manipulation.py 170.9 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
# TODO: define functions to manipulate a tensor

import warnings
18
from collections import Counter
W
Wilber 已提交
19

myq406450149's avatar
myq406450149 已提交
20
import numpy as np
21

22
import paddle
23
from paddle import _C_ops, _legacy_C_ops
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

from ..common_ops_import import _varbase_creator, dygraph_utils, fill_constant
from ..fluid.data_feeder import (
    check_dtype,
    check_type,
    check_variable_and_dtype,
    convert_dtype,
)
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
from ..fluid.framework import _in_legacy_dygraph, _non_static_mode
from ..fluid.layers import utils
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
    in_dygraph_mode,
)
from ..static import Variable
from .creation import _complex_to_real_dtype, _real_to_complex_dtype, zeros
44

45 46
__all__ = []

W
Wilber 已提交
47

48 49 50 51 52 53 54 55
def cast(x, dtype):
    """

    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
56
        x (Tensor): An input N-D Tensor with data type bool, float16,
57
            float32, float64, int32, int64, uint8.
58
        dtype (np.dtype|str): Data type of the output:
59 60 61
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
L
Ligoml 已提交
62
        Tensor, A Tensor with the same shape as input's.
63 64 65 66 67 68 69 70 71 72 73 74

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
75
        return _C_ops.cast(x, dtype)
76 77 78 79

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
80
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
81 82
        return out

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
116 117 118

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
119 120 121 122 123 124 125 126
        dtype=dtype, stop_gradient=x.stop_gradient
    )
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
    )
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
164

165 166 167 168 169 170 171 172 173 174 175
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
L
Ligoml 已提交
176
        Tensor, A ``Tensor``. The data type is same as ``input``.
177 178 179 180 181 182 183 184 185 186 187 188 189

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
Z
zyfncg 已提交
190
            # sliced_1 is input[1:3, 0:2, 2:4].
191 192 193 194 195

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
Z
zyfncg 已提交
196
            # sliced_2 is input[1:3, 0:2, 2:4].
197 198 199 200 201 202 203 204 205 206
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
207 208
                    "Input axes should not be an empty list/tuple."
                )
209 210 211 212 213 214 215 216
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
217 218 219 220
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
221 222 223 224 225 226 227 228

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
229 230
                if isinstance(item, tmp_tensor_type)
                else item
231 232 233
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
234 235
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
236 237 238 239 240
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
241 242 243
                if isinstance(item, tmp_tensor_type)
                else item
                for item in ends
244 245
            ]
        elif isinstance(ends, tmp_tensor_type):
246
            tensor_t = ends.numpy()
247
            ends = [ele for ele in tensor_t]
248
            infer_flags = list(-1 for i in range(len(axes)))
249

250
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
251 252 253 254 255 256 257 258 259 260
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
261 262
                        "Input axes should not be an empty list/tuple."
                    )
263 264 265 266 267 268 269 270
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
271 272 273 274
                    "Input axes must be a python list or tuple, but reveived {}".format(
                        type(axes)
                    )
                )
275 276 277 278 279 280 281 282

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
283 284
                    if isinstance(item, tmp_tensor_type)
                    else item
285 286 287 288 289 290 291 292 293 294 295
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
296 297
                    if isinstance(item, tmp_tensor_type)
                    else item
298 299 300 301 302 303 304 305
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

306 307 308 309 310 311 312 313 314 315 316 317
            return _legacy_C_ops.slice(
                input,
                starts_tensor,
                ends_tensor,
                None,
                None,
                'axes',
                axes,
                'infer_flags',
                infer_flags,
                *attrs,
            )
318 319 320

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
321 322
            "Input starts must be an Variable, python list or tuple."
        )
323 324
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
325 326
            "Input ends must be an Variable, python list or tuple."
        )
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
373 374 375 376 377
        dtype=helper.input_dtype('input')
    )
    helper.append_op(
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
L
Ligoml 已提交
395
        Tensor, A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
433
        return _C_ops.transpose(x, perm)
434 435
    else:
        if _in_legacy_dygraph():
436
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
437 438
            return out

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
454 455 456 457 458 459 460 461
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
462 463
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
464 465 466 467 468
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
469 470
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
471 472 473 474

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
475 476 477 478 479 480
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    return out


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
L
Ligoml 已提交
499
        list(Tensor), The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.
500 501 502 503 504 505 506 507 508

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
509
    if in_dygraph_mode():
510
        if num is None:
511 512 513
            num = x.shape[axis]
        if num == 0:
            return []
514
        return _C_ops.unstack(x, axis, num)
515

516
    if _non_static_mode():
517
        if num is None:
518 519 520
            num = x.shape[axis]
        if num == 0:
            return []
521
        return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num)
522 523 524 525 526 527 528 529 530 531 532 533

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

534 535 536 537 538 539
    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis, 'num': num},
    )
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
561

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
590 591 592
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
593 594 595 596 597

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
598 599 600
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
601 602

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
603 604 605 606 607 608 609 610 611 612 613 614
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
658
        shape (list|tuple|Tensor, optional): The output shape is specified
659 660 661 662 663 664 665 666 667 668 669
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
670
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
671 672

    Returns:
L
Ligoml 已提交
673
        Tensor, The cropped Tensor has same data type with `x`.
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
704

705
    helper = LayerHelper('crop_tensor', **locals())
706 707 708 709 710 711 712 713 714
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
    check_type(
        shape, 'shape', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
715 716 717 718

    if offsets is None:
        offsets = [0] * len(x.shape)

P
PuQing 已提交
719 720 721
    if shape is None:
        shape = x.shape

722
    if in_dygraph_mode():
723
        return _C_ops.crop(x, shape, offsets)
724

725 726 727 728 729 730 731 732
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
733 734
                % type(shape_val)
            )
735 736 737
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
738 739
                % str(shape_val)
            )
740 741 742
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
743 744
                % str(shape_val)
            )
745 746 747 748 749

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
750 751
                % type(offset_val)
            )
752 753 754
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
755 756
                % str(offset_val)
            )
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
797 798 799
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
800 801 802 803 804 805 806 807 808
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

809 810 811 812 813 814
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
815 816 817
    return out


818 819 820 821 822 823 824 825 826
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
827 828
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
829 830

    Returns:
L
Ligoml 已提交
831
        x(Tensor), Tensor x filled with value inplace
832 833 834 835 836 837 838 839 840 841 842 843 844 845

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
846 847 848
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
849
    if in_dygraph_mode():
850
        return _C_ops.fill_(x, value)
851
    else:
852 853 854
        return _legacy_C_ops.fill_any_(
            x, "value_float", float(value), "value_int", int(value)
        )
855 856 857 858 859 860 861 862 863 864 865


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
866
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
867 868

    Returns:
L
Ligoml 已提交
869
        x (Tensor), Tensor x filled with zero inplace
870 871 872 873 874 875 876 877 878 879 880 881

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
882
    if in_dygraph_mode():
883
        return _C_ops.fill_(x, 0.0)
884
    else:
885 886 887
        return _legacy_C_ops.fill_any_(
            x, "value_float", 0.0, "value_int", int(0)
        )
888 889


890 891 892
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
893 894
    Note:
        This API is ONLY available in Dygraph mode.
895

896
    This function fill the value into the x Tensor's diagonal inplace.
897

898 899 900 901 902 903
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
904

905
    Returns:
L
Ligoml 已提交
906
        Tensor, Tensor with diagonal filled with value.
907

908 909 910 911 912 913 914
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
915

916 917 918
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
919 920 921 922 923 924
    check_dtype(
        dtype,
        'X',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'fill_diagonal_',
    )
925 926 927 928 929
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
930
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_ API'
931
    if len(inshape) > 2:
932 933 934
        assert (
            len(inshapeset) == 1
        ), 'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
Z
zhiboniu 已提交
935 936
    if in_dygraph_mode():
        if len(inshape) == 2:
937 938
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
939

940
    if len(inshape) == 2:
941 942 943 944 945 946
        return _legacy_C_ops.fill_diagonal_(
            x, 'value', value, 'offset', offset, 'wrap', wrap
        )
    return _legacy_C_ops.fill_diagonal_(
        x, 'value', value, 'offset', offset, 'wrap', True
    )
947 948


949 950
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
951 952 953 954 955 956 957
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
958 959 960 961 962 963 964
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
965 966 967 968
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
969
    predshape.append(diaglen)
970
    assert tuple(predshape) == tuple(
971 972
        y.shape
    ), "the y shape should be {}".format(predshape)
973 974 975 976
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
Z
zhiboniu 已提交
977
        if in_dygraph_mode():
978
            return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
979
        else:
980 981 982
            return _legacy_C_ops.fill_diagonal_tensor_(
                x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
            )
Z
zhiboniu 已提交
983
    if in_dygraph_mode():
984
        return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
985
    else:
986 987 988
        return _legacy_C_ops.fill_diagonal_tensor(
            x, y, 'offset', offset, 'dim1', dim1, 'dim2', dim2
        )
989 990 991 992


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
993 994
    Note:
        This API is ONLY available in Dygraph mode.
995 996 997 998

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
999 1000 1001 1002 1003 1004
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1005 1006

    Returns:
L
Ligoml 已提交
1007
        Tensor, Tensor with diagonal filled with y.
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1020 1021 1022
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1023 1024 1025 1026 1027 1028 1029


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1030 1031 1032 1033 1034 1035
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1036 1037

    Returns:
L
Ligoml 已提交
1038
        Tensor, Tensor with diagonal filled with y.
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1051 1052 1053
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1054 1055


Z
zhiboniu 已提交
1056 1057 1058
@dygraph_only
def tolist(x):
    """
1059 1060
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1061 1062 1063 1064

    This function translate the paddle.Tensor to python list.

    Args:
1065
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1066 1067

    Returns:
L
Ligoml 已提交
1068
        list, A list that contain the same value of current Tensor.
Z
zhiboniu 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


1087 1088 1089
def concat(x, axis=0, name=None):
    """

1090
    Concatenates the input along the axis.
1091 1092

    Args:
1093
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1094
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1095
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1096
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1097 1098
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1099
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1100 1101

    Returns:
L
Ligoml 已提交
1102
        Tensor, A Tensor with the same data type as ``x``.
1103 1104 1105

    Examples:
        .. code-block:: python
1106

1107
            import paddle
1108

1109 1110 1111 1112 1113 1114
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1115 1116 1117
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1118 1119 1120
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1121 1122 1123 1124 1125 1126 1127 1128 1129
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1130 1131 1132 1133 1134 1135 1136
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1137
        return _C_ops.concat(input, axis)
1138 1139 1140 1141 1142 1143 1144 1145

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
1146
        _legacy_C_ops.concat(input, out, 'axis', axis)
1147 1148 1149 1150 1151
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                [
                    'bool',
                    'float16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'int8',
                    'unit8',
                ],
                'concat',
            )
1167 1168
            if x.dtype != input[0].dtype:
                raise TypeError(
1169 1170
                    "All the Tensors in the input must have the same data type."
                )
1171 1172 1173 1174 1175 1176
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
1177 1178 1179 1180 1181
            axis.dtype,
            'axis',
            ['int32', 'int64'],
            'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor",
1182
        )
1183 1184 1185 1186 1187 1188 1189 1190 1191

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

1192 1193 1194 1195
        assert len(input) == 1, (
            "If the elements of 'input' in concat are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(input)
        )
1196
        out_index = helper.create_variable_for_type_inference(dtype="int32")
1197 1198 1199 1200 1201 1202
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': False},
        )
1203 1204 1205 1206 1207
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
1208 1209 1210
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis
1211

1212 1213 1214
        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
        )
1215
    return out
1216 1217


1218 1219
def broadcast_tensors(input, name=None):
    """
1220
    Broadcast a list of tensors following broadcast semantics
1221

1222
    Note:
1223 1224 1225
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1226 1227

    Args:
1228
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1229 1230
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1231
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1232 1233

    Returns:
L
Ligoml 已提交
1234
        list(Tensor), The list of broadcasted tensors following the same order as ``input``.
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1248
    if paddle.framework.in_dygraph_mode():
1249
        return _C_ops.broadcast_tensors(input)
1250
    if paddle.framework._non_static_mode():
1251
        return _legacy_C_ops.broadcast_tensors(input, num_inputs)
1252 1253 1254 1255

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
1256 1257
            "At least 1 tensor is needed to perform broadcast_tensors"
        )
1258 1259 1260 1261

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
1262 1263
            x,
            'input[' + str(id) + ']',
1264
            ['bool', 'float32', 'float64', 'int32', 'int64'],
1265 1266
            'broadcast_tensors',
        )
1267 1268
        if x.dtype != input[0].dtype:
            raise TypeError(
1269 1270
                "All the Tensors in the input must have the same data type."
            )
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
1288 1289 1290 1291 1292
                invalid = (
                    output_shape_r[i] != shape[i]
                    and output_shape_r[i] != 1
                    and shape[i] != 1
                )
1293 1294 1295 1296
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1297
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
1310
            helper.create_variable_for_type_inference(
1311 1312 1313
                dtype=helper.input_dtype()
            )
        )
1314 1315 1316
        i += 1

    inputs = {'X': input}
1317 1318 1319
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out}, attrs={}
    )
1320 1321 1322 1323

    return out


Y
yaoxuefeng 已提交
1324
def flip(x, axis, name=None):
W
Wilber 已提交
1325
    """
Y
yaoxuefeng 已提交
1326
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1327 1328

    Args:
Y
yaoxuefeng 已提交
1329
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1330
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1331
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1332
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1333 1334

    Returns:
L
Ligoml 已提交
1335
        Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1336 1337 1338 1339 1340

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1341 1342

          image_shape=(3, 2, 2)
1343
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1344 1345
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1346

R
Roc 已提交
1347 1348
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1349
    """
R
Roc 已提交
1350 1351
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1352 1353

    if in_dygraph_mode():
1354
        return _C_ops.flip(x, axis)
H
hong 已提交
1355

Z
zhiboniu 已提交
1356
    if paddle.in_dynamic_mode():
1357
        return _legacy_C_ops.flip(x, "axis", axis)
R
Roc 已提交
1358

W
Wilber 已提交
1359
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1360 1361
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
1362 1363 1364 1365 1366 1367
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'flip',
    )
Y
yaoxuefeng 已提交
1368
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1369 1370 1371 1372 1373
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

1374 1375 1376
    helper.append_op(
        type="flip", inputs={"X": x}, outputs={"Out": out}, attrs={"axis": axis}
    )
W
Wilber 已提交
1377
    return out
1378 1379


Z
zmxdream 已提交
1380 1381
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1382
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1383 1384 1385

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1386
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1387 1388
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1389 1390 1391 1392
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
1393
        Tensor, Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.
Z
zmxdream 已提交
1394 1395 1396 1397 1398 1399 1400 1401

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1402
          print(data)
Z
zmxdream 已提交
1403 1404 1405
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1406
          y = paddle.rot90(data, 1, [0, 1])
1407
          print(y)
Z
zmxdream 已提交
1408 1409 1410
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1411
          y= paddle.rot90(data, -1, [0, 1])
1412
          print(y)
Z
zmxdream 已提交
1413 1414 1415
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1416 1417
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1418
          print(data2)
Z
zmxdream 已提交
1419 1420 1421 1422 1423
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1424
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1425 1426 1427 1428 1429
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1430 1431 1432 1433 1434
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
1435 1436 1437 1438 1439 1440
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1441 1442 1443 1444 1445
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1446 1447
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
1448 1449 1450
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1451
    if input_total_dims < 2:
1452 1453
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
1454 1455 1456
                input_total_dims
            )
        )
Z
zmxdream 已提交
1457 1458 1459

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1460 1461 1462 1463
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1464 1465

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1466 1467 1468
        raise ValueError(
            "Rotation axis0 out of range, axis0 = {}".format(axes[0])
        )
Z
zmxdream 已提交
1469
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1470 1471 1472
        raise ValueError(
            "Rotation axis1 out of range, axis1 = {}".format(axes[1])
        )
Z
zmxdream 已提交
1473

Z
zmxdream 已提交
1474
    k %= 4
Z
zmxdream 已提交
1475 1476 1477 1478 1479 1480
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
1481 1482 1483 1484
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1485 1486 1487 1488 1489 1490 1491
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1492
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1493
    r"""
1494 1495
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1496
    Note:
1497
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1498
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1529
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1530
                      float64, int8, int32, int64, uint8.
1531 1532
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1533
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1534 1535

    Returns:
L
Ligoml 已提交
1536
        Tensor, A tensor with the contents of the input tensor, with input \
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1547

Y
yaoxuefeng 已提交
1548 1549
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1550

1551 1552
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1553 1554 1555 1556

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1557 1558
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1559
        raise ValueError("The input x should be a Tensor")
1560

Z
zhiboniu 已提交
1561
    if not paddle.in_dynamic_mode():
1562
        check_variable_and_dtype(
1563 1564
            x,
            'x',
1565
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
1566 1567
            'flatten',
        )
1568 1569

    x_dim = len(x.shape)
1570 1571 1572 1573 1574
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1575
        raise ValueError(
1576 1577 1578 1579 1580 1581 1582
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1583
        raise ValueError(
1584 1585
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1586 1587 1588 1589 1590 1591 1592
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1593
    if in_dygraph_mode():
1594
        return _C_ops.flatten(x, start_axis, stop_axis)
1595 1596

    if _in_legacy_dygraph():
1597
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range(
1598 1599
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1600 1601
        return dy_out

1602
    helper = LayerHelper('flatten', **locals())
1603 1604
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
1605 1606 1607 1608 1609 1610
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out, 'XShape': x_shape},
        attrs={"start_axis": start_axis, "stop_axis": stop_axis},
    )
1611 1612 1613
    return out


1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1624 1625 1626 1627 1628
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1629
        raise ValueError(
1630 1631 1632 1633 1634 1635 1636
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1637
        raise ValueError(
1638 1639
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1640 1641 1642 1643 1644 1645 1646
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1647
    if in_dygraph_mode():
1648
        return _C_ops.flatten_(x, start_axis, stop_axis)
1649 1650

    if _in_legacy_dygraph():
1651
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range_(
1652 1653
            x, 'start_axis', start_axis, 'stop_axis', stop_axis
        )
1654
        return dy_out
1655 1656


Y
yaoxuefeng 已提交
1657
def roll(x, shifts, axis=None, name=None):
1658
    """
1659 1660 1661
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1662 1663 1664
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1665
        x (Tensor): The x tensor as input.
1666
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1667
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1668
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1669 1670 1671
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1672 1673

    Returns:
L
Ligoml 已提交
1674
        Tensor, A Tensor with same data type as `x`.
1675 1676 1677

    Examples:
        .. code-block:: python
1678

1679 1680
            import paddle

1681 1682 1683
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1684
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1685
            print(out_z1)
Y
yaoxuefeng 已提交
1686 1687 1688 1689
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1690
            print(out_z2)
Y
yaoxuefeng 已提交
1691 1692 1693
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1694 1695 1696 1697 1698
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1699
    """
Y
yaoxuefeng 已提交
1700
    origin_shape = x.shape
1701 1702
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1703 1704 1705 1706
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1707
    if axis is not None:
Y
yaoxuefeng 已提交
1708 1709 1710
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1711 1712 1713 1714
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1715 1716 1717
    else:
        axis = []

F
From00 已提交
1718
    if in_dygraph_mode():
1719
        return _C_ops.roll(x, shifts, axis)
F
From00 已提交
1720 1721

    if _in_legacy_dygraph():
1722
        return _legacy_C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1723

1724 1725
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1726

Y
yaoxuefeng 已提交
1727
    out = helper.create_variable_for_type_inference(x.dtype)
1728

1729
    if isinstance(shifts, Variable):
1730 1731 1732 1733 1734 1735
        helper.append_op(
            type='roll',
            inputs={'X': x, "ShiftsTensor": shifts},
            outputs={'Out': out},
            attrs={'axis': axis},
        )
1736 1737
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
1738 1739 1740 1741 1742 1743
        helper.append_op(
            type='roll',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'shifts': shifts},
        )
1744
    return out
1745 1746


L
Leo Chen 已提交
1747
def stack(x, axis=0, name=None):
1748
    """
1749
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1750
    All tensors must be of the same shape and same dtype.
1751 1752 1753

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1754
    tensor is [A, N, B], etc.
1755

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1791
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1792 1793 1794 1795 1796 1797 1798 1799

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1800
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1801
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1802
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1803
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1804
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1805
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1806

1807
    Returns:
L
Ligoml 已提交
1808
        Tensor, The stacked tensor with same data type as input.
1809

1810
    Example:
1811
        .. code-block:: python
L
Leo Chen 已提交
1812

1813
            import paddle
1814

L
Leo Chen 已提交
1815 1816 1817
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1818

L
Leo Chen 已提交
1819 1820
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1821
            print(out)
L
Leo Chen 已提交
1822 1823 1824
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1825

1826 1827 1828 1829 1830 1831
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1832
    """
1833 1834 1835
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1836
        return _C_ops.stack(x, axis)
1837 1838

    if _in_legacy_dygraph():
1839
        return _legacy_C_ops.stack(x, 'axis', axis)
1840 1841 1842 1843

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
1844 1845 1846 1847
        if (
            isinstance(x, Variable)
            and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1848 1849
            x = [x]
        else:
1850
            raise TypeError(
1851 1852 1853 1854 1855 1856 1857 1858
                "The type of '%s' in %s must be %s, but received %s"
                % (
                    'x',
                    'stack',
                    'list[Tensor], tuple[Tensor] or TensorArray',
                    type(x),
                )
            )
1859 1860 1861 1862 1863

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
1864 1865 1866 1867
        assert len(x) == 1, (
            "If the elements of 'x' in stack are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(x)
        )
1868 1869 1870
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
            check_variable_and_dtype(
                i,
                'x',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'stack',
            )

        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': True},
        )
1884
    else:
1885 1886 1887 1888 1889 1890
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis},
        )
1891 1892

    return out
1893 1894


1895
def split(x, num_or_sections, axis=0, name=None):
1896 1897
    """
    Split the input tensor into multiple sub-Tensors.
1898

1899
    Args:
1900
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1901
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1902 1903 1904 1905
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1906
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
1907 1908 1909 1910
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1911
    Returns:
L
Ligoml 已提交
1912
        list(Tensor), The list of segmented Tensors.
1913

1914 1915
    Example:
        .. code-block:: python
1916

1917
            import paddle
1918

L
Leo Chen 已提交
1919 1920
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1921

L
Leo Chen 已提交
1922 1923 1924 1925
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1926 1927

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1928 1929 1930
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1931 1932

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1933 1934 1935
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1936

L
Leo Chen 已提交
1937
            # axis is negative, the real axis is (rank(x) + axis)=1
1938
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1939 1940 1941
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1942
    """
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1964 1965 1966
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
1967 1968 1969 1970 1971 1972
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
1973 1974
                "received %s." % (type(num_or_sections))
            )
1975
        if in_dygraph_mode():
C
Charles-hit 已提交
1976 1977 1978 1979
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
1980 1981
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
1982
            _legacy_C_ops.split(input, out, *attrs)
1983
            return out
1984

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'uint8',
            'int8',
        ],
        'split',
    )
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
2019
                assert isinstance(dim_size, int)
2020 2021 2022
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
2023 2024 2025
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2026 2027
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
2028 2029 2030
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
2045 2046 2047 2048 2049 2050
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
2051 2052 2053
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
2054 2055 2056
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
2057 2058
        num = len(num_or_sections)
        attrs['sections'] = list(
2059 2060 2061 2062 2063
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
2064 2065
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
2066 2067
                num_or_sections
            )
2068 2069 2070 2071 2072

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2073 2074 2075
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
2076
    return outs
2077 2078


2079 2080 2081
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
2082

2083 2084
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
2085
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
2086 2087 2088 2089 2090 2091 2092 2093
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
2094

2095 2096
    Example:
        .. code-block:: python
2097

2098
            import paddle
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=2)
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
2116 2117 2118 2119
            "The input tensor's dimension must be greater than 1, but got {}".format(
                x.ndim
            )
        )
2120 2121 2122
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
2123
def squeeze(x, axis=None, name=None):
2124
    """
2125 2126 2127 2128
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2129
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2130

2131 2132
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2133
    If axis is not provided, all dims equal of size 1 will be removed.
2134 2135 2136 2137 2138 2139

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2140 2141
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2142
          Output:
L
Leo Chen 已提交
2143
            out.shape = [3, 5]
2144 2145 2146 2147

        Case2:

          Input:
L
Leo Chen 已提交
2148 2149 2150 2151
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
2152

L
Leo Chen 已提交
2153 2154 2155
        Case4:

          Input:
2156
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2157
            axis = [0, 2, 3]
2158
          Output:
L
Leo Chen 已提交
2159
            out.shape = [3, 5]
2160

L
Leo Chen 已提交
2161
        Case4:
2162 2163

          Input:
2164
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2165
            axis = [-2]
2166
          Output:
L
Leo Chen 已提交
2167
            out.shape = [1, 3, 5]
2168 2169

    Args:
2170
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2171
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2172 2173 2174
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2175 2176 2177
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
L
Ligoml 已提交
2178
        Tensor, Squeezed Tensor with the same data type as input Tensor.
2179 2180 2181

    Examples:
        .. code-block:: python
2182

2183
            import paddle
2184

L
Leo Chen 已提交
2185 2186
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2187 2188

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2189
            print(output.shape)  # [5, 10]
2190

2191 2192 2193 2194
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2195
    """
L
Leo Chen 已提交
2196 2197 2198 2199 2200 2201
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2202

2203 2204 2205
    input = x
    axes = axis
    if in_dygraph_mode():
2206
        return _C_ops.squeeze(input, axes)
2207
    if _in_legacy_dygraph():
2208
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
2209 2210 2211
        return out

    helper = LayerHelper("squeeze", **locals())
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'squeeze',
    )
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

2240 2241
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2242 2243 2244 2245 2246 2247
    helper.append_op(
        type="squeeze2",
        inputs={"X": input},
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2248 2249

    return out
2250 2251


2252
@inplace_apis_in_dygraph_only
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2265 2266 2267
    input = x
    axes = axis
    if in_dygraph_mode():
2268
        return _C_ops.squeeze_(input, axes)
2269
    if _in_legacy_dygraph():
2270
        out, _ = _legacy_C_ops.squeeze2_(input, 'axes', axes)
2271
        return out
2272 2273


2274 2275 2276 2277 2278 2279 2280 2281
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
D
duanboqiang 已提交
2282 2283 2284
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

2285 2286
    Note:
        This function is different from :func:`paddle.unique` in the sense that this function
D
duanboqiang 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
L
Ligoml 已提交
2303
        tuple (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.
D
duanboqiang 已提交
2304 2305 2306 2307

    Example:
        .. code-block:: python

2308
            import paddle
D
duanboqiang 已提交
2309 2310

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2311
            output = paddle.unique_consecutive(x) #
2312 2313 2314 2315
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2316
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2317 2318 2319 2320 2321 2322
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2323 2324

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2325
            output = paddle.unique_consecutive(x, axis=0) #
2326 2327 2328 2329 2330
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2331 2332

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2333
            output = paddle.unique_consecutive(x, axis=0) #
2334 2335 2336 2337 2338
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2339 2340 2341 2342 2343 2344 2345
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2346
    if in_dygraph_mode():
2347
        out, inverse, counts = _C_ops.unique_consecutive(
2348 2349
            x, return_inverse, return_counts, axis, attr_dtype
        )
2350 2351 2352 2353 2354 2355 2356 2357 2358
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    elif paddle.in_dynamic_mode():
2359
        out, inverse, counts = _legacy_C_ops.unique_consecutive(
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
            x,
            'dtype',
            attr_dtype,
            'return_inverse',
            return_inverse,
            'return_counts',
            return_counts,
            'axis',
            axis,
        )
D
duanboqiang 已提交
2370 2371 2372 2373 2374 2375 2376 2377
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
2378 2379 2380 2381 2382 2383
    check_variable_and_dtype(
        x,
        "input",
        ['float32', 'float64', 'int32', 'int64'],
        'unique_consecutive',
    )
D
duanboqiang 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
2396 2397 2398 2399 2400 2401 2402 2403 2404
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
D
duanboqiang 已提交
2405 2406 2407 2408 2409 2410
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
2411 2412 2413
    helper.append_op(
        type="unique_consecutive", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
D
duanboqiang 已提交
2414 2415 2416 2417 2418
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


2419 2420 2421 2422 2423 2424 2425 2426 2427
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2428
    r"""
Z
Zhang Ting 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2440 2441
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2442 2443 2444
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2445
    Returns:
2446
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2447 2448 2449 2450 2451
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2452

Z
Zhang Ting 已提交
2453 2454
            import paddle

2455
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2456 2457 2458
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2459 2460 2461 2462 2463 2464 2465 2466 2467
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2468

2469
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2470
            unique = paddle.unique(x)
2471 2472 2473
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2474 2475

            unique = paddle.unique(x, axis=0)
2476 2477 2478 2479
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2480 2481 2482 2483 2484
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2485
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2486 2487
    if _non_static_mode():
        if in_dygraph_mode():
2488
            out, indices, inverse, counts = _C_ops.unique(
2489 2490
                x, return_index, return_inverse, return_counts, axis, attr_dtype
            )
2491
        if _in_legacy_dygraph():
2492
            out, inverse, indices, counts = _legacy_C_ops.unique(
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
                x,
                'dtype',
                attr_dtype,
                'return_index',
                return_index,
                'return_inverse',
                return_inverse,
                'return_counts',
                return_counts,
                'axis',
                axis,
                "is_sorted",
                True,
            )
Z
Zhang Ting 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

2520 2521 2522
    check_variable_and_dtype(
        x, "input", ['float32', 'float64', 'int32', 'int64'], 'unique'
    )
Z
Zhang Ting 已提交
2523 2524 2525
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2526
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2527 2528 2529 2530 2531
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2532
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2533 2534 2535 2536
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
2537
        "is_sorted": True,
Z
Zhang Ting 已提交
2538
    }
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True
    )
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True
    )
2551 2552 2553 2554
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
2555
        "Counts": counts,
2556
    }
Z
Zhang Ting 已提交
2557 2558 2559 2560 2561 2562 2563 2564
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

2565 2566 2567
    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
    )
Z
Zhang Ting 已提交
2568 2569 2570 2571 2572 2573 2574

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2575
def unsqueeze(x, axis, name=None):
2576
    """
2577 2578 2579
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2580

2581 2582
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2583 2584
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2585
    Args:
2586
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2587 2588
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2589 2590 2591
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2592 2593

    Returns:
L
Ligoml 已提交
2594
        Tensor, Unsqueezed Tensor with the same data type as input Tensor.
2595 2596 2597

    Examples:
        .. code-block:: python
2598

2599 2600
            import paddle

2601 2602
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2603

2604 2605
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2606 2607

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2608
            print(out2.shape)  # [1, 5, 1, 10]
2609

L
Leo Chen 已提交
2610
            axis = paddle.to_tensor([0, 1, 2])
2611
            out3 = paddle.unsqueeze(x, axis=axis)
2612
            print(out3.shape)  # [1, 1, 1, 5, 10]
2613 2614 2615 2616 2617 2618

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2619

2620
    """
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
2634
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2635
            return out
2636
        return _C_ops.unsqueeze(input, axes)
2637 2638

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2673 2674 2675 2676 2677 2678
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
2679

2680
    return out
2681 2682


2683
@inplace_apis_in_dygraph_only
2684 2685 2686 2687 2688
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2689 2690 2691 2692 2693 2694 2695 2696
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
        axes = axes.numpy().tolist()
    elif isinstance(axes, (list, tuple)):
        axes = [
2697
            item.numpy().item(0) if isinstance(item, Variable) else item
2698
            for item in axes
2699
        ]
2700
    if in_dygraph_mode():
2701 2702
        return _C_ops.unsqueeze_(input, axes)
    out, _ = _legacy_C_ops.unsqueeze2_(input, 'axes', axes)
2703
    return out
2704 2705


2706
def gather(x, index, axis=None, name=None):
2707
    """
2708 2709
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2710 2711 2712 2713 2714 2715

    .. code-block:: text


                Given:

2716
                x = [[1, 2],
2717 2718 2719
                     [3, 4],
                     [5, 6]]

2720 2721
                index = [1, 2]
                axis=[0]
2722 2723 2724

                Then:

2725
                out = [[3, 4],
2726
                       [5, 6]]
2727

2728
    Args:
2729
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2730 2731
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2732
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
2733
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2734 2735
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2736 2737

    Returns:
L
Ligoml 已提交
2738
        output (Tensor), The output is a tensor with the same rank as ``x``.
2739

2740 2741 2742 2743 2744 2745
    Examples:

        .. code-block:: python

            import paddle

2746 2747
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2748 2749
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2750
    """
2751 2752
    if axis is None:
        axis = 0
2753

2754
    if in_dygraph_mode():
2755
        return _C_ops.gather(x, index, axis)
2756
    if _in_legacy_dygraph():
2757
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
2758 2759 2760
        return _legacy_C_ops.gather(
            x, index, None, "axis", axis, "overwrite", False
        )
2761 2762

    check_variable_and_dtype(
2763 2764
        x,
        'x',
2765
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
2766 2767
        'gather',
    )
2768
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2769

2770 2771 2772
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2773
    helper = LayerHelper('gather', **locals())
2774
    dtype = helper.input_dtype('x')
2775
    out = helper.create_variable_for_type_inference(dtype)
2776
    if not isinstance(axis, Variable):
2777 2778 2779 2780 2781 2782
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index},
            attrs={'axis': axis, 'overwrite': False},
            outputs={"Out": out},
        )
2783
    else:
2784 2785 2786 2787 2788 2789
        helper.append_op(
            type="gather",
            inputs={"X": x, "Index": index, "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out},
        )
2790

2791
    return out
myq406450149's avatar
myq406450149 已提交
2792 2793 2794 2795


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2796

myq406450149's avatar
myq406450149 已提交
2797
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2798

myq406450149's avatar
myq406450149 已提交
2799
    Args:
2800
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
2801
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2802
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2803
    Returns:
L
Ligoml 已提交
2804
        list(Tensor), The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2805 2806 2807

    Example:
        .. code-block:: python
2808

myq406450149's avatar
myq406450149 已提交
2809
            import paddle
2810

C
Chen Long 已提交
2811 2812
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2813

2814
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2815 2816 2817
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2818

2819
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2820 2821 2822 2823 2824
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2825
    if in_dygraph_mode():
2826
        return _C_ops.unbind(input, axis)
2827

myq406450149's avatar
myq406450149 已提交
2828
    if not isinstance(axis, (int)):
2829 2830 2831
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
2832 2833 2834 2835 2836
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2837
    if _in_legacy_dygraph():
2838
        return _legacy_C_ops.unbind(input, num, 'axis', axis)
2839 2840 2841 2842

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
2843 2844 2845
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
2846 2847 2848 2849
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2850 2851 2852 2853 2854 2855
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
2856
    return outs
L
lilong12 已提交
2857 2858


S
ShenLiang 已提交
2859 2860 2861 2862
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2863

S
ShenLiang 已提交
2864
    .. code-block:: python
2865

S
ShenLiang 已提交
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

2887
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2888 2889 2890 2891 2892 2893
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
2894 2895
        overwrite (bool): The mode that updating the output when there are same indices.

S
sunzhongkai588 已提交
2896
            If True, use the overwrite mode to update the output of the same index,
2897
            if False, use the accumulate mode to update the output of the same index.Default value is True.
2898

S
ShenLiang 已提交
2899
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2900

S
ShenLiang 已提交
2901
    Returns:
L
Ligoml 已提交
2902
        Tensor, The output is a Tensor with the same shape as x.
S
ShenLiang 已提交
2903 2904 2905

    Examples:
        .. code-block:: python
2906

S
ShenLiang 已提交
2907 2908
            import paddle

2909 2910 2911
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2912

S
ShenLiang 已提交
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2933
    if in_dygraph_mode():
2934
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2935 2936
    else:
        if _in_legacy_dygraph():
2937 2938 2939
            return _legacy_C_ops.scatter(
                x, index, updates, 'overwrite', overwrite
            )
J
Jiabin Yang 已提交
2940 2941
        else:
            check_variable_and_dtype(
2942 2943 2944 2945 2946
                x,
                'dtype',
                ['float32', 'float64', 'float16', 'int32', 'int64'],
                'scatter',
            )
J
Jiabin Yang 已提交
2947 2948 2949
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
2950 2951 2952 2953 2954 2955
            helper.append_op(
                type="scatter",
                inputs={"X": x, "Ids": index, "Updates": updates},
                attrs={'overwrite': overwrite},
                outputs={"Out": out},
            )
J
Jiabin Yang 已提交
2956
            return out
S
ShenLiang 已提交
2957 2958


2959
@inplace_apis_in_dygraph_only
2960 2961 2962 2963 2964
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2965
    if in_dygraph_mode():
2966 2967
        return _C_ops.scatter_(x, index, updates, overwrite)
    return _legacy_C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
2968 2969


2970
def scatter_nd_add(x, index, updates, name=None):
2971
    r"""
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
3013
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
3014 3015 3016 3017 3018 3019 3020
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3021
        output (Tensor), The output is a tensor with the same shape and dtype as x.
3022 3023 3024 3025 3026 3027 3028 3029 3030

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
3031 3032 3033
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
3034

3035
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
3036 3037
            print(output.shape)
            # [3, 5, 9, 10]
3038
    """
3039
    if in_dygraph_mode():
3040
        return _C_ops.scatter_nd_add(x, index, updates)
3041 3042
    else:
        if _in_legacy_dygraph():
3043
            op = getattr(_legacy_C_ops, 'scatter_nd_add')
3044 3045 3046 3047 3048 3049 3050 3051
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
3052 3053 3054 3055 3056
            helper.append_op(
                type="scatter_nd_add",
                inputs={"X": x, "Index": index, "Updates": updates},
                outputs={"Out": output},
            )
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3082
        output (Tensor), The output is a tensor with the same type as :attr:`updates` .
3083 3084 3085 3086 3087 3088 3089

    Examples:

        .. code-block:: python

            import paddle

3090 3091 3092
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3093 3094 3095 3096 3097 3098
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3099 3100


3101 3102 3103
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
3104

3105 3106 3107
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
3108
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
3109 3110 3111 3112 3113
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
L
Ligoml 已提交
3114
        list(Tensor), The list of segmented Tensors.
3115

3116
    Examples:
3117
        .. code-block:: python
3118

3119
            import paddle
3120

3121
            x = paddle.rand([3, 9, 5])
3122

3123
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3124 3125 3126 3127
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

3128

3129 3130 3131 3132 3133 3134 3135 3136
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3137
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3138 3139


L
lilong12 已提交
3140 3141
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3142 3143

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3144
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3145 3146 3147

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3148
    Args:
L
lilong12 已提交
3149
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
3150
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3151 3152 3153
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3154
    Returns:
3155
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3156

L
lilong12 已提交
3157 3158
    Examples:
        .. code-block:: python
L
lilong12 已提交
3159

L
lilong12 已提交
3160
            import paddle
L
lilong12 已提交
3161

3162
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3163
            out = paddle.tile(data, repeat_times=[2, 1])
3164 3165 3166 3167
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3168

3169
            out = paddle.tile(data, repeat_times=(2, 2))
3170 3171 3172 3173
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3174

3175
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3176
            out = paddle.tile(data, repeat_times=repeat_times)
3177 3178 3179
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3180
    """
H
hong 已提交
3181
    if in_dygraph_mode():
3182
        if isinstance(repeat_times, core.eager.Tensor):
3183 3184 3185
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3186 3187
            repeat_times = repeat_times.numpy().tolist()

3188
        return _C_ops.tile(x, repeat_times)
H
hong 已提交
3189 3190

    if _in_legacy_dygraph():
3191
        return _legacy_C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
3192

3193 3194
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
3195 3196 3197
        assert (
            len(repeat_times.shape) == 1
        ), 'repeat_times must be an 1-D Tensor.'
3198 3199 3200
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
3201 3202 3203
                assert (
                    len(elem.shape) == 1
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3204
            else:
T
tianshuo78520a 已提交
3205
                type_tuple = (int, np.int32, np.int64)
3206 3207 3208
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3209

3210 3211 3212
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile'
    )
3213
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
L
lilong12 已提交
3214 3215
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
3216
            "must set its stop_gradient to be True by "
3217 3218
            "some_var.stop_gradient == True supporting some_var is the input."
        )
3219 3220

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3221

L
lilong12 已提交
3222 3223 3224
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
3225 3226 3227 3228 3229 3230 3231
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
3232 3233 3234
                assert (
                    times > 0
                ), "All elements in repeat_times must be positive for tile."
L
lilong12 已提交
3235 3236 3237 3238
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
3239 3240
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
3241 3242 3243
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
3244
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
3245 3246
                repeat_times
            )
L
lilong12 已提交
3247 3248 3249

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3250 3251 3252
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
L
lilong12 已提交
3253
    return out
3254 3255


L
lilong12 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3265
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3266 3267 3268
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3269
        N-D Tensor, A Tensor with the same shape as ``y``. The data type is the same as ``x``.
L
lilong12 已提交
3270 3271 3272 3273 3274 3275

    Examples:
        .. code-block:: python

            import paddle

3276 3277
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3278
            out = paddle.expand_as(data_x, data_y)
3279 3280 3281 3282
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3283
    """
H
hong 已提交
3284
    if in_dygraph_mode():
3285
        return _C_ops.expand_as(x, None, y.shape)
H
hong 已提交
3286

H
hong 已提交
3287
    if _non_static_mode():
3288
        return _legacy_C_ops.expand_as_v2(x, 'target_shape', y.shape)
3289

3290 3291 3292
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as'
    )
L
lilong12 已提交
3293 3294
    check_type(y, 'y', Variable, 'expand_as')

3295
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
L
lilong12 已提交
3296 3297 3298 3299
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
3300 3301
            "some_var as the input 'x'."
        )
3302
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3303

3304
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
3305 3306
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3307 3308 3309 3310 3311 3312
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out},
    )
L
lilong12 已提交
3313 3314 3315
    return out


3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3327
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3328
            The value -1 in shape means keeping the corresponding dimension unchanged.
3329
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3330
    Returns:
L
Ligoml 已提交
3331
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3343
    if in_dygraph_mode():
3344
        return _C_ops.expand(x, shape)
3345
    if _in_legacy_dygraph():
3346
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3347 3348

    if isinstance(shape, Variable):
3349
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3350 3351 3352
    else:
        for elem in shape:
            if isinstance(elem, Variable):
3353 3354 3355
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3356
            else:
T
tianshuo78520a 已提交
3357
                type_tuple = (int, np.int32, np.int64)
3358 3359 3360
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3361

3362 3363 3364
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'broadcast_to'
    )
3365
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
3366
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
3367 3368 3369 3370
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
3371 3372
            "some_var as the input."
        )
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
3386 3387 3388
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of broadcast_to must be positive or -1."
3389 3390 3391 3392 3393 3394 3395 3396 3397
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
3398 3399
                shape
            )
3400 3401 3402

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3403 3404 3405
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3406 3407 3408
    return out


3409 3410 3411 3412 3413
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3414
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1.
3415 3416 3417


    Args:
C
Chen Long 已提交
3418
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3419
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3420
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3421
            The value -1 in shape means keeping the corresponding dimension unchanged.
3422 3423 3424
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3425
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3426 3427 3428 3429 3430 3431

    Examples:
        .. code-block:: python

            import paddle

3432
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3433
            out = paddle.expand(data, shape=[2, 3])
3434
            print(out)
3435 3436
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3437
    if in_dygraph_mode():
3438
        return _C_ops.expand(x, shape)
H
hong 已提交
3439

Z
zhiboniu 已提交
3440
    if paddle.in_dynamic_mode():
3441
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3442

3443
    if isinstance(shape, Variable):
3444
        assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
3445 3446 3447
    else:
        for elem in shape:
            if isinstance(elem, Variable):
3448 3449 3450
                assert (
                    len(elem.shape) == 1
                ), 'Elements in shape must be 1-D Tensors or integers.'
3451
            else:
T
tianshuo78520a 已提交
3452
                type_tuple = (int, np.int32, np.int64)
3453 3454 3455
                assert isinstance(
                    elem, type_tuple
                ), 'Elements in shape must be 1-D Tensors or integers.'
3456

3457
    check_variable_and_dtype(
3458 3459 3460 3461 3462
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand',
    )
3463
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
3464
    if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
3465 3466 3467 3468 3469 3470
        raise ValueError(
            "When the data type of input 'x' for expand is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input."
        )
3471

3472 3473 3474
    inputs = {"X": [x]}
    attrs = {}

3475
    helper = LayerHelper('expand', **locals())
3476 3477 3478 3479 3480

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3481
                attrs_expand_shape.append(-2)
3482 3483
            else:
                attrs_expand_shape.append(shape)
3484 3485 3486
                assert (
                    shape > 0 or shape == -1
                ), "All elements in shape of expand must be positive or -1."
3487 3488 3489 3490 3491 3492 3493 3494 3495
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
3496 3497
                shape
            )
3498 3499 3500

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3501 3502 3503
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3504
    return out
L
lilong12 已提交
3505 3506


3507 3508
def reshape(x, shape, name=None):
    """
3509
    Changes the shape of ``x`` without changing its data.
3510

3511
    Note that the output Tensor will share data with origin Tensor and doesn't
3512 3513
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3514 3515
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3516 3517
    Some tricks exist when specifying the target shape.

3518
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3519

3520
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3521 3522 3523

    Here are some examples to explain it.

3524
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3525

3526
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3527

3528
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3529 3530

    Args:
3531 3532
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3533 3534
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3535
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3536 3537

    Returns:
L
Ligoml 已提交
3538
        Tensor, A reshaped Tensor with the same data type as ``x``.
3539 3540 3541 3542 3543 3544

    Examples:
        .. code-block:: python

            import paddle

3545 3546
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3547

3548 3549 3550
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3551

3552 3553
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3554
            # the shape of out_2 is [4, 12].
3555

3556
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3557
            out = paddle.reshape(x, shape=shape_tensor)
3558
            print(out.shape)
3559
            # the shape is [8, 6].
3560 3561 3562 3563 3564
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3565
    """
3566 3567 3568 3569 3570 3571
    actual_shape = None
    act = None
    inplace = False

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
3572
        # TODO(zhiqiu): enable inplace in dygraph mode.
3573 3574 3575 3576 3577 3578
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        if isinstance(shape, (list, tuple)):
            shape = [
3579
                item.numpy().item(0)
3580 3581 3582
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3583
            ]
3584
            out = _C_ops.reshape(x, shape)
3585 3586
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3587
            out = _C_ops.reshape(x, shape)
3588 3589 3590
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3591 3592
                " got '{}.'".format(type(shape))
            )
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606

        return dygraph_utils._append_activation_in_dygraph(out, act)
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if inplace:
                warnings.warn(
                    "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
                )
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
3607
                out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape)
3608 3609
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
3610
                out, _ = _legacy_C_ops.reshape2(x, shape)
3611 3612 3613
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
3614 3615
                    " got '{}.'".format(type(shape))
                )
3616 3617 3618

            return dygraph_utils._append_activation_in_dygraph(out, act)

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
    check_variable_and_dtype(
        x,
        'x',
        [
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'bool',
            'uint16',
        ],
        'reshape',
    )
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
3657 3658
                        % dim_idx
                    )
3659 3660 3661 3662 3663
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
3664 3665 3666
                        "But received shape[%d] = 0, X's dimensions = %d."
                        % (dim_idx, len(x.shape))
                    )
3667 3668 3669 3670
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
3671 3672 3673
                        "But received shape[%d] = %s."
                        % (dim_idx, str(dim_size))
                    )
3674 3675 3676 3677 3678 3679 3680 3681
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
3682 3683 3684 3685
        assert len(shape) > 0, (
            "The size of 'shape' in reshape can't be zero, "
            "but received %s." % len(shape)
        )
3686 3687 3688 3689 3690 3691 3692
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

3693 3694 3695 3696 3697
    out = (
        x
        if inplace
        else helper.create_variable_for_type_inference(dtype=x.dtype)
    )
3698
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
3699 3700 3701 3702 3703 3704
    helper.append_op(
        type="reshape2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
3705 3706

    return helper.append_activation(out)
3707 3708


3709
@inplace_apis_in_dygraph_only
3710 3711 3712 3713 3714
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3715 3716 3717 3718 3719
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0)
3720 3721 3722
                if isinstance(item, tmp_tensor_type)
                else item
                for item in shape
3723
            ]
3724
            out = _C_ops.reshape_(x, shape)
3725 3726
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3727
            out = _C_ops.reshape_(x, shape)
3728 3729 3730
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3731 3732
                " got '{}.'".format(type(shape))
            )
3733

3734
        return out
3735 3736 3737 3738 3739 3740
    else:
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
3741
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape)
3742 3743 3744 3745 3746 3747 3748 3749 3750
            return out
        elif isinstance(shape, Variable):
            shape.stop_gradient = True
            # NOTE(pangyoki): Cannot support the case where the shape Tensor
            # is negative. In the infer_shape stage, the input's dim will
            # be changed to a negative number.
            # Thus, convert Shape Tensor to list firstly and then call
            # reshape inplace op.
            shape_list = shape.numpy().tolist()
3751
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape_list)
3752
            return out
3753 3754


3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3774 3775 3776 3777 3778 3779 3780
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3781 3782 3783 3784

            * Case 1:
                index = [[1]]

3785 3786
                gather_nd(x, index)
                         = [x[1, :, :]]
3787 3788 3789 3790 3791 3792 3793
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3794 3795
                gather_nd(x, index)
                         = [x[0, 2, :]]
3796 3797 3798 3799 3800
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3801 3802
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3803 3804 3805 3806 3807 3808
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3809
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3810 3811

    Returns:
L
Ligoml 已提交
3812
        output (Tensor), A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3813

3814 3815 3816
    Examples:

        .. code-block:: python
3817

3818
            import paddle
3819

3820 3821 3822
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3823

3824 3825 3826
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3827
    if in_dygraph_mode():
3828
        return _C_ops.gather_nd(x, index)
3829 3830
    else:
        if _in_legacy_dygraph():
3831
            return _legacy_C_ops.gather_nd(x, index)
3832
    check_variable_and_dtype(
3833 3834 3835 3836 3837
        x,
        'x',
        ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np',
    )
3838 3839 3840 3841
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
3842 3843 3844 3845 3846
    helper.append_op(
        type="gather_nd",
        inputs={"X": x, "Index": index},
        outputs={"Out": output},
    )
3847
    return output
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3896

3897
    Args:
3898
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3910
        Tensor, A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3925
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3926 3927
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3928
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3929 3930 3931
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3932
    if in_dygraph_mode():
3933
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3934

3935 3936
    helper = LayerHelper('strided_slice', **locals())

3937
    check_variable_and_dtype(
3938 3939 3940 3941 3942
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'strided_slice',
    )
3943 3944 3945 3946 3947 3948 3949
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
3950 3951 3952
            check_dtype(
                list_input.dtype, input_name, ['int32'], 'strided_slice'
            )
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
3971
                assert isinstance(dim, int)
3972 3973 3974 3975 3976 3977 3978 3979 3980
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

3981
    if _in_legacy_dygraph():
3982 3983 3984 3985 3986 3987
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
3988
            'infer_flags': infer_flags,
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
4043 4044 4045 4046 4047
        dtype=helper.input_dtype('x')
    )
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
4048 4049

    return out
F
From00 已提交
4050 4051 4052 4053


def tensordot(x, y, axes=2, name=None):
    r"""
4054
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
4055 4056 4057 4058 4059 4060

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

4061
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4062
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
4063 4064

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4065
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
4066 4067 4068 4069

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4070
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
4071 4072 4073

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4074
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
4075
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4076 4077
                             For more information, please refer to :ref:`api_guide_Name` .

4078
    Return:
L
Ligoml 已提交
4079
        Output (Tensor), The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4080
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
4081

F
From00 已提交
4082
    NOTES:
4083
        1. This function supports tensor broadcast,
F
From00 已提交
4084
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
4085 4086 4087 4088 4089
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4090
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
4091

F
From00 已提交
4092 4093 4094 4095 4096 4097 4098 4099
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
4100
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
4162
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4163 4164 4165 4166 4167 4168 4169 4170 4171
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
4172
        if paddle.in_dynamic_mode():
F
From00 已提交
4173 4174
            return tolist(var)
        raise TypeError(
4175 4176 4177
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4178 4179 4180 4181 4182 4183 4184
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
4185 4186 4187 4188
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
4228 4229 4230 4231 4232
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
4260 4261
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4262
    y = y.transpose(perm=perm_y).reshape(
4263 4264
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4265 4266
    out = x.matmul(y).reshape(shape_out)
    return out
4267 4268 4269


def as_complex(x, name=None):
4270 4271
    """Transform a real tensor to a complex tensor.

4272 4273 4274
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

4275
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4276 4277 4278 4279 4280 4281 4282 4283
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4284
        Tensor, The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
4285

4286 4287 4288 4289 4290 4291
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4292
            print(y)
4293

4294 4295 4296
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4297
    """
4298 4299
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4300 4301
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_complex(x)
4302 4303 4304 4305 4306 4307

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
4308 4309
        dtype=_real_to_complex_dtype(x.dtype)
    )
4310 4311 4312 4313 4314 4315 4316
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
4317 4318 4319
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4331
        Tensor, The output. Data type is 'float32' or 'float64', with the same precision as the input.
4332

4333 4334 4335 4336 4337 4338 4339
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4340
            print(z)
4341

4342 4343 4344 4345
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4346

4347 4348 4349
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4350
    """
4351 4352
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4353 4354
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_real(x)
4355 4356 4357 4358 4359 4360

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
4361 4362
        dtype=_complex_to_real_dtype(x.dtype)
    )
4363 4364 4365
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4366 4367


K
kuizhiqing 已提交
4368 4369 4370 4371 4372 4373 4374 4375 4376
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4377
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4378 4379 4380 4381 4382
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4383
        Tensor, A Tensor with same data type as ``x``.
K
kuizhiqing 已提交
4384

4385 4386 4387 4388 4389
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4408 4409
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4410 4411
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4412 4413

    helper = LayerHelper("repeat_interleave", **locals())
4414 4415 4416 4417 4418 4419
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4420 4421 4422

    out = helper.create_variable_for_type_inference(x.dtype)

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4435 4436 4437
    return out


4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4452
        Tensor, A new tensor whose axis have been moved.
4453 4454 4455

    Examples:
        .. code-block:: python
4456

4457 4458 4459 4460 4461 4462 4463
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4464
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4465
            # [3, 2]
4466 4467 4468 4469 4470
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
4471 4472
        dst
    ), "'source' must have the same number with 'destination'"
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
4489 4490 4491
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4492
        if axis[0] < 0:
4493 4494 4495
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4496 4497
            src[i] += ndim
        else:
4498 4499 4500
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4501

4502 4503 4504
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4505
        if axis[1] < 0:
4506 4507 4508
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4509 4510
            dst[i] += ndim
        else:
4511 4512 4513
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4514 4515 4516 4517 4518 4519 4520
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4521
    if in_dygraph_mode():
4522
        out = _C_ops.transpose(x, perm)
4523 4524 4525
        return out

    if _in_legacy_dygraph():
4526
        out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
4527 4528
        return out

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'moveaxis',
    )
4544 4545 4546 4547

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
4548 4549 4550 4551 4552 4553
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
4554
    return out
4555 4556


4557 4558 4559
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
4560 4561 4562
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4563
    else:
4564 4565 4566
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4567 4568 4569 4570 4571 4572
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4573
    # This function is used in take/put_along_axis
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4584 4585 4586 4587 4588
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4589
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4590
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4591
            and need to broadcast against arr. Supported data type are int and int64.
4592
        axis (int) : The axis to take 1d slices along.
4593

4594
    Returns:
L
Ligoml 已提交
4595
        Tensor, The indexed element, same dtype with arr
4596

4597 4598 4599 4600 4601
    Examples:
        .. code-block:: python

            import paddle

4602 4603
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4604 4605 4606 4607 4608
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4609
    if len(arr.shape) != len(indices.shape):
4610
        raise ValueError(
4611 4612
            "`indices` and `arr` must have the same number of dimensions!"
        )
4613 4614 4615 4616 4617
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4618
    if _non_static_mode():
4619
        indices = paddle.broadcast_to(indices, broadcast_shape)
4620 4621 4622 4623
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4624
        if not _in_legacy_dygraph():
4625 4626
            return _C_ops.take_along_axis(arr, indices, axis)
        return _legacy_C_ops.take_along_axis(arr, indices, 'Axis', axis)
4627
    check_variable_and_dtype(
4628 4629 4630 4631 4632 4633 4634 4635
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'take_along_axis'
    )
4636
    indices = paddle.broadcast_to(indices, broadcast_shape)
4637 4638 4639 4640
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4641 4642 4643
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4644 4645 4646 4647 4648 4649
    helper.append_op(
        type="take_along_axis",
        inputs={"Input": arr, "Index": indices},
        attrs={"Axis": axis},
        outputs={"Result": result},
    )
4650
    return result
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4661
        axis (int) : The axis to put 1d slices along.
G
gouzil 已提交
4662 4663 4664
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
L
Ligoml 已提交
4665
        Tensor, The indexed element, same dtype with arr
4666

4667 4668 4669 4670 4671
    Examples:
        .. code-block:: python

            import paddle

4672 4673
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4674 4675 4676 4677 4678 4679 4680 4681
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4682
    if len(arr.shape) != len(indices.shape):
4683
        raise ValueError(
4684 4685
            "`indices` and `arr` must have the same number of dimensions!"
        )
4686 4687
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4688
    if _non_static_mode():
4689 4690 4691 4692 4693
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4694 4695 4696
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4697
        if in_dygraph_mode():
4698
            return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
4699 4700 4701
        return _legacy_C_ops.put_along_axis(
            arr, indices, values, "Axis", axis, "Reduce", reduce
        )
4702 4703

    check_variable_and_dtype(
4704 4705 4706 4707 4708 4709 4710 4711
        arr,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis',
    )
    check_variable_and_dtype(
        indices, 'index', ['int32', 'int64'], 'put_along_axis'
    )
4712 4713 4714
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4715 4716 4717
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4718 4719 4720 4721 4722 4723
    helper.append_op(
        type="put_along_axis",
        inputs={"Input": arr, "Index": indices, "Value": values},
        attrs={"Axis": axis, "Reduce": reduce},
        outputs={"Result": result},
    )
4724 4725 4726 4727 4728 4729
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4730
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4731 4732
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4733
    if len(arr.shape) != len(indices.shape):
4734
        raise ValueError(
4735 4736
            "`indices` and `arr` must have the same number of dimensions!"
        )
4737 4738
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4739 4740 4741 4742 4743
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4744 4745 4746
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4747
    if in_dygraph_mode():
4748
        return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
4749 4750 4751
    return _legacy_C_ops.put_along_axis_(
        arr, indices, values, "Axis", axis, "Reduce", reduce
    )
4752 4753


L
Li Min 已提交
4754 4755 4756 4757 4758 4759 4760 4761
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4762
        axis (int): The dimension in which we index.
L
Li Min 已提交
4763 4764 4765 4766
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
L
Ligoml 已提交
4767
        Tensor, same dimention and dtype with x.
L
Li Min 已提交
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4779 4780 4781 4782 4783
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4784 4785 4786 4787 4788 4789
    """
    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4801
    check_variable_and_dtype(
4802 4803 4804 4805 4806
        value,
        'add_value',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4807 4808 4809

    out = helper.create_variable_for_type_inference(x.dtype)

4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4820 4821 4822 4823 4824 4825 4826
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4827
    Please refer to :ref:`api_paddle_index_add`.
4828

L
Li Min 已提交
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4839 4840 4841 4842 4843
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4844 4845 4846 4847
    """
    return _C_ops.index_add_(x, index, value, axis)


4848 4849 4850 4851 4852 4853 4854
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
4855
    'tolist': tolist,
4856 4857 4858 4859
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)