            float32, float64, int32, int64, uint8.
50
        dtype (np.dtype|str): Data type of the output:
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
        Tensor: A Tensor with the same shape as input's.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
67
        return _C_ops.cast(x, dtype)
68 69 70 71

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
72
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
73 74 75 76 77 78 79 80 81 82 83 84 85 86
        return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
    ], 'cast')
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
87 88 89 90 91 92 93
    helper.append_op(type='cast',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={
                         'in_dtype': x.dtype,
                         'out_dtype': out.dtype
                     })
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
        Tensor:  A ``Tensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Tensor.
        TypeError: The type of ``ends`` must be list, tuple or Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
            # sliced_1 is input[0:3, 0:2, 2:4].

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
            # sliced_2 is input[0:3, 0:2, 2:4].
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
                    "Input axes should not be an empty list/tuple.")
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
                "Input axes must be a python list or tuple, but reveived {}".
                format(type(axes)))

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
201 202
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
203 204 205 206 207 208 209 210
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in ends
            ]
        elif isinstance(ends, tmp_tensor_type):
211
            tensor_t = ends.numpy()
212
            ends = [ele for ele in tensor_t]
213
            infer_flags = list(-1 for i in range(len(axes)))
214

215
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
                        "Input axes should not be an empty list/tuple.")
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
235 236
                    "Input axes must be a python list or tuple, but reveived {}"
                    .format(type(axes)))
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
                    if isinstance(item, tmp_tensor_type) else item
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
                    if isinstance(item, tmp_tensor_type) else item
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

266 267 268
            return _legacy_C_ops.slice(input, starts_tensor, ends_tensor, None,
                                       None, 'axes', axes, 'infer_flags',
                                       infer_flags, *attrs)
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
323 324 325 326
    helper.append_op(type='slice',
                     inputs=inputs,
                     attrs=attrs,
                     outputs={'Out': out})
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
382
        return _C_ops.transpose(x, perm)
383 384
    else:
        if _in_legacy_dygraph():
385
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
411 412 413 414 415 416 417
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
    return out


def unstack(x, axis=0, num=None):
    """
    :alias_main: paddle.unstack
	:alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack
	:old_api: paddle.fluid.layers.unstack

    **UnStack Layer**

    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
        list(Tensor): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
455 456 457 458 459
    if in_dygraph_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
460
        return _C_ops.unstack(x, axis, num)
461

462 463 464 465 466
    if _non_static_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
467
        return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num)
468 469 470 471 472 473 474 475 476 477 478 479

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

480 481 482 483 484 485 486
    helper.append_op(type='unstack',
                     inputs={'X': [x]},
                     outputs={'Y': outs},
                     attrs={
                         'axis': axis,
                         'num': num
                     })
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
508

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
537 538
        return _C_ops.shard_index(input, index_num, nshards, shard_id,
                                  ignore_value)
539 540 541 542 543 544 545 546 547

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
548 549 550 551 552 553 554 555 556 557
    helper.append_op(type=op_type,
                     inputs={'X': [input]},
                     outputs={'Out': out},
                     attrs={
                         'index_num': index_num,
                         'nshards': nshards,
                         'shard_id': shard_id,
                         'ignore_value': ignore_value
                     },
                     stop_gradient=True)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
601
        shape (list|tuple|Tensor, optional): The output shape is specified
602 603 604 605 606 607 608 609 610 611 612
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
613
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

    Returns:
        Tensor: The cropped Tensor has same data type with `x`.

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
647

648 649 650 651 652 653 654 655 656 657
    helper = LayerHelper('crop_tensor', **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')

    if offsets is None:
        offsets = [0] * len(x.shape)

658
    if in_dygraph_mode():
659
        return _C_ops.crop_tensor(x, shape, offsets)
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
728 729 730 731 732
                fill_constant([1],
                              'int32',
                              dim_size,
                              force_cpu=True,
                              out=temp_out)
733 734 735 736 737 738 739 740 741
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

742 743 744 745
    helper.append_op(type='crop_tensor',
                     inputs=ipts,
                     outputs={'Out': out},
                     attrs=None if len(attrs) == 0 else attrs)
746 747 748
    return out


749 750 751 752 753 754 755 756 757
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
758 759
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

    Returns:
        x(Tensor): Tensor x filled with value inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
            "The type of 'value'  must be int or float, but received %s." %
            (type(value)))
779
    if in_dygraph_mode():
780
        return _C_ops.fill_(x, value)
781
    else:
782 783
        return _legacy_C_ops.fill_any_(x, "value_float", float(value),
                                       "value_int", int(value))
784 785 786 787 788 789 790 791 792 793 794


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
795
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
796 797

    Returns:
798
        x (Tensor): Tensor x filled with zero inplace
799 800 801 802 803 804 805 806 807 808 809 810

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
811
    if in_dygraph_mode():
812
        return _C_ops.fill_(x, 0.)
813
    else:
814 815
        return _legacy_C_ops.fill_any_(x, "value_float", 0., "value_int",
                                       int(0))
816 817


818 819 820
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
821 822
    Note:
        This API is ONLY available in Dygraph mode.
823

824
    This function fill the value into the x Tensor's diagonal inplace.
825

826 827 828 829 830 831
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
832

833 834
    Returns:
        Tensor: Tensor with diagonal filled with value.
835

836 837 838 839 840 841 842
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
843

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_diagonal_')
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
    assert len(inshape) >= 2, ('Tensor dims should >= 2 in fill_diagonal_ API')
    if len(inshape) > 2:
        assert len(inshapeset) == 1, (
            'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
        )
Z
zhiboniu 已提交
860 861
    if in_dygraph_mode():
        if len(inshape) == 2:
862 863
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
864

865
    if len(inshape) == 2:
866 867 868 869
        return _legacy_C_ops.fill_diagonal_(x, 'value', value, 'offset', offset,
                                            'wrap', wrap)
    return _legacy_C_ops.fill_diagonal_(x, 'value', value, 'offset', offset,
                                        'wrap', True)
870 871


872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
    assert dim1 < len(inshape) and dim1 >= -len(inshape), (
        'dim1 should between [-rank,rank) in fill_diagonal_tensor_')
    assert dim2 < len(inshape) and dim2 >= -len(inshape), (
        'dim2 should between [-rank,rank) in fill_diagonal_tensor_')
    assert len(inshape) >= 2, (
        'Tensor dims should >= 2 in fill_diagonal_tensor_')
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
887 888
    diaglen = min(min(inshape[dim1], inshape[dim1] + offset),
                  min(inshape[dim2], inshape[dim2] - offset))
889
    predshape.append(diaglen)
890 891
    assert tuple(predshape) == tuple(
        y.shape), ("the y shape should be {}".format(predshape))
892 893 894 895
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
Z
zhiboniu 已提交
896
        if in_dygraph_mode():
897
            return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
898
        else:
899 900 901
            return _legacy_C_ops.fill_diagonal_tensor_(x, y, 'offset', offset,
                                                       'dim1', dim1, 'dim2',
                                                       dim2)
Z
zhiboniu 已提交
902
    if in_dygraph_mode():
903
        return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
904
    else:
905 906
        return _legacy_C_ops.fill_diagonal_tensor(x, y, 'offset', offset,
                                                  'dim1', dim1, 'dim2', dim2)
907 908 909 910


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
911 912
    Note:
        This API is ONLY available in Dygraph mode.
913 914 915 916

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
917 918 919 920 921 922
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
938 939 940 941 942 943
    return _fill_diagonal_tensor_impl(x,
                                      y,
                                      offset=offset,
                                      dim1=dim1,
                                      dim2=dim2,
                                      inplace=True)
944 945 946 947 948 949 950


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
951 952 953 954 955 956
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
972 973 974 975 976 977
    return _fill_diagonal_tensor_impl(x,
                                      y,
                                      offset=offset,
                                      dim1=dim1,
                                      dim2=dim2,
                                      inplace=False)
978 979


Z
zhiboniu 已提交
980 981 982
@dygraph_only
def tolist(x):
    """
983 984
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
985 986 987 988

    This function translate the paddle.Tensor to python list.

    Args:
989
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

    Returns:
        list: A list that contain the same value of current Tensor.


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


1011 1012 1013
def concat(x, axis=0, name=None):
    """

1014
    Concatenates the input along the axis.
1015 1016

    Args:
1017
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1018
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1019
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1020
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1021 1022
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1023
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1024 1025

    Returns:
1026
        Tensor: A Tensor with the same data type as ``x``.
1027 1028 1029

    Examples:
        .. code-block:: python
1030

1031
            import paddle
1032

1033 1034 1035 1036 1037 1038
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1039 1040 1041
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1042 1043 1044
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1045 1046 1047 1048 1049 1050 1051 1052 1053
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1054 1055 1056 1057 1058 1059 1060
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1061
        return _C_ops.concat(input, axis)
1062 1063 1064 1065 1066 1067 1068 1069

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
1070
        _legacy_C_ops.concat(input, out, 'axis', axis)
1071 1072 1073 1074 1075
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
1076 1077 1078 1079
            check_variable_and_dtype(x, 'input[' + str(id) + ']', [
                'bool', 'float16', 'float32', 'float64', 'int32', 'int64',
                'int8', 'unit8'
            ], 'concat')
1080 1081
            if x.dtype != input[0].dtype:
                raise TypeError(
1082 1083
                    "All the Tensors in the input must have the same data type."
                )
1084 1085 1086 1087 1088 1089 1090
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
1091 1092
            "The data type of axis must be int32 or int64 when axis is a Tensor"
        )
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                "number of the elements must be 1, but received %s." % len(input)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': input[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': False
                         })
1115 1116 1117 1118 1119
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
1120 1121 1122
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis
1123

1124 1125 1126 1127
        helper.append_op(type='concat',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
1128
    return out
1129 1130


1131 1132
def broadcast_tensors(input, name=None):
    """
1133
    Broadcast a list of tensors following broadcast semantics
1134 1135

    .. note::
1136 1137 1138
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1139 1140

    Args:
1141
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1142 1143
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1144
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1161
    if paddle.framework.in_dygraph_mode():
1162
        return _C_ops.broadcast_tensors(input)
1163
    if paddle.framework._non_static_mode():
1164
        return _legacy_C_ops.broadcast_tensors(input, num_inputs)
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
            "At least 1 tensor is needed to perform broadcast_tensors")

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'broadcast_tensors')
        if x.dtype != input[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
1197 1198
                invalid = (output_shape_r[i] != shape[i]
                           and output_shape_r[i] != 1 and shape[i] != 1)
1199 1200 1201 1202
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1203
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
1216 1217
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()))
1218 1219 1220
        i += 1

    inputs = {'X': input}
1221 1222 1223 1224
    helper.append_op(type='broadcast_tensors',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs={})
1225 1226 1227 1228

    return out


Y
yaoxuefeng 已提交
1229
def flip(x, axis, name=None):
W
Wilber 已提交
1230
    """
Y
yaoxuefeng 已提交
1231
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1232 1233

    Args:
Y
yaoxuefeng 已提交
1234
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1235
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1236
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1237
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1238 1239

    Returns:
Y
yaoxuefeng 已提交
1240
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1241 1242 1243 1244 1245 1246

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
1247 1248 1249 1250

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
1251
          img = paddle.to_tensor(x)
R
Roc 已提交
1252 1253
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1254

R
Roc 已提交
1255 1256
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1257
    """
R
Roc 已提交
1258 1259
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1260 1261

    if in_dygraph_mode():
1262
        return _C_ops.flip(x, axis)
H
hong 已提交
1263

Z
zhiboniu 已提交
1264
    if paddle.in_dynamic_mode():
1265
        return _legacy_C_ops.flip(x, "axis", axis)
R
Roc 已提交
1266

W
Wilber 已提交
1267
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1268 1269
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
1270 1271 1272
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
1273
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1274 1275 1276 1277 1278
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

1279 1280 1281 1282
    helper.append_op(type="flip",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={"axis": axis})
W
Wilber 已提交
1283
    return out
1284 1285


Z
zmxdream 已提交
1286 1287
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1288
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1289 1290 1291

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1292
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1293 1294
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1308
          print(data)
Z
zmxdream 已提交
1309 1310 1311
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1312
          y = paddle.rot90(data, 1, [0, 1])
1313
          print(y)
Z
zmxdream 已提交
1314 1315 1316
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1317
          y= paddle.rot90(data, -1, [0, 1])
1318
          print(y)
Z
zmxdream 已提交
1319 1320 1321
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1322 1323
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1324
          print(data2)
Z
zmxdream 已提交
1325 1326 1327 1328 1329
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1330
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1331 1332 1333 1334 1335
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'rot90')
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1349 1350 1351
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
                total_rot_dims))
Z
zmxdream 已提交
1352
    if input_total_dims < 2:
1353 1354 1355
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
                input_total_dims))
Z
zmxdream 已提交
1356 1357 1358

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1359 1360
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}"
            .format(axes[0], axes[1]))
Z
zmxdream 已提交
1361 1362

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1363 1364
        raise ValueError("Rotation axis0 out of range, axis0 = {}".format(
            axes[0]))
Z
zmxdream 已提交
1365
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1366 1367
        raise ValueError("Rotation axis1 out of range, axis1 = {}".format(
            axes[1]))
Z
zmxdream 已提交
1368

Z
zmxdream 已提交
1369
    k %= 4
Z
zmxdream 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
    (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]],
                                                axes_list[axes[0]])
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1385
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1386
    r"""
1387 1388
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1389
    Note:
1390
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1391
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1422
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1423
                      float64, int8, int32, int64, uint8.
1424 1425
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1426
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1427 1428

    Returns:
Y
yaoxuefeng 已提交
1429
        Tensor: A tensor with the contents of the input tensor, with input \
1430 1431 1432 1433
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
Y
yaoxuefeng 已提交
1434
        ValueError: If x is not a Tensor.
1435 1436 1437 1438 1439 1440 1441 1442 1443
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1444

Y
yaoxuefeng 已提交
1445 1446
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1447

1448 1449
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1450 1451 1452 1453

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1454 1455
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1456
        raise ValueError("The input x should be a Tensor")
1457

Z
zhiboniu 已提交
1458
    if not paddle.in_dynamic_mode():
1459
        check_variable_and_dtype(
1460 1461
            x, 'x',
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
1462
            'flatten')
1463 1464

    x_dim = len(x.shape)
1465 1466
    if not (isinstance(start_axis,
                       int)) or (start_axis > x_dim - 1) or start_axis < -x_dim:
1467 1468
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
1469 1470
    if not (isinstance(stop_axis,
                       int)) or (stop_axis > x_dim - 1) or stop_axis < -x_dim:
1471 1472 1473 1474 1475 1476 1477 1478 1479
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1480
    if in_dygraph_mode():
1481
        return _C_ops.flatten(x, start_axis, stop_axis)
1482 1483

    if _in_legacy_dygraph():
1484 1485
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
1486 1487
        return dy_out

1488
    helper = LayerHelper('flatten', **locals())
1489 1490
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
    helper.append_op(type='flatten_contiguous_range',
                     inputs={"X": x},
                     outputs={
                         'Out': out,
                         'XShape': x_shape
                     },
                     attrs={
                         "start_axis": start_axis,
                         "stop_axis": stop_axis
                     })
1501 1502 1503
    return out


1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1514 1515
    if not (isinstance(start_axis,
                       int)) or (start_axis > x_dim - 1) or start_axis < -x_dim:
1516 1517
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
1518 1519
    if not (isinstance(stop_axis,
                       int)) or (stop_axis > x_dim - 1) or stop_axis < -x_dim:
1520 1521 1522 1523 1524 1525 1526 1527 1528
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1529
    if in_dygraph_mode():
1530
        return _C_ops.flatten_(x, start_axis, stop_axis)
1531 1532

    if _in_legacy_dygraph():
1533 1534
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range_(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
1535
        return dy_out
1536 1537


Y
yaoxuefeng 已提交
1538
def roll(x, shifts, axis=None, name=None):
1539
    """
1540 1541 1542
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1543 1544 1545
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1546
        x (Tensor): The x tensor as input.
1547
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1548
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1549
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1550 1551 1552
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1553 1554

    Returns:
Y
yaoxuefeng 已提交
1555
        Tensor: A Tensor with same data type as `x`.
1556 1557 1558

    Examples:
        .. code-block:: python
1559

1560 1561
            import paddle

1562 1563 1564
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1565
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1566
            print(out_z1)
Y
yaoxuefeng 已提交
1567 1568 1569 1570
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1571
            print(out_z2)
Y
yaoxuefeng 已提交
1572 1573 1574
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1575 1576 1577 1578 1579
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1580
    """
Y
yaoxuefeng 已提交
1581
    origin_shape = x.shape
1582 1583
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1584 1585 1586 1587
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1588
    if axis is not None:
Y
yaoxuefeng 已提交
1589 1590 1591
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1592 1593
                    "axis is out of range, it should be in range [{}, {}), but received {}"
                    .format(-len_origin_shape, len_origin_shape, axis))
S
sunli 已提交
1594 1595 1596
    else:
        axis = []

F
From00 已提交
1597
    if in_dygraph_mode():
1598
        return _C_ops.roll(x, shifts, axis)
F
From00 已提交
1599 1600

    if _in_legacy_dygraph():
1601
        return _legacy_C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1602

1603 1604
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1605

Y
yaoxuefeng 已提交
1606
    out = helper.create_variable_for_type_inference(x.dtype)
1607

1608
    if isinstance(shifts, Variable):
1609 1610 1611 1612 1613 1614 1615
        helper.append_op(type='roll',
                         inputs={
                             'X': x,
                             "ShiftsTensor": shifts
                         },
                         outputs={'Out': out},
                         attrs={'axis': axis})
1616 1617
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
1618 1619 1620 1621 1622 1623 1624
        helper.append_op(type='roll',
                         inputs={'X': x},
                         outputs={'Out': out},
                         attrs={
                             'axis': axis,
                             'shifts': shifts
                         })
1625
    return out
1626 1627


L
Leo Chen 已提交
1628
def stack(x, axis=0, name=None):
1629
    """
1630
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1631
    All tensors must be of the same shape and same dtype.
1632 1633 1634

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1635
    tensor is [A, N, B], etc.
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1672
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1673 1674 1675 1676 1677 1678 1679 1680

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1681
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1682
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1683
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1684
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1685
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1686
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1687

1688
    Returns:
L
Leo Chen 已提交
1689
        Tensor: The stacked tensor with same data type as input.
1690

1691
    Example:
1692
        .. code-block:: python
L
Leo Chen 已提交
1693

1694
            import paddle
1695

L
Leo Chen 已提交
1696 1697 1698
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1699

L
Leo Chen 已提交
1700 1701
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1702
            print(out)
L
Leo Chen 已提交
1703 1704 1705
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1706

L
Liyulingyue 已提交
1707 1708 1709 1710 1711 1712
	    out = paddle.stack([x1, x2, x3], axis=-2)
	    print(out.shape)  # [1, 3, 2]
	    print(out)
	    # [[[1., 2.],
	    #   [3., 4.],
	    #   [5., 6.]]]
L
Leo Chen 已提交
1713
    """
1714 1715 1716
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1717
        return _C_ops.stack(x, axis)
1718 1719

    if _in_legacy_dygraph():
1720
        return _legacy_C_ops.stack(x, 'axis', axis)
1721 1722 1723 1724 1725 1726 1727 1728

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
        if isinstance(x, Variable) and x.desc.type(
        ) == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            x = [x]
        else:
1729 1730 1731 1732
            raise TypeError(
                "The type of '%s' in %s must be %s, but received %s" %
                ('x', 'stack', 'list[Tensor], tuple[Tensor] or TensorArray',
                 type(x)))
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
            check_variable_and_dtype(i, 'x', \
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'stack')

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': x[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': True
                         })
1756
    else:
1757 1758 1759 1760
        helper.append_op(type='stack',
                         inputs={'X': x},
                         outputs={'Y': out},
                         attrs={'axis': axis})
1761 1762

    return out
1763 1764


1765
def split(x, num_or_sections, axis=0, name=None):
1766 1767
    """
    Split the input tensor into multiple sub-Tensors.
1768

1769
    Args:
1770
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1771
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1772 1773 1774 1775
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1776
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
1777 1778 1779 1780
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1781
    Returns:
1782
        list(Tensor): The list of segmented Tensors.
1783

1784 1785
    Example:
        .. code-block:: python
1786

1787
            import paddle
1788

L
Leo Chen 已提交
1789 1790
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1791

L
Leo Chen 已提交
1792 1793 1794 1795
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1796 1797

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1798 1799 1800
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1801 1802

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1803 1804 1805
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1806

L
Leo Chen 已提交
1807
            # axis is negative, the real axis is (rank(x) + axis)=1
1808
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1809 1810 1811
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1812
    """
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1834 1835
                        num_or_sections[index] = num_or_sections[index].numpy(
                        )[0]
1836 1837 1838 1839 1840 1841 1842
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
                "received %s." % (type(num_or_sections)))
1843
        if in_dygraph_mode():
C
Charles-hit 已提交
1844 1845 1846 1847
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
1848 1849
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
1850
            _legacy_C_ops.split(input, out, *attrs)
1851
            return out
1852

1853 1854 1855 1856
    check_variable_and_dtype(input, 'input', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'int8'
    ], 'split')
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
1884 1885 1886 1887 1888
                fill_constant([1],
                              'int32',
                              dim_size,
                              force_cpu=True,
                              out=temp_out)
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
        attrs['sections'] = list(
1914 1915
            map(lambda ele: -1
                if isinstance(ele, Variable) else ele, num_or_sections))
1916 1917 1918 1919 1920 1921 1922 1923
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
1924 1925 1926 1927
    helper.append_op(type='split',
                     inputs=inputs,
                     outputs={'Out': outs},
                     attrs=attrs)
1928
    return outs
1929 1930


1931 1932 1933
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
1934

1935 1936
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1937
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1938 1939 1940 1941 1942 1943 1944 1945
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
1946

1947 1948
    Example:
        .. code-block:: python
1949

1950
            import paddle
1951

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=2)
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
            "The input tensor's dimension must be greater than 1, but got {}".
            format(x.ndim))
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
1973
def squeeze(x, axis=None, name=None):
1974
    """
1975 1976 1977 1978
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
1979
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
1980

1981 1982
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
1983
    If axis is not provided, all dims equal of size 1 will be removed.
1984 1985 1986 1987 1988 1989

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
1990 1991
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
1992
          Output:
L
Leo Chen 已提交
1993
            out.shape = [3, 5]
1994 1995 1996 1997

        Case2:

          Input:
L
Leo Chen 已提交
1998 1999 2000 2001
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
2002

L
Leo Chen 已提交
2003 2004 2005
        Case4:

          Input:
2006
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2007
            axis = [0, 2, 3]
2008
          Output:
L
Leo Chen 已提交
2009
            out.shape = [3, 5]
2010

L
Leo Chen 已提交
2011
        Case4:
2012 2013

          Input:
2014
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2015
            axis = [-2]
2016
          Output:
L
Leo Chen 已提交
2017
            out.shape = [1, 3, 5]
2018 2019

    Args:
2020
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2021
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2022 2023 2024
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2025 2026 2027
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
2028
        Tensor: Squeezed Tensor with the same data type as input Tensor.
2029 2030 2031

    Examples:
        .. code-block:: python
2032

2033
            import paddle
2034

L
Leo Chen 已提交
2035 2036
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2037 2038

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2039
            print(output.shape)  # [5, 10]
2040

2041 2042 2043 2044
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2045
    """
L
Leo Chen 已提交
2046 2047 2048 2049 2050 2051
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2052

2053 2054 2055
    input = x
    axes = axis
    if in_dygraph_mode():
2056
        return _C_ops.squeeze(input, axes)
2057
    if _in_legacy_dygraph():
2058
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
2059 2060 2061 2062 2063 2064 2065
        return out

    helper = LayerHelper("squeeze", **locals())
    check_variable_and_dtype(input, 'input', [
        'float16', 'float32', 'float64', 'bool', 'int8', 'int32', 'int64',
        'complex64', 'complex128'
    ], 'squeeze')
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

2078 2079
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2080 2081
    helper.append_op(type="squeeze2",
                     inputs={"X": input},
2082
                     attrs=attrs,
2083 2084 2085 2086
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
2087 2088

    return out
2089 2090


2091
@inplace_apis_in_dygraph_only
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2104 2105 2106
    input = x
    axes = axis
    if in_dygraph_mode():
2107
        return _C_ops.squeeze_(input, axes)
2108
    if _in_legacy_dygraph():
2109
        out, _ = _legacy_C_ops.squeeze2_(input, 'axes', axes)
2110
        return out
2111 2112


D
duanboqiang 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
def unique_consecutive(x,
                       return_inverse=False,
                       return_counts=False,
                       axis=None,
                       dtype="int64",
                       name=None):
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

    .. note:: This function is different from :func:`paddle.unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
        tuple: (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.

    Example:
        .. code-block:: python

2144
            import paddle
D
duanboqiang 已提交
2145 2146

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2147
            output = paddle.unique_consecutive(x) #
D
duanboqiang 已提交
2148 2149 2150 2151 2152 2153
            np_output = output.numpy() # [1 2 3 1 2]
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
            np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4]
            np_counts = inverse.numpy() # [2 2 1 2 1]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2154
            output = paddle.unique_consecutive(x, axis=0) #
D
duanboqiang 已提交
2155 2156 2157
            np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2158
            output = paddle.unique_consecutive(x, axis=0) #
D
duanboqiang 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
            np_output = output.numpy()
            # [[2 1 3]
            #  [3 0 1]
            #  [2 1 3]]
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2170
    if in_dygraph_mode():
2171
        out, inverse, counts = _C_ops.unique_consecutive(
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
            x, return_inverse, return_counts, axis, attr_dtype)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    elif paddle.in_dynamic_mode():
2182
        out, inverse, counts = _legacy_C_ops.unique_consecutive(
D
duanboqiang 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
            x, 'dtype', attr_dtype, 'return_inverse', return_inverse,
            'return_counts', return_counts, 'axis', axis)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'],
                             'unique_consecutive')
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
2208 2209 2210 2211 2212 2213
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    counts = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                       stop_gradient=True)
D
duanboqiang 已提交
2214 2215 2216 2217 2218 2219
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
2220 2221 2222 2223
    helper.append_op(type="unique_consecutive",
                     inputs={"X": x},
                     attrs=attrs,
                     outputs=outputs)
D
duanboqiang 已提交
2224 2225 2226 2227 2228
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


Z
Zhang Ting 已提交
2229 2230 2231 2232 2233
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
2234
           dtype="int64",
Z
Zhang Ting 已提交
2235
           name=None):
2236
    r"""
Z
Zhang Ting 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2248 2249
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2250 2251 2252
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2253
    Returns:
2254
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2255 2256 2257 2258 2259
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2260

Z
Zhang Ting 已提交
2261 2262
            import paddle

2263
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2264 2265 2266 2267 2268 2269 2270
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

2271
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2272 2273 2274 2275
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
2276
            np_unique = unique.numpy()
Z
Zhang Ting 已提交
2277 2278 2279 2280 2281 2282 2283
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2284
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2285 2286
    if _non_static_mode():
        if in_dygraph_mode():
2287
            out, indices, inverse, counts = _C_ops.unique(
2288 2289 2290
                x, return_index, return_inverse, return_counts, axis,
                attr_dtype)
        if _in_legacy_dygraph():
2291
            out, inverse, indices, counts = _legacy_C_ops.unique(
2292 2293 2294
                x, 'dtype', attr_dtype, 'return_index', return_index,
                'return_inverse', return_inverse, 'return_counts',
                return_counts, 'axis', axis, "is_sorted", True)
Z
Zhang Ting 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2313
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2314 2315 2316 2317 2318
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2319
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2320 2321 2322 2323 2324 2325
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
2326 2327 2328 2329 2330 2331 2332 2333
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    indices = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    counts = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                       stop_gradient=True)
2334 2335 2336 2337 2338 2339
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
        "Counts": counts
    }
Z
Zhang Ting 已提交
2340 2341 2342 2343 2344 2345 2346 2347
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

2348 2349 2350 2351
    helper.append_op(type="unique",
                     inputs={"X": x},
                     attrs=attrs,
                     outputs=outputs)
Z
Zhang Ting 已提交
2352 2353 2354 2355 2356 2357 2358

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2359
def unsqueeze(x, axis, name=None):
2360
    """
2361 2362 2363
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2364

2365 2366
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2367 2368
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2369
    Args:
2370
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2371 2372
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2373 2374 2375
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2376 2377

    Returns:
2378
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
2379 2380 2381

    Examples:
        .. code-block:: python
2382

2383 2384
            import paddle

2385 2386
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2387

2388 2389
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2390 2391

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2392
            print(out2.shape)  # [1, 5, 1, 10]
2393

L
Leo Chen 已提交
2394
            axis = paddle.to_tensor([0, 1, 2])
2395
            out3 = paddle.unsqueeze(x, axis=axis)
2396
            print(out3.shape)  # [1, 1, 1, 5, 10]
2397 2398 2399 2400 2401 2402

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2403

2404
    """
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
2418
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2419
            return out
2420
        return _C_ops.unsqueeze(input, axes)
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
    check_variable_and_dtype(input, 'input', [
        'float16',
        'float32',
        'float64',
        'bool',
        'int8',
        'int16',
        'int32',
        'int64',
        'complex64',
        'complex128',
    ], 'unsqueeze')
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2452 2453 2454 2455 2456 2457 2458
    helper.append_op(type="unsqueeze2",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
2459

2460
    return out
2461 2462


2463
@inplace_apis_in_dygraph_only
2464 2465 2466 2467 2468
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2469 2470 2471 2472 2473 2474 2475 2476
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
        axes = axes.numpy().tolist()
    elif isinstance(axes, (list, tuple)):
        axes = [
2477
            item.numpy().item(0) if isinstance(item, Variable) else item
2478
            for item in axes
2479
        ]
2480
    if in_dygraph_mode():
2481 2482
        return _C_ops.unsqueeze_(input, axes)
    out, _ = _legacy_C_ops.unsqueeze2_(input, 'axes', axes)
2483
    return out
2484 2485


2486
def gather(x, index, axis=None, name=None):
2487
    """
2488 2489
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2490 2491 2492 2493 2494 2495

    .. code-block:: text


                Given:

2496
                x = [[1, 2],
2497 2498 2499
                     [3, 4],
                     [5, 6]]

2500 2501
                index = [1, 2]
                axis=[0]
2502 2503 2504

                Then:

2505
                out = [[3, 4],
2506
                       [5, 6]]
2507

2508
    Args:
2509
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2510 2511
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2512
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
2513
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2514 2515
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2516 2517

    Returns:
2518
        output (Tensor): The output is a tensor with the same rank as ``x``.
2519

2520 2521 2522 2523 2524 2525
    Examples:

        .. code-block:: python

            import paddle

2526 2527
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2528 2529
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2530
    """
2531 2532
    if axis is None:
        axis = 0
2533

2534
    if in_dygraph_mode():
2535
        return _C_ops.gather(x, index, axis)
2536
    if _in_legacy_dygraph():
2537
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
2538 2539
        return _legacy_C_ops.gather(x, index, None, "axis", axis, "overwrite",
                                    False)
2540 2541

    check_variable_and_dtype(
2542 2543
        x, 'x',
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
2544 2545
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2546

2547 2548 2549
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2550
    helper = LayerHelper('gather', **locals())
2551
    dtype = helper.input_dtype('x')
2552
    out = helper.create_variable_for_type_inference(dtype)
2553
    if not isinstance(axis, Variable):
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
        helper.append_op(type="gather",
                         inputs={
                             "X": x,
                             "Index": index
                         },
                         attrs={
                             'axis': axis,
                             'overwrite': False
                         },
                         outputs={"Out": out})
2564
    else:
2565 2566 2567 2568 2569 2570 2571 2572
        helper.append_op(type="gather",
                         inputs={
                             "X": x,
                             "Index": index,
                             "Axis": axis
                         },
                         attrs={"overwrite": False},
                         outputs={"Out": out})
2573

2574
    return out
myq406450149's avatar
myq406450149 已提交
2575 2576 2577 2578


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2579

myq406450149's avatar
myq406450149 已提交
2580
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2581

myq406450149's avatar
myq406450149 已提交
2582
    Args:
2583
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
2584
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2585
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2586
    Returns:
2587
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2588 2589 2590

    Example:
        .. code-block:: python
2591

myq406450149's avatar
myq406450149 已提交
2592
            import paddle
2593

C
Chen Long 已提交
2594 2595
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2596

2597
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2598 2599 2600
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2601

2602
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2603 2604 2605 2606 2607
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2608
    if in_dygraph_mode():
2609
        return _C_ops.unbind(input, axis)
2610

myq406450149's avatar
myq406450149 已提交
2611 2612 2613 2614 2615 2616 2617 2618
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2619
    if _in_legacy_dygraph():
2620
        return _legacy_C_ops.unbind(input, num, 'axis', axis)
2621 2622 2623 2624 2625 2626

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
myq406450149's avatar
myq406450149 已提交
2627 2628 2629 2630
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2631 2632 2633 2634
    helper.append_op(type="unbind",
                     inputs={"X": input},
                     outputs={"Out": outs},
                     attrs={"axis": axis})
myq406450149's avatar
myq406450149 已提交
2635
    return outs
L
lilong12 已提交
2636 2637


S
ShenLiang 已提交
2638 2639 2640 2641
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2642

S
ShenLiang 已提交
2643
    .. code-block:: python
2644

S
ShenLiang 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

2666
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2667 2668 2669 2670 2671 2672
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
2673 2674
        overwrite (bool): The mode that updating the output when there are same indices.

S
sunzhongkai588 已提交
2675 2676
            If True, use the overwrite mode to update the output of the same index,
	        if False, use the accumulate mode to update the output of the same index.Default value is True.
2677

S
ShenLiang 已提交
2678
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2679

S
ShenLiang 已提交
2680 2681 2682 2683 2684
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
2685

S
ShenLiang 已提交
2686 2687
            import paddle

2688 2689 2690
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2691

S
ShenLiang 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2712
    if in_dygraph_mode():
2713
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2714 2715
    else:
        if _in_legacy_dygraph():
2716 2717
            return _legacy_C_ops.scatter(x, index, updates, 'overwrite',
                                         overwrite)
J
Jiabin Yang 已提交
2718 2719
        else:
            check_variable_and_dtype(
2720 2721
                x, 'dtype', ['float32', 'float64', 'float16', 'int32', 'int64'],
                'scatter')
J
Jiabin Yang 已提交
2722 2723 2724
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
2725 2726 2727 2728 2729 2730 2731 2732
            helper.append_op(type="scatter",
                             inputs={
                                 "X": x,
                                 "Ids": index,
                                 "Updates": updates
                             },
                             attrs={'overwrite': overwrite},
                             outputs={"Out": out})
J
Jiabin Yang 已提交
2733
            return out
S
ShenLiang 已提交
2734 2735


2736
@inplace_apis_in_dygraph_only
2737 2738 2739 2740 2741
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2742
    if in_dygraph_mode():
2743 2744
        return _C_ops.scatter_(x, index, updates, overwrite)
    return _legacy_C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
2745 2746


2747
def scatter_nd_add(x, index, updates, name=None):
2748
    r"""
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2790
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
2808 2809 2810
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
2811

2812
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
2813 2814
            print(output.shape)
            # [3, 5, 9, 10]
2815
    """
2816
    if in_dygraph_mode():
2817
        return _C_ops.scatter_nd_add(x, index, updates)
2818 2819
    else:
        if _in_legacy_dygraph():
2820
            op = getattr(_legacy_C_ops, 'scatter_nd_add')
2821 2822 2823 2824 2825 2826 2827 2828
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
2829 2830 2831 2832 2833 2834 2835
            helper.append_op(type="scatter_nd_add",
                             inputs={
                                 "X": x,
                                 "Index": index,
                                 "Updates": updates
                             },
                             outputs={"Out": output})
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
2880 2881


2882 2883 2884
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
2885

2886 2887 2888
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
2889
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
2890 2891 2892 2893 2894 2895
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
2896

2897 2898
    Example:
        .. code-block:: python
2899

2900 2901
            import numpy as np
            import paddle
2902

2903 2904
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
2905
            x = paddle.to_tensor(x_np)
2906

2907
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
2908 2909 2910 2911
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

2912

2913 2914 2915 2916 2917 2918 2919 2920
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
2921
    return split(x, num_or_sections=chunks, axis=axis, name=name)
2922 2923


L
lilong12 已提交
2924 2925
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
2926 2927

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
2928
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
2929 2930 2931

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
2932
    Args:
L
lilong12 已提交
2933
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
2934
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
2935 2936 2937
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
2938
    Returns:
2939
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
2940

L
lilong12 已提交
2941 2942
    Examples:
        .. code-block:: python
L
lilong12 已提交
2943

L
lilong12 已提交
2944
            import paddle
L
lilong12 已提交
2945

2946
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
2947
            out = paddle.tile(data, repeat_times=[2, 1])
2948
            np_out = out.numpy()
2949 2950
            # [[1, 2, 3]
            #  [1, 2, 3]]
L
lilong12 已提交
2951

2952
            out = paddle.tile(data, repeat_times=(2, 2))
2953
            np_out = out.numpy()
2954 2955
            # [[1, 2, 3, 1, 2, 3]
            #  [1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
2956

2957
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
2958
            out = paddle.tile(data, repeat_times=repeat_times)
2959
            np_out = out.numpy()
2960
            # [[1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
2961
    """
H
hong 已提交
2962
    if in_dygraph_mode():
2963
        if isinstance(repeat_times, core.eager.Tensor):
2964
            assert repeat_times.ndim == 1, "Only support ndim == 1 while repeat_times is a Tensor."
2965 2966
            repeat_times = repeat_times.numpy().tolist()

2967
        return _C_ops.tile(x, repeat_times)
H
hong 已提交
2968 2969

    if _in_legacy_dygraph():
2970
        return _legacy_C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
2971

2972 2973
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
2974 2975
        assert len(
            repeat_times.shape) == 1, ('repeat_times must be an 1-D Tensor.')
2976 2977 2978 2979 2980 2981
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
2982
                type_tuple = (int, np.int32, np.int64)
2983 2984
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
2985

2986 2987 2988
    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'tile')
L
lilong12 已提交
2989
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
2990 2991
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
2992
            "must set its stop_gradient to be True by "
2993 2994 2995
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
2996

L
lilong12 已提交
2997 2998 2999
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
3000 3001 3002 3003 3004 3005 3006 3007
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
3008
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
3009 3010 3011 3012
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
3013 3014
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
3015 3016 3017
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
3018 3019
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)
L
lilong12 已提交
3020 3021 3022

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3023 3024 3025 3026
    helper.append_op(type='tile',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
L
lilong12 已提交
3027
    return out
3028 3029


L
lilong12 已提交
3030 3031 3032 3033 3034 3035 3036 3037 3038
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3039
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3050 3051
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3052
            out = paddle.expand_as(data_x, data_y)
3053
            np_out = out.numpy()
L
lilong12 已提交
3054 3055
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3056
    if in_dygraph_mode():
3057
        return _C_ops.expand_as(x, None, y.shape)
H
hong 已提交
3058

H
hong 已提交
3059
    if _non_static_mode():
3060
        return _legacy_C_ops.expand_as_v2(x, 'target_shape', y.shape)
3061

3062 3063 3064
    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'expand_as')
L
lilong12 已提交
3065 3066 3067 3068 3069 3070 3071 3072
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
3073
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3074

3075
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
3076 3077
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3078 3079 3080 3081
    helper.append_op(type='expand_as_v2',
                     inputs=inputs,
                     attrs={'target_shape': y.shape},
                     outputs={'Out': out})
L
lilong12 已提交
3082 3083 3084
    return out


3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3096
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3097
            The value -1 in shape means keeping the corresponding dimension unchanged.
3098
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3112
    if in_dygraph_mode():
3113
        return _C_ops.expand(x, shape)
3114
    if _in_legacy_dygraph():
3115
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3116 3117 3118 3119 3120 3121 3122 3123 3124

    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
3125
                type_tuple = (int, np.int32, np.int64)
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'broadcast_to')
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input.")

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
                    "All elements in shape of broadcast_to must be positive or -1."
                )
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3168 3169 3170 3171
    helper.append_op(type='expand_v2',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
3172 3173 3174
    return out


3175 3176 3177 3178 3179
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3180
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1.
3181 3182 3183


    Args:
C
Chen Long 已提交
3184
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3185
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3186
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3187
            The value -1 in shape means keeping the corresponding dimension unchanged.
3188 3189 3190
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
3191
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
3192 3193 3194 3195 3196 3197

    Examples:
        .. code-block:: python

            import paddle

3198
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3199
            out = paddle.expand(data, shape=[2, 3])
3200
            print(out)
3201 3202
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3203
    if in_dygraph_mode():
3204
        return _C_ops.expand(x, shape)
H
hong 已提交
3205

Z
zhiboniu 已提交
3206
    if paddle.in_dynamic_mode():
3207
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3208

3209 3210 3211 3212 3213 3214 3215 3216
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
3217
                type_tuple = (int, np.int32, np.int64)
3218 3219 3220
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

3221
    check_variable_and_dtype(
3222 3223
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand')
3224
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
3225
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
3226 3227
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
3228
                         "some_var.stop_gradient = True, supporting "
3229 3230
                         "some_var as the input.")

3231 3232 3233
    inputs = {"X": [x]}
    attrs = {}

3234
    helper = LayerHelper('expand', **locals())
3235 3236 3237 3238 3239

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3240
                attrs_expand_shape.append(-2)
3241 3242 3243
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
3244
                    "All elements in shape of expand must be positive or -1.")
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3258 3259 3260 3261
    helper.append_op(type='expand_v2',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
3262
    return out
L
lilong12 已提交
3263 3264


3265 3266
def reshape(x, shape, name=None):
    """
3267
    Changes the shape of ``x`` without changing its data.
3268

3269
    Note that the output Tensor will share data with origin Tensor and doesn't
3270 3271
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3272 3273
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3274 3275
    Some tricks exist when specifying the target shape.

3276
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3277

3278
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3279 3280 3281

    Here are some examples to explain it.

3282
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3283

3284
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3285

3286
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3287 3288

    Args:
3289 3290
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3291 3292
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3293
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3294 3295 3296 3297 3298 3299 3300 3301 3302

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3303 3304
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3305

3306 3307 3308
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3309

3310 3311
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3312
            # the shape of out_2 is [4, 12].
3313

3314
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3315
            out = paddle.reshape(x, shape=shape_tensor)
3316
            print(out.shape)
3317
            # the shape is [8, 6].
3318 3319 3320 3321 3322
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3323
    """
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
    actual_shape = None
    act = None
    inplace = False

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        #TODO(zhiqiu): enable inplace in dygraph mode.
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        if isinstance(shape, (list, tuple)):
            shape = [
3337 3338
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in shape
3339
            ]
3340
            out = _C_ops.reshape(x, shape)
3341 3342
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3343
            out = _C_ops.reshape(x, shape)
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
                " got '{}.'".format(type(shape)))

        return dygraph_utils._append_activation_in_dygraph(out, act)
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if inplace:
                warnings.warn(
                    "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
                )
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
3362
                out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape)
3363 3364
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
3365
                out, _ = _legacy_C_ops.reshape2(x, shape)
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
                    " got '{}.'".format(type(shape)))

            return dygraph_utils._append_activation_in_dygraph(out, act)

    check_variable_and_dtype(x, 'x', [
        'float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'bool',
        'uint16'
    ], 'reshape')
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
                        % dim_idx)
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
3434 3435 3436 3437 3438 3439 3440
    helper.append_op(type="reshape2",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
3441 3442

    return helper.append_activation(out)
3443 3444


3445
@inplace_apis_in_dygraph_only
3446 3447 3448 3449 3450
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3451 3452 3453 3454 3455 3456 3457
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in shape
            ]
3458
            out = _C_ops.reshape_(x, shape)
3459 3460
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3461
            out = _C_ops.reshape_(x, shape)
3462 3463 3464 3465 3466
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
                " got '{}.'".format(type(shape)))

3467
        return out
3468 3469 3470 3471 3472 3473
    else:
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
3474
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape)
3475 3476 3477 3478 3479 3480 3481 3482 3483
            return out
        elif isinstance(shape, Variable):
            shape.stop_gradient = True
            # NOTE(pangyoki): Cannot support the case where the shape Tensor
            # is negative. In the infer_shape stage, the input's dim will
            # be changed to a negative number.
            # Thus, convert Shape Tensor to list firstly and then call
            # reshape inplace op.
            shape_list = shape.numpy().tolist()
3484
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape_list)
3485
            return out
3486 3487


3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3507 3508 3509 3510 3511 3512 3513
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3514 3515 3516 3517

            * Case 1:
                index = [[1]]

3518 3519
                gather_nd(x, index)
                         = [x[1, :, :]]
3520 3521 3522 3523 3524 3525 3526
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3527 3528
                gather_nd(x, index)
                         = [x[0, 2, :]]
3529 3530 3531 3532 3533
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3534 3535
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3536 3537 3538 3539 3540 3541
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3542
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3543 3544 3545

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3546

3547 3548 3549
    Examples:

        .. code-block:: python
3550

3551
            import paddle
3552

3553 3554 3555
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3556

3557 3558 3559
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3560
    if in_dygraph_mode():
3561
        return _C_ops.gather_nd(x, index)
3562 3563
    else:
        if _in_legacy_dygraph():
3564
            return _legacy_C_ops.gather_nd(x, index)
3565 3566 3567 3568 3569 3570 3571
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
3572 3573 3574 3575 3576 3577
    helper.append_op(type="gather_nd",
                     inputs={
                         "X": x,
                         "Index": index
                     },
                     outputs={"Out": output})
3578
    return output
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3627

3628
    Args:
3629
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3656
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3657 3658
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3659
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3660 3661 3662
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3663
    if in_dygraph_mode():
3664
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3665

3666 3667
    helper = LayerHelper('strided_slice', **locals())

3668 3669 3670
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'strided_slice')
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
            check_dtype(list_input.dtype, input_name, ['int32'],
                        'strided_slice')
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

3708
    if _in_legacy_dygraph():
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
3771 3772 3773 3774
    helper.append_op(type='strided_slice',
                     inputs=inputs,
                     attrs=attrs,
                     outputs={'Out': out})
3775 3776

    return out
F
From00 已提交
3777 3778 3779 3780


def tensordot(x, y, axes=2, name=None):
    r"""
3781
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
3782 3783 3784 3785 3786 3787

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

3788
            1. It could be a non-negative integer ``n``,
F
From00 已提交
3789
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
3790 3791

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
3792
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
3793 3794 3795 3796

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
3797
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
3798 3799 3800

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
3801
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
3802
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
3803 3804
                             For more information, please refer to :ref:`api_guide_Name` .

3805 3806
    Return:
        Output (Tensor): The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
3807
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
3808

F
From00 已提交
3809
    NOTES:
3810
        1. This function supports tensor broadcast,
F
From00 已提交
3811
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
3812 3813 3814 3815 3816
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
3817
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
3818

F
From00 已提交
3819 3820 3821 3822 3823 3824 3825 3826
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
3827
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
3889
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
3899
        if paddle.in_dynamic_mode():
F
From00 已提交
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
            return tolist(var)
        raise TypeError(
            "The 'axes' with type 'Tensor' in " + op_type +
            " is not available in static graph mode, "
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
            "The 'axes' in " + op_type +
            f" should not be negative, but received axes={axes}.")
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
            assert sx == sy, "The dimensional size for 'x' and 'y' in " + op_type + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
        [not_contraction_size_x, contraction_size])
    y = y.transpose(perm=perm_y).reshape(
        [contraction_size, not_contraction_size_y])
    out = x.matmul(y).reshape(shape_out)
    return out
3985 3986 3987


def as_complex(x, name=None):
3988 3989
    """Transform a real tensor to a complex tensor.

3990 3991 3992
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

3993
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
3994 3995 3996 3997 3998 3999 4000 4001 4002
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
4003

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            print(y.numpy())

            # [[ 0. +1.j  2. +3.j  4. +5.j]
            #  [ 6. +7.j  8. +9.j 10.+11.j]]
    """
4015 4016
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4017 4018
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_complex(x)
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(x.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
4033 4034 4035
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'float32' or 'float64', with the same precision as the input.
4048

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
            print(z.numpy())

            # [[[ 0.  1.]
            #   [ 2.  3.]
            #   [ 4.  5.]]

            #  [[ 6.  7.]
            #   [ 8.  9.]
            #   [10. 11.]]]
    """
4066 4067
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4068 4069
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_real(x)
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4080 4081


K
kuizhiqing 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4091
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4092 4093 4094 4095 4096 4097 4098
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor with same data type as ``x``.

4099 4100 4101 4102 4103
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4122 4123
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4124 4125
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4126 4127 4128 4129 4130 4131 4132

    helper = LayerHelper("repeat_interleave", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.manipulation.repeat_interleave')

    out = helper.create_variable_for_type_inference(x.dtype)

4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
    helper.append_op(type='repeat_interleave',
                     inputs={
                         'X':
                         x,
                         'RepeatsTensor':
                         repeats if isinstance(repeats, Variable) else None
                     },
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'Repeats': repeats if isinstance(repeats, int) else 0
                     })
K
kuizhiqing 已提交
4145 4146 4147
    return out


4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A new tensor whose axis have been moved.

    Examples:
        .. code-block:: python
4166

4167 4168 4169 4170 4171 4172 4173
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4174
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4175
            # [3, 2]
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
        dst), "'source' must have the same number with 'destination'"

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
        assert isinstance(axis[0],
                          int), "Each elemment of 'source' must be integer."
        if axis[0] < 0:
            assert axis[
                0] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            src[i] += ndim
        else:
            assert axis[
                0] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)

        assert isinstance(axis[1],
                          int), "Each elemment of 'source' must be integer."
        if axis[1] < 0:
            assert axis[
                1] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            dst[i] += ndim
        else:
            assert axis[
                1] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4228
    if in_dygraph_mode():
4229
        out = _C_ops.transpose(x, perm)
4230 4231 4232
        return out

    if _in_legacy_dygraph():
4233
        out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
4234 4235
        return out

4236 4237 4238 4239
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'moveaxis')
4240 4241 4242 4243

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
4244 4245 4246 4247 4248 4249 4250
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
4251
    return out
4252 4253


4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
        assert axis < ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
    else:
        assert axis >= -ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4268
    # This function is used in take/put_along_axis
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4279 4280 4281 4282 4283
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4284
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4285
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4286
            and need to broadcast against arr. Supported data type are int and int64.
4287
        axis (int) : The axis to take 1d slices along.
4288

4289
    Returns:
4290
        Tensor: The indexed element, same dtype with arr
4291

4292 4293 4294 4295 4296
    Examples:
        .. code-block:: python

            import paddle

4297 4298
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4299 4300 4301 4302 4303
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4304 4305 4306 4307 4308 4309 4310 4311
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4312
    if _non_static_mode():
4313
        indices = paddle.broadcast_to(indices, broadcast_shape)
4314 4315 4316 4317
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4318
        if not _in_legacy_dygraph():
4319 4320
            return _C_ops.take_along_axis(arr, indices, axis)
        return _legacy_C_ops.take_along_axis(arr, indices, 'Axis', axis)
4321 4322 4323 4324 4325
    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'take_along_axis')
4326
    indices = paddle.broadcast_to(indices, broadcast_shape)
4327 4328 4329 4330
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4331 4332 4333
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4334 4335 4336 4337 4338 4339 4340
    helper.append_op(type="take_along_axis",
                     inputs={
                         "Input": arr,
                         "Index": indices
                     },
                     attrs={"Axis": axis},
                     outputs={"Result": result})
4341
    return result
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4352
        axis (int) : The axis to put 1d slices along.
4353
        reduce (string | optinal) : The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.
4354
    Returns :
4355
        Tensor: The indexed element, same dtype with arr
4356

4357 4358 4359 4360 4361
    Examples:
        .. code-block:: python

            import paddle

4362 4363
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4364 4365 4366 4367 4368 4369 4370 4371
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4372 4373 4374 4375 4376
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4377
    if _non_static_mode():
4378 4379
        values = paddle.to_tensor(values) if not isinstance(
            values, paddle.Tensor) else values
4380 4381 4382
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4383
        if in_dygraph_mode():
4384 4385 4386
            return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
        return _legacy_C_ops.put_along_axis(arr, indices, values, "Axis", axis,
                                            "Reduce", reduce)
4387 4388 4389 4390 4391 4392

    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'put_along_axis')
4393 4394 4395
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4396 4397 4398
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
    helper.append_op(type="put_along_axis",
                     inputs={
                         "Input": arr,
                         "Index": indices,
                         "Value": values
                     },
                     attrs={
                         "Axis": axis,
                         "Reduce": reduce
                     },
                     outputs={"Result": result})
4410 4411 4412 4413 4414 4415
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4416
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4417 4418
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4419 4420 4421 4422 4423
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4424 4425
    values = paddle.to_tensor(values) if not isinstance(
        values, paddle.Tensor) else values
4426 4427 4428
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4429
    if in_dygraph_mode():
4430 4431 4432
        return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
    return _legacy_C_ops.put_along_axis_(arr, indices, values, "Axis", axis,
                                         "Reduce", reduce)
4433 4434


L
Li Min 已提交
4435 4436 4437 4438 4439 4440 4441 4442
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4443
        axis (int): The dimension in which we index.
L
Li Min 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: same dimention and dtype with x.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
            print(outplace_res.numpy())
            # [[2 2 2]
            #  [1 1 1]
            #  [2 2 2]]
    """
    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.manipulation.index_add')
    check_variable_and_dtype(
        value, 'add_value', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add')

    out = helper.create_variable_for_type_inference(x.dtype)

    helper.append_op(type='index_add',
                     inputs={
                         'X': x,
                         'Index': index,
                         'AddValue': value,
                     },
                     outputs={'Out': out},
                     attrs={'axis': axis})
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4495
    Please refer to :ref:`api_paddle_index_add`.
4496

L
Li Min 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
            print(inplace_res.numpy())
            # [[2, 1, 2]
            #  [2, 1, 2]
            #  [2, 1, 2]]
    """
    return _C_ops.index_add_(x, index, value, axis)


4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
    'tolist': tolist
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)