Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0a895bc0
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0a895bc0
编写于
8月 25, 2020
作者:
Z
Zhang Ting
提交者:
GitHub
8月 25, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
improve unique op (#26537)
* add unique_v2 op * remove unique_v2 op * update doc
上级
a004dfde
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
613 addition
and
21 deletion
+613
-21
paddle/fluid/operators/unique_op.cc
paddle/fluid/operators/unique_op.cc
+97
-16
paddle/fluid/operators/unique_op.h
paddle/fluid/operators/unique_op.h
+235
-4
paddle/fluid/pybind/op_function_generator.cc
paddle/fluid/pybind/op_function_generator.cc
+1
-0
python/paddle/fluid/tests/unittests/test_unique.py
python/paddle/fluid/tests/unittests/test_unique.py
+160
-0
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+120
-1
未找到文件。
paddle/fluid/operators/unique_op.cc
浏览文件 @
0a895bc0
...
...
@@ -24,17 +24,63 @@ class UniqueOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"unique"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"unique"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Index"
),
"Output"
,
"Index"
,
"unique"
);
auto
in_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The Input(X) should be 1-D Tensor, "
"But now the dims of Input(X) is %d."
,
in_dims
.
size
()));
if
(
!
ctx
->
Attrs
().
Get
<
bool
>
(
"is_sorted"
))
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Index"
),
"Output"
,
"Index"
,
"unique"
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The Input(X) should be 1-D Tensor, "
"But now the dims of Input(X) is %d."
,
in_dims
.
size
()));
ctx
->
SetOutputDim
(
"Out"
,
{
-
1
});
ctx
->
SetOutputDim
(
"Index"
,
in_dims
);
return
;
}
bool
return_index
=
ctx
->
Attrs
().
Get
<
bool
>
(
"return_index"
);
bool
return_inverse
=
ctx
->
Attrs
().
Get
<
bool
>
(
"return_inverse"
);
bool
return_counts
=
ctx
->
Attrs
().
Get
<
bool
>
(
"return_counts"
);
auto
axis_vec
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axis"
);
if
(
return_index
)
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Indices"
),
"Output"
,
"Indices"
,
"unique"
);
}
if
(
return_inverse
)
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Index"
),
"Output"
,
"Index"
,
"unique"
);
}
if
(
return_counts
)
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Counts"
),
"Output"
,
"Counts"
,
"unique"
);
}
ctx
->
SetOutputDim
(
"Out"
,
{
-
1
});
ctx
->
SetOutputDim
(
"Index"
,
in_dims
);
if
(
axis_vec
.
empty
())
{
ctx
->
SetOutputDim
(
"Out"
,
{
-
1
});
if
(
return_inverse
)
{
ctx
->
SetOutputDim
(
"Index"
,
{
framework
::
product
(
in_dims
)});
}
}
else
{
int
axis
=
axis_vec
[
0
];
if
(
axis
<
0
)
{
axis
+=
in_dims
.
size
();
}
PADDLE_ENFORCE_LT
(
axis
,
in_dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The axis(%d) should be less than "
"the dimension size(%d) of x."
,
axis
,
in_dims
.
size
()));
auto
out_dims
=
in_dims
;
out_dims
[
axis
]
=
-
1
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
if
(
return_inverse
)
{
ctx
->
SetOutputDim
(
"Index"
,
{
in_dims
[
axis
]});
}
}
if
(
return_index
)
{
ctx
->
SetOutputDim
(
"Indices"
,
{
-
1
});
}
if
(
return_counts
)
{
ctx
->
SetOutputDim
(
"Counts"
,
{
-
1
});
}
}
protected:
...
...
@@ -49,14 +95,47 @@ class UniqueOp : public framework::OperatorWithKernel {
class
UniqueOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"Input tensor. It should be a 1-D tensor."
);
AddInput
(
"X"
,
"Input tensor. It should be a 1-D tensor when Attr(is_sorted)"
" is fasle or a N-D tensor when Attr(is_sorted) is true."
);
AddAttr
<
int
>
(
"dtype"
,
"data type for output index"
);
AddOutput
(
"Out"
,
"A unique subsequence for input tensor."
);
AddOutput
(
"Index"
,
"An index tensor pointing to unique subsequence, which has "
"identical shape with input tensor and int64 dtype."
);
"Equivalent to inverse in numpy.unique, "
"the indices for where elements in the original input ended up "
"in the returned unique tensor."
);
AddOutput
(
"Indices"
,
"The indices of the input tensor that result in the unique tensor."
)
.
AsDispensable
();
AddOutput
(
"Counts"
,
"The counts for each unique element."
).
AsDispensable
();
AddAttr
<
bool
>
(
"return_index"
,
"If True, also return the indices of the input"
" tensor that result in the unique Tensor."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"return_inverse"
,
"If True, also return the indices for where elements"
" in the original input ended up in the returned unique tensor."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"return_counts"
,
"If True, also return the counts for each unique element."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"axis"
,
"The axis to apply unique. If None, the input will be flattened."
)
.
SetDefault
({});
AddAttr
<
bool
>
(
"is_sorted"
,
"If True, the unique elements of X are in ascending order."
"Otherwise, the unique elements are not sorted."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Return a unique subsequence for 1-D input tensor, and an index tensor pointing to this unique subsequence
1. Return a unique subsequence for 1-D input tensor, and an index tensor
pointing to this unique subsequence when Attr(is_sorted) is false. This
means paddle.unique is called.
2. Returns the unique elements of X in ascending order when Attr(is_sorted)
is true. This means fluid.layers.unique is called.
)DOC"
);
}
};
...
...
@@ -65,6 +144,8 @@ class UniqueOpMaker : public framework::OpProtoAndCheckerMaker {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
unique
,
ops
::
UniqueOp
,
ops
::
UniqueOpMaker
);
REGISTER_OP_CPU_KERNEL
(
unique
,
ops
::
UniqueKernel
<
float
>
,
ops
::
UniqueKernel
<
double
>
,
ops
::
UniqueKernel
<
int32_t
>
,
ops
::
UniqueKernel
<
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
unique
,
ops
::
UniqueKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
UniqueKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
UniqueKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int32_t
>
,
ops
::
UniqueKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/unique_op.h
浏览文件 @
0a895bc0
...
...
@@ -13,12 +13,17 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/transpose_op.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -104,17 +109,243 @@ struct UniqueOpFunctor {
}
};
static
std
::
vector
<
framework
::
Tensor
>
Unbind
(
const
framework
::
Tensor
&
in
)
{
int64_t
size
=
in
.
dims
()[
0
];
std
::
vector
<
framework
::
Tensor
>
tensors
(
size
);
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
tensors
[
i
]
=
in
.
Slice
(
i
,
i
+
1
);
}
return
tensors
;
}
template
<
typename
T
>
static
bool
Equal
(
const
framework
::
Tensor
&
a
,
const
framework
::
Tensor
&
b
)
{
if
(
a
.
numel
()
!=
b
.
numel
())
{
return
false
;
}
for
(
int64_t
i
=
0
;
i
<
a
.
numel
();
++
i
)
{
if
(
a
.
data
<
T
>
()[
i
]
!=
b
.
data
<
T
>
()[
i
])
{
return
false
;
}
}
return
true
;
}
template
<
typename
T
>
static
void
UniqueFlattendTensor
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
bool
return_index
,
bool
return_inverse
,
bool
return_counts
)
{
const
T
*
in_data
=
in
.
data
<
T
>
();
std
::
set
<
T
>
unique
(
in_data
,
in_data
+
in
.
numel
());
out
->
Resize
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
unique
.
size
())}));
auto
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
copy
(
unique
.
begin
(),
unique
.
end
(),
out_data
);
if
(
return_index
)
{
auto
*
indices
=
context
.
Output
<
framework
::
Tensor
>
(
"Indices"
);
indices
->
Resize
(
framework
::
make_ddim
({
out
->
numel
()}));
auto
indices_data
=
indices
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
std
::
unordered_map
<
T
,
int64_t
>
indices_map
;
indices_map
.
reserve
(
out
->
numel
());
for
(
int64_t
i
=
0
;
i
<
in
.
numel
();
++
i
)
{
if
(
indices_map
.
find
(
in_data
[
i
])
!=
indices_map
.
end
())
continue
;
indices_map
[
in_data
[
i
]]
=
i
;
}
for
(
int64_t
i
=
0
;
i
<
out
->
numel
();
++
i
)
{
indices_data
[
i
]
=
indices_map
[
out_data
[
i
]];
}
}
if
(
return_inverse
)
{
auto
*
inverse
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
inverse
->
Resize
(
framework
::
make_ddim
({
in
.
numel
()}));
auto
inverse_data
=
inverse
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
std
::
unordered_map
<
T
,
int64_t
>
inverse_map
;
inverse_map
.
reserve
(
out
->
numel
());
for
(
int64_t
i
=
0
;
i
<
out
->
numel
();
++
i
)
{
inverse_map
[
out_data
[
i
]]
=
i
;
}
for
(
int64_t
i
=
0
;
i
<
in
.
numel
();
++
i
)
{
inverse_data
[
i
]
=
inverse_map
[
in_data
[
i
]];
}
}
if
(
return_counts
)
{
auto
*
count
=
context
.
Output
<
framework
::
Tensor
>
(
"Counts"
);
count
->
Resize
(
framework
::
make_ddim
({
out
->
numel
()}));
auto
count_data
=
count
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
std
::
unordered_map
<
T
,
int64_t
>
counts_map
;
counts_map
.
reserve
(
out
->
numel
());
for
(
int64_t
i
=
0
;
i
<
out
->
numel
();
++
i
)
{
counts_map
[
out_data
[
i
]]
=
0
;
}
for
(
int64_t
i
=
0
;
i
<
in
.
numel
();
i
++
)
{
counts_map
[
in_data
[
i
]]
+=
1
;
}
for
(
int64_t
i
=
0
;
i
<
out
->
numel
();
i
++
)
{
count_data
[
i
]
=
counts_map
[
out_data
[
i
]];
}
}
}
template
<
class
ForwardIt
,
typename
T
>
static
ForwardIt
UniqueDimImpl
(
const
framework
::
ExecutionContext
&
context
,
ForwardIt
first
,
ForwardIt
last
,
const
std
::
vector
<
int64_t
>&
sorted_indices_vec
,
std
::
vector
<
int64_t
>*
inverse_vec
,
std
::
vector
<
int64_t
>*
counts_vec
,
std
::
vector
<
int64_t
>*
indices_vec
)
{
if
(
first
==
last
)
{
return
last
;
}
(
*
inverse_vec
)[
sorted_indices_vec
[
0
]]
=
0
;
(
*
counts_vec
)[
0
]
=
1
;
(
*
indices_vec
)[
0
]
=
sorted_indices_vec
[
0
];
ForwardIt
begin
=
first
;
ForwardIt
result
=
first
;
while
(
++
first
!=
last
)
{
int64_t
idx_first
=
std
::
distance
(
begin
,
first
);
int64_t
idx_result
=
std
::
distance
(
begin
,
result
);
if
(
!
Equal
<
T
>
(
*
result
,
*
first
))
{
if
(
++
result
!=
first
)
{
*
result
=
std
::
move
(
*
first
);
}
idx_result
+=
1
;
(
*
indices_vec
)[
idx_result
]
=
sorted_indices_vec
[
idx_first
];
}
(
*
inverse_vec
)[
sorted_indices_vec
[
idx_first
]]
=
idx_result
;
(
*
counts_vec
)[
idx_result
]
+=
1
;
}
return
++
result
;
}
template
<
typename
DeviceContext
,
typename
T
>
static
void
UniqueDim
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
bool
return_index
,
bool
return_inverse
,
bool
return_counts
,
int
axis
)
{
// transpose tensor: eg. axis=1, [dim0, dim1, dim2] -> [dim1, dim0, dim2]
std
::
vector
<
int
>
permute
(
in
.
dims
().
size
());
std
::
iota
(
permute
.
begin
(),
permute
.
end
(),
0
);
permute
[
axis
]
=
0
;
permute
[
0
]
=
axis
;
std
::
vector
<
int64_t
>
in_trans_dims_vec
(
framework
::
vectorize
(
in
.
dims
()));
in_trans_dims_vec
[
axis
]
=
in
.
dims
()[
0
];
in_trans_dims_vec
[
0
]
=
in
.
dims
()[
axis
];
framework
::
Tensor
in_trans
;
framework
::
DDim
in_trans_dims
=
framework
::
make_ddim
(
in_trans_dims_vec
);
in_trans
.
Resize
(
in_trans_dims
);
in_trans
.
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
TransCompute
<
DeviceContext
,
T
>
(
in
.
dims
().
size
(),
dev_ctx
,
in
,
&
in_trans
,
permute
);
// reshape tensor: eg. [dim1, dim0, dim2] -> [dim1, dim0*dim2]
framework
::
DDim
in_trans_flat_dims
=
framework
::
flatten_to_2d
(
in_trans_dims
,
1
);
in_trans
.
Resize
(
in_trans_flat_dims
);
// sort indices
std
::
vector
<
int64_t
>
sorted_indices_vec
(
in_trans
.
dims
()[
0
]);
std
::
iota
(
sorted_indices_vec
.
begin
(),
sorted_indices_vec
.
end
(),
0
);
int64_t
col
=
in_trans
.
dims
()[
1
];
const
T
*
in_trans_data
=
in_trans
.
data
<
T
>
();
std
::
sort
(
sorted_indices_vec
.
begin
(),
sorted_indices_vec
.
end
(),
[
&
](
int64_t
a
,
int64_t
b
)
->
bool
{
for
(
int64_t
i
=
0
;
i
<
col
;
++
i
)
{
T
lhs
=
in_trans_data
[
i
+
a
*
col
];
T
rhs
=
in_trans_data
[
i
+
b
*
col
];
if
(
lhs
<
rhs
)
{
return
true
;
}
else
if
(
lhs
>
rhs
)
{
return
false
;
}
}
return
false
;
});
// sort tensor according to indices
framework
::
Tensor
input_sorted
;
input_sorted
.
Resize
(
in_trans_dims
);
input_sorted
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_sorted_data
=
input_sorted
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
sorted_indices_vec
.
size
();
++
i
)
{
memcpy
(
input_sorted_data
+
i
*
col
,
in_trans_data
+
sorted_indices_vec
[
i
]
*
col
,
col
*
sizeof
(
T
));
}
std
::
vector
<
framework
::
Tensor
>
input_unbind
=
Unbind
(
input_sorted
);
std
::
vector
<
int64_t
>
inverse_vec
(
sorted_indices_vec
.
size
(),
0
);
std
::
vector
<
int64_t
>
counts_vec
(
sorted_indices_vec
.
size
(),
0
);
std
::
vector
<
int64_t
>
indices_vec
(
sorted_indices_vec
.
size
(),
0
);
auto
last
=
UniqueDimImpl
<
std
::
vector
<
framework
::
Tensor
>::
iterator
,
T
>
(
context
,
input_unbind
.
begin
(),
input_unbind
.
end
(),
sorted_indices_vec
,
&
inverse_vec
,
&
counts_vec
,
&
indices_vec
);
input_unbind
.
erase
(
last
,
input_unbind
.
end
());
counts_vec
.
erase
(
counts_vec
.
begin
()
+
input_unbind
.
size
(),
counts_vec
.
end
());
indices_vec
.
erase
(
indices_vec
.
begin
()
+
input_unbind
.
size
(),
indices_vec
.
end
());
math
::
ConcatFunctor
<
DeviceContext
,
T
>
concat_functor
;
framework
::
Tensor
out_trans
;
std
::
vector
<
int64_t
>
out_trans_dims_vec
=
in_trans_dims_vec
;
out_trans_dims_vec
[
0
]
=
input_unbind
.
size
();
out_trans
.
Resize
(
framework
::
make_ddim
(
out_trans_dims_vec
));
out_trans
.
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
swap
(
out_trans_dims_vec
[
0
],
out_trans_dims_vec
[
axis
]);
out
->
Resize
(
framework
::
make_ddim
(
out_trans_dims_vec
));
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
concat_functor
(
dev_ctx
,
input_unbind
,
0
,
&
out_trans
);
TransCompute
<
DeviceContext
,
T
>
(
out_trans
.
dims
().
size
(),
dev_ctx
,
out_trans
,
out
,
permute
);
if
(
return_inverse
)
{
auto
*
inverse
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
framework
::
TensorFromVector
(
inverse_vec
,
context
.
device_context
(),
inverse
);
}
if
(
return_counts
)
{
auto
*
count
=
context
.
Output
<
framework
::
Tensor
>
(
"Counts"
);
framework
::
TensorFromVector
(
counts_vec
,
context
.
device_context
(),
count
);
}
if
(
return_index
)
{
auto
*
indices
=
context
.
Output
<
framework
::
Tensor
>
(
"Indices"
);
framework
::
TensorFromVector
(
indices_vec
,
context
.
device_context
(),
indices
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
UniqueKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
context
.
Attr
<
int
>
(
"dtype"
));
auto
*
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
index
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
if
(
!
context
.
Attr
<
bool
>
(
"is_sorted"
))
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
context
.
Attr
<
int
>
(
"dtype"
));
auto
*
index
=
context
.
Output
<
framework
::
Tensor
>
(
"Index"
);
framework
::
VisitDataType
(
data_type
,
UniqueOpFunctor
<
T
>
(
out
,
index
,
x
));
return
;
}
framework
::
VisitDataType
(
data_type
,
UniqueOpFunctor
<
T
>
(
out
,
index
,
x
));
std
::
vector
<
int
>
axis_vec
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
bool
return_index
=
context
.
Attr
<
bool
>
(
"return_index"
);
bool
return_inverse
=
context
.
Attr
<
bool
>
(
"return_inverse"
);
bool
return_counts
=
context
.
Attr
<
bool
>
(
"return_counts"
);
if
(
axis_vec
.
empty
())
{
UniqueFlattendTensor
<
T
>
(
context
,
*
x
,
out
,
return_index
,
return_inverse
,
return_counts
);
}
else
{
int
axis
=
axis_vec
[
0
];
UniqueDim
<
DeviceContext
,
T
>
(
context
,
*
x
,
out
,
return_index
,
return_inverse
,
return_counts
,
axis
);
}
}
};
...
...
paddle/fluid/pybind/op_function_generator.cc
浏览文件 @
0a895bc0
...
...
@@ -62,6 +62,7 @@ std::map<std::string, std::set<std::string>> op_outs_map = {
{
"sync_batch_norm"
,
{
"Y"
,
"MeanOut"
,
"VarianceOut"
,
"SavedMean"
,
"SavedVariance"
,
"ReserveSpace"
}},
{
"unique"
,
{
"Out"
,
"Index"
,
"Indices"
,
"Counts"
}},
};
// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
...
...
python/paddle/fluid/tests/unittests/test_unique.py
浏览文件 @
0a895bc0
...
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
...
...
@@ -125,5 +126,164 @@ class TestRandomGPU(TestUniqueOp):
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
class
TestSortedUniqueOp
(
TestUniqueOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
array
([
2
,
3
,
3
,
1
,
5
,
3
],
dtype
=
'int64'
)}
unique
,
indices
,
inverse
,
count
=
np
.
unique
(
self
.
inputs
[
'X'
],
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
None
)
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
),
"return_index"
:
True
,
"return_inverse"
:
True
,
"return_counts"
:
True
,
"axis"
:
None
,
"is_sorted"
:
True
}
self
.
outputs
=
{
'Out'
:
unique
,
'Indices'
:
indices
,
"Index"
:
inverse
,
"Counts"
:
count
,
}
class
TestUniqueOpAxisNone
(
TestUniqueOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
4
,
7
,
10
)).
astype
(
'float64'
)}
unique
,
indices
,
inverse
,
counts
=
np
.
unique
(
self
.
inputs
[
'X'
],
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
None
)
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
),
"return_index"
:
True
,
"return_inverse"
:
True
,
"return_counts"
:
True
,
"axis"
:
None
,
"is_sorted"
:
True
}
self
.
outputs
=
{
'Out'
:
unique
,
'Indices'
:
indices
,
"Index"
:
inverse
,
"Counts"
:
counts
,
}
class
TestUniqueOpAxis1
(
TestUniqueOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
3
,
8
,
8
)).
astype
(
'float64'
)}
unique
,
indices
,
inverse
,
counts
=
np
.
unique
(
self
.
inputs
[
'X'
],
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
1
)
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
),
"return_index"
:
True
,
"return_inverse"
:
True
,
"return_counts"
:
True
,
"axis"
:
[
1
],
"is_sorted"
:
True
}
self
.
outputs
=
{
'Out'
:
unique
,
'Indices'
:
indices
,
"Index"
:
inverse
,
"Counts"
:
counts
,
}
class
TestUniqueAPI
(
unittest
.
TestCase
):
def
test_dygraph_api_out
(
self
):
paddle
.
disable_static
()
x_data
=
x_data
=
np
.
random
.
randint
(
0
,
10
,
(
120
))
x
=
paddle
.
to_tensor
(
x_data
)
out
=
paddle
.
unique
(
x
)
expected_out
=
np
.
unique
(
x_data
)
self
.
assertTrue
((
out
.
numpy
()
==
expected_out
).
all
(),
True
)
paddle
.
enable_static
()
def
test_dygraph_api_attr
(
self
):
paddle
.
disable_static
()
x_data
=
np
.
random
.
random
((
3
,
5
,
5
)).
astype
(
"float32"
)
x
=
paddle
.
to_tensor
(
x_data
)
out
,
index
,
inverse
,
counts
=
paddle
.
unique
(
x
,
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
0
)
np_out
,
np_index
,
np_inverse
,
np_counts
=
np
.
unique
(
x_data
,
return_index
=
True
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
0
)
self
.
assertTrue
((
out
.
numpy
()
==
np_out
).
all
(),
True
)
self
.
assertTrue
((
index
.
numpy
()
==
np_index
).
all
(),
True
)
self
.
assertTrue
((
inverse
.
numpy
()
==
np_inverse
).
all
(),
True
)
self
.
assertTrue
((
counts
.
numpy
()
==
np_counts
).
all
(),
True
)
paddle
.
enable_static
()
def
test_static_graph
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
name
=
'x'
,
shape
=
[
3
,
2
],
dtype
=
'float64'
)
unique
,
inverse
,
counts
=
paddle
.
unique
(
x
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
0
)
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
x_np
=
np
.
array
([[
1
,
2
],
[
3
,
4
],
[
1
,
2
]]).
astype
(
'float64'
)
result
=
exe
.
run
(
feed
=
{
"x"
:
x_np
},
fetch_list
=
[
unique
,
inverse
,
counts
])
np_unique
,
np_inverse
,
np_counts
=
np
.
unique
(
x_np
,
return_inverse
=
True
,
return_counts
=
True
,
axis
=
0
)
self
.
assertTrue
(
np
.
allclose
(
result
[
0
],
np_unique
))
self
.
assertTrue
(
np
.
allclose
(
result
[
1
],
np_inverse
))
self
.
assertTrue
(
np
.
allclose
(
result
[
2
],
np_counts
))
class
TestUniqueError
(
unittest
.
TestCase
):
def
test_input_dtype
(
self
):
def
test_x_dtype
():
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
name
=
'x'
,
shape
=
[
10
,
10
],
dtype
=
'float16'
)
result
=
paddle
.
unique
(
x
)
self
.
assertRaises
(
TypeError
,
test_x_dtype
)
def
test_attr
(
self
):
x
=
paddle
.
data
(
name
=
'x'
,
shape
=
[
10
,
10
],
dtype
=
'float64'
)
def
test_return_index
():
result
=
paddle
.
unique
(
x
,
return_index
=
0
)
self
.
assertRaises
(
TypeError
,
test_return_index
)
def
test_return_inverse
():
result
=
paddle
.
unique
(
x
,
return_inverse
=
's'
)
self
.
assertRaises
(
TypeError
,
test_return_inverse
)
def
test_return_counts
():
result
=
paddle
.
unique
(
x
,
return_counts
=
3
)
self
.
assertRaises
(
TypeError
,
test_return_counts
)
def
test_axis
():
result
=
paddle
.
unique
(
x
,
axis
=
'12'
)
self
.
assertRaises
(
TypeError
,
test_axis
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/manipulation.py
浏览文件 @
0a895bc0
...
...
@@ -27,7 +27,6 @@ from ..fluid.layers import expand_as #DEFINE_ALIAS
from
..fluid.layers
import
slice
#DEFINE_ALIAS
from
..fluid.layers
import
strided_slice
#DEFINE_ALIAS
from
..fluid.layers
import
transpose
#DEFINE_ALIAS
from
..fluid.layers
import
unique
#DEFINE_ALIAS
from
..fluid.layers
import
unstack
#DEFINE_ALIAS
from
..fluid.layers
import
scatter_nd_add
#DEFINE_ALIAS
...
...
@@ -608,6 +607,126 @@ def squeeze(x, axis=None, name=None):
return
layers
.
squeeze
(
x
,
axis
,
name
)
def
unique
(
x
,
return_index
=
False
,
return_inverse
=
False
,
return_counts
=
False
,
axis
=
None
,
name
=
None
):
"""
Returns the unique elements of `x` in ascending order.
Args:
x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
return_index(bool, optional): If True, also return the indices of the input tensor that
result in the unique Tensor.
return_inverse(bool, optional): If True, also return the indices for where elements in
the original input ended up in the returned unique tensor.
return_counts(bool, optional): If True, also return the counts for each unique element.
axis(int, optional): The axis to apply unique. If None, the input will be flattened.
Default: None.
name(str, optional): Name for the operation. For more information, please refer to
:ref:`api_guide_Name`. Default: None.
Returns:
tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is
\
provided only if `return_index` is True. `inverse` is provided only if `return_inverse`
\
is True. `counts` is provided only if `return_counts` is True.
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([2, 3, 3, 1, 5, 3])
x = paddle.to_tensor(x_data)
unique = paddle.unique(x)
np_unique = unique.numpy() # [1 2 3 5]
_, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
np_indices = indices.numpy() # [3 0 1 4]
np_inverse = inverse.numpy() # [1 2 2 0 3 2]
np_counts = counts.numpy() # [1 1 3 1]
x_data = np.array([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
unique = paddle.unique(x)
np_unique = unique.numpy() # [0 1 2 3]
unique = paddle.unique(x, axis=0)
np_unique = unique.numpy()
# [[2 1 3]
# [3 0 1]]
"""
if
axis
is
None
:
axis
=
[]
else
:
axis
=
[
axis
]
if
in_dygraph_mode
():
out
,
inverse
,
indices
,
counts
=
core
.
ops
.
unique
(
x
,
'dtype'
,
convert_np_dtype_to_dtype_
(
'int32'
),
'return_index'
,
return_index
,
'return_inverse'
,
return_inverse
,
'return_counts'
,
return_counts
,
'axis'
,
axis
,
"is_sorted"
,
True
)
outs
=
[
out
]
if
return_index
:
outs
.
append
(
indices
)
if
return_inverse
:
outs
.
append
(
inverse
)
if
return_counts
:
outs
.
append
(
counts
)
if
len
(
outs
)
==
1
:
return
outs
[
0
]
return
tuple
(
outs
)
check_variable_and_dtype
(
x
,
"input"
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'unique'
)
check_type
(
return_index
,
'return_index'
,
bool
,
'unique'
)
check_type
(
return_inverse
,
'return_inverse'
,
bool
,
'unique'
)
check_type
(
return_counts
,
'return_counts'
,
bool
,
'unique'
)
if
len
(
axis
)
!=
0
:
check_type
(
axis
[
0
],
'axis'
,
int
,
'unique'
)
helper
=
LayerHelper
(
'unique'
,
**
locals
())
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
),
"return_index"
:
return_index
,
"return_inverse"
:
return_inverse
,
"return_counts"
:
return_counts
,
"axis"
:
axis
,
"is_sorted"
:
True
}
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
inverse
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
outputs
=
{
"Out"
:
out
,
"Index"
:
inverse
}
outs
=
[
out
]
if
return_index
:
indices
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
outputs
[
"Indices"
]
=
indices
outs
.
append
(
indices
)
if
return_inverse
:
outs
.
append
(
inverse
)
if
return_counts
:
counts
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
outputs
[
"Counts"
]
=
counts
outs
.
append
(
counts
)
helper
.
append_op
(
type
=
"unique"
,
inputs
=
{
"X"
:
x
},
attrs
=
attrs
,
outputs
=
outputs
)
if
len
(
outs
)
==
1
:
return
outs
[
0
]
return
tuple
(
outs
)
def
unsqueeze
(
x
,
axis
,
name
=
None
):
"""
:alias_main: paddle.unsqueeze
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录