test_layers.py 89.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib
import inspect
Q
Qiao Longfei 已提交
17 18
import unittest

19
import numpy as np
20
from decorator_helper import prog_scope
21
from test_imperative_base import new_program_scope
22 23 24

import paddle
import paddle.fluid as fluid
25
import paddle.fluid.layers as layers
26
import paddle.fluid.nets as nets
27
import paddle.nn.functional as F
28
from paddle.fluid import core
29
from paddle.fluid.dygraph import base, to_variable
30
from paddle.fluid.framework import Program, default_main_program, program_guard
31
from paddle.tensor import random
32 33 34 35 36 37 38 39 40 41 42


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

43 44 45 46 47 48 49 50
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
51 52 53 54

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
55
            paddle.seed(self.seed)
L
Leo Chen 已提交
56
            paddle.framework.random._manual_program_seed(self.seed)
57 58
            yield

59 60 61
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
62
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
63
        exe.run(fluid.default_startup_program())
64 65 66 67 68 69
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
70 71

    @contextlib.contextmanager
72
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
73
        with fluid.dygraph.guard(
74 75
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
76
            paddle.seed(self.seed)
L
Leo Chen 已提交
77
            paddle.framework.random._manual_program_seed(self.seed)
78 79 80 81
            yield


class TestLayer(LayerTest):
82 83
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
84
            def __init__(self, input_size, linear1_size=4):
85
                super().__init__()
86
                self.linear1 = paddle.nn.Linear(
87 88
                    input_size, linear1_size, bias_attr=False
                )
89 90 91
                self.linear2 = paddle.nn.Linear(
                    linear1_size, 1, bias_attr=False
                )
92 93 94 95 96

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
97 98 99 100 101
                return ret

        with self.dynamic_graph():
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
102 103
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
104
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
105
            ret = custom(x, do_linear2=True)
106
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
107

C
ccrrong 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            dropout = paddle.nn.Dropout(p=0.35)
            ret = dropout(t)
            ret2 = paddle.nn.functional.dropout(t, p=0.35)
            static_ret, static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
        with self.dynamic_graph():
            t = base.to_variable(inp)
            dropout = paddle.nn.Dropout(p=0.35)
            dy_ret = dropout(t)
            dy_ret2 = paddle.nn.functional.dropout(t, p=0.35)
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)

S
songyouwei 已提交
135 136 137
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
138 139 140 141 142 143
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
144
            linear = paddle.nn.Linear(
145 146
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
147
            ret = linear(t)
148 149 150
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
151 152
        with self.dynamic_graph():
            t = base.to_variable(inp)
153
            linear = paddle.nn.Linear(
154 155
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
156 157 158
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

159
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
160

161 162 163 164 165
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
166
                linear = paddle.nn.Linear(
167 168
                    32,
                    4,
169 170
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
171 172 173 174 175 176 177 178
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
179
                linear = paddle.nn.Linear(
180 181
                    32,
                    4,
182 183
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
184 185 186 187
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

W
wangzhen38 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    def test_cvm(self):
        inp = np.ones([10, 10], dtype='float32')
        arr = [[0.6931472, -1.904654e-09, 1, 1, 1, 1, 1, 1, 1, 1]] * 10
        cvm1 = np.array(arr, dtype='float32')
        cvm2 = np.ones([10, 8], dtype='float32')
        show_clk = np.ones([10, 2], dtype='float32')
        with self.static_graph():
            x = paddle.static.data(
                name='data',
                shape=[10, 10],
                dtype='float32',
            )
            u = paddle.static.data(
                name='show_click',
                shape=[10, 2],
                dtype='float32',
            )
            no_cvm = paddle.static.nn.continuous_value_model(x, u, True)
            static_ret1 = self.get_static_graph_result(
                feed={'data': inp, 'show_click': show_clk},
                fetch_list=[no_cvm],
            )[0]
        with self.static_graph():
            x = paddle.static.data(
                name='data',
                shape=[10, 10],
                dtype='float32',
            )
            u = paddle.static.data(
                name='show_click',
                shape=[10, 2],
                dtype='float32',
            )
            cvm = paddle.static.nn.continuous_value_model(x, u, False)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp, 'show_click': show_clk}, fetch_list=[cvm]
            )[0]
        np.testing.assert_allclose(static_ret1, cvm1, rtol=1e-5, atol=1e-06)
        np.testing.assert_allclose(static_ret2, cvm2, rtol=1e-5, atol=1e-06)

228 229 230
    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
231 232 233 234 235 236
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
237
            flatten = paddle.nn.Flatten()
238
            ret = flatten(t)
239 240 241
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
242 243
        with self.dynamic_graph():
            t = base.to_variable(inp)
244
            flatten = paddle.nn.Flatten()
245 246 247
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

248
        np.testing.assert_array_equal(static_ret, dy_ret_value)
249 250 251 252 253 254

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
255
                linear = paddle.nn.Linear(
256 257
                    32,
                    4,
258 259
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
260 261 262 263 264 265 266 267
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
268
                linear = paddle.nn.Linear(
269 270
                    32,
                    4,
271 272
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
273 274 275 276
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

C
ceci3 已提交
277 278 279 280
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
281
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
282 283
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
284
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
285 286
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
287 288 289 290 291 292

            with self.dynamic_graph():
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
293
            np.testing.assert_array_equal(static_ret, dy_ret_value)
C
ceci3 已提交
294

295 296 297
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
298
            ret = F.relu(t)
299
            static_ret = self.get_static_graph_result(
300 301
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
302 303 304

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
305
            dy_ret = F.relu(base.to_variable(t))
306
            dy_ret_value = dy_ret.numpy()
307

308
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
C
ceci3 已提交
309

310 311 312 313
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
K
kangguangli 已提交
314
            ret = paddle.matmul(t, t2)
315 316 317 318 319 320 321
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
322 323 324 325

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
K
kangguangli 已提交
326
            dy_ret = paddle.matmul(base.to_variable(t), base.to_variable(t2))
327
            dy_ret_value = dy_ret.numpy()
328

329
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
330

X
Xin Pan 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

347
            ret = paddle.add(t, t2)
348
            ret = paddle.pow(ret, t3)
349 350 351
            ret = paddle.divide(ret, t4)
            ret = paddle.subtract(ret, t5)
            ret = paddle.multiply(ret, t6)
X
Xin Pan 已提交
352

353 354 355 356
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
357 358

        with self.dynamic_graph():
359
            ret = paddle.add(to_variable(n), to_variable(n2))
360
            ret = paddle.pow(ret, to_variable(n3))
361 362 363
            ret = paddle.divide(ret, to_variable(n4))
            ret = paddle.subtract(ret, to_variable(n5))
            dy_ret = paddle.multiply(ret, to_variable(n6))
364
            dy_ret_value = dy_ret.numpy()
365

366
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
X
Xin Pan 已提交
367 368 369 370 371 372

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
373
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
374
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
375 376
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
377

378 379
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
X
Xin Pan 已提交
380

381 382 383 384
    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
385
            out = paddle.static.nn.conv2d_transpose(
386 387
                input=img,
                num_filters=10,
388
                filter_size=27,
389
                act='sigmoid',
390 391 392 393 394
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
395 396
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
397 398 399 400
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
401 402
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
403
            out = conv2d_transpose(img)
404
            out = paddle.nn.functional.sigmoid(out)
405 406 407
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
408
        with self.dynamic_graph():
409 410 411 412
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
413 414
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
415
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
416
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
417
            dy_rlt_value = dy_rlt.numpy()
418 419
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
420

421 422 423
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
424 425 426 427 428
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
429 430 431 432 433 434
            conv2d1 = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
            conv2d2 = paddle.nn.Conv2DTranspose(
                3,
                3,
                [2, 2],
                weight_attr=weight_attr,
435
            )
436 437 438 439 440 441 442
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
443 444
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
445
            conv2d2.weight.set_value(conv2d1_weight_np)
446 447 448
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
449 450 451
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
452
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
453 454 455

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
456 457 458 459 460 461
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
462

463 464 465 466 467
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
468
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
469 470 471 472 473 474 475
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
476 477 478
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
479
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
480 481 482 483
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

484 485 486 487 488
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
489 490 491 492 493 494
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
495
            out = paddle.static.nn.common.bilinear_tensor_product(
496 497 498 499
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
500 501
                act='sigmoid',
            )
502

503 504 505
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
506

507
        with self.static_graph():
508 509 510 511 512 513
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
514
            btp = paddle.nn.Bilinear(
515 516
                3,
                3,
517 518
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
519
            )
520
            out = btp(data_x, data_y)
521
            out = paddle.nn.functional.sigmoid(out)
522 523 524
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
525
        with self.dynamic_graph():
526
            btp = paddle.nn.Bilinear(
527 528
                3,
                3,
529 530
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
531
            )
532
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
533
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
534
            dy_rlt_value = dy_rlt.numpy()
535

536
        with self.dynamic_graph():
537
            btp2 = paddle.nn.Bilinear(3, 3, 6)
538 539 540
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
541
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
542
            dy_rlt2_value = dy_rlt2.numpy()
543

544
        with self.static_graph():
545 546 547 548 549 550
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
551
            out2 = paddle.static.nn.common.bilinear_tensor_product(
552 553 554 555 556 557
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
558

559 560 561
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
562

563 564
        with self.dynamic_graph():
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
565 566 567 568 569
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
570 571
            btp1 = paddle.nn.Bilinear(3, 3, 6)
            btp2 = paddle.nn.Bilinear(3, 3, 6, weight_attr=weight_attr)
572 573 574
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
575
            dy_rlt1 = paddle.nn.functional.sigmoid(dy_rlt1)
576 577 578
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
579
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
580 581 582
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
583 584 585 586 587 588
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
589
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
590 591 592

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
593 594 595
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
596
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
597

598 599 600 601 602
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
603 604 605 606 607 608 609 610 611
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
612 613
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
614 615
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr='emb.w', sparse=False
616
            )
617
            emb_rlt = emb2(data_t)
618 619 620
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
621
        with self.dynamic_graph():
622

623 624
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr='emb.w', sparse=False
625
            )
626 627
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
628 629

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
630
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
631

632 633
        with self.dynamic_graph():
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
634 635 636 637 638
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
639 640 641
            emb1 = paddle.nn.Embedding(dict_size, 32, sparse=False)
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr=weight_attr, sparse=False
642
            )
643 644 645
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
646
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
647 648 649
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
650
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
651 652

            emb2.weight = emb1.weight
653 654 655
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
656

S
songyouwei 已提交
657 658 659
    def test_one_hot(self):
        with self.dynamic_graph():
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
660 661 662
            one_hot_label1 = paddle.nn.functional.one_hot(label, 4)
            one_hot_label2 = paddle.nn.functional.one_hot(
                label, fluid.dygraph.to_variable(np.array([4]))
663 664 665 666
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
667 668 669 670

    def test_split(self):
        with self.dynamic_graph():
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
671 672
            x0, x1 = paddle.split(input, num_or_sections=2, axis=1)
            x00, x11 = paddle.split(
673 674
                input,
                num_or_sections=2,
675
                axis=fluid.dygraph.to_variable(np.array([1])),
676
            )
677 678
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
679 680 681 682

    def test_topk(self):
        with self.dynamic_graph():
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
683 684
            top5_values1, top5_indices1 = paddle.topk(input, k=5)
            top5_values2, top5_indices2 = paddle.topk(
685 686 687 688 689 690 691 692
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
693

L
lujun 已提交
694 695
    def test_conv3d(self):
        with self.static_graph():
696 697 698
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
699 700 701
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
702
            static_ret = self.get_static_graph_result(
703
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
704 705
                fetch_list=[ret],
            )[0]
L
lujun 已提交
706 707

        with self.static_graph():
708 709 710
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
711 712 713
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
714 715
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
716
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
717 718
                fetch_list=[ret],
            )[0]
L
lujun 已提交
719 720 721

        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
722 723 724
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
725
            dy_ret = conv3d(base.to_variable(images))
726
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
727

728 729
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
730

731 732 733
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
734 735 736 737 738
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
739 740 741 742 743 744 745 746
            conv3d1 = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
            conv3d2 = paddle.nn.Conv3D(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
747
            )
748 749 750 751 752 753 754
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
755 756
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
757
            conv3d2.weight.set_value(conv3d1_weight_np)
758 759 760
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
761 762 763
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
764
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
765 766 767

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
768 769 770 771 772 773
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
774

775
    def test_group_norm(self):
L
lujun 已提交
776 777 778 779 780 781 782 783 784 785
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
786 787 788 789 790 791 792
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
793
            ret = paddle.static.nn.group_norm(
794 795
                input=X,
                groups=2,
796
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
797 798 799 800 801 802 803 804 805 806 807
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
808 809

        with self.static_graph():
810 811 812 813 814 815 816
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
817 818 819 820
            groupNorm = paddle.nn.GroupNorm(
                num_channels=shape[1],
                num_groups=2,
                weight_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
821 822
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
823
            ret = groupNorm(X)
824 825 826 827 828 829 830 831 832
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
833 834

        with self.dynamic_graph():
835 836 837 838
            groupNorm = paddle.nn.GroupNorm(
                num_channels=shape[1],
                num_groups=2,
                weight_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
839 840
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
841
            dy_ret = groupNorm(base.to_variable(input))
842
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
843

844 845
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
846

847 848 849 850 851 852 853 854 855 856 857
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
858 859 860
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
861
            ret = paddle.static.nn.instance_norm(input=X)
862 863 864
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
865 866

        with self.static_graph():
867 868 869
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
870
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
871
            ret = instanceNorm(X)
872 873 874
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
875 876

        with self.dynamic_graph():
877
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
878 879 880 881
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
882
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
883 884 885
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

886 887 888
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
889 890 891 892

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
893
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
894 895 896 897 898 899 900
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
901
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
902 903 904 905
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
906 907 908 909 910 911 912 913 914 915 916
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
917 918 919 920 921 922 923
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
924 925 926
            ret = paddle.static.nn.spectral_norm(
                weight=Weight, dim=1, power_iters=2
            )
927 928 929 930 931 932 933 934 935
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
936 937

        with self.static_graph():
938 939 940 941 942 943 944
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
945
            spectralNorm = paddle.nn.SpectralNorm(shape, axis=1, power_iters=2)
L
lujun 已提交
946
            ret = spectralNorm(Weight)
947 948 949 950 951 952 953 954 955
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
956 957

        with self.dynamic_graph():
958
            spectralNorm = paddle.nn.SpectralNorm(shape, axis=1, power_iters=2)
L
lujun 已提交
959
            dy_ret = spectralNorm(base.to_variable(input))
960
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
961

962 963
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
964 965

    def test_conv3d_transpose(self):
966 967 968
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
969 970 971

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
972
            out = paddle.static.nn.conv3d_transpose(
973
                input=img, num_filters=12, filter_size=12, use_cudnn=True
974
            )
L
lujun 已提交
975
            static_rlt = self.get_static_graph_result(
976 977
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
978 979
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
980 981
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
982
            )
L
lujun 已提交
983 984
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
985 986
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
987
        with self.dynamic_graph():
988 989
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
990
            )
L
lujun 已提交
991
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
992
            dy_rlt_value = dy_rlt.numpy()
993 994
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
995

996 997 998
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
999 1000 1001 1002 1003
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1004 1005 1006 1007
            conv3d1 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
1008 1009
                bias_attr='conv3d1_b',
            )
1010 1011 1012 1013 1014
            conv3d2 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
1015 1016
                bias_attr='conv3d2_b',
            )
1017 1018 1019 1020 1021 1022 1023
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1024 1025
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1026
            conv3d2.weight.set_value(conv3d1_weight_np)
1027 1028 1029
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1030 1031 1032
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1033
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1034 1035 1036

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1037 1038 1039 1040 1041 1042
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1043

1044
    def test_while_loop(self):
1045 1046 1047 1048 1049
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
L
LiYuRio 已提交
1050
                return paddle.less_than(i, ten)
1051 1052 1053 1054

            def body(i):
                return i + 1

1055
            out = paddle.static.nn.while_loop(cond, body, [i])
1056 1057 1058 1059 1060 1061
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

1062
            def cond1(i):
L
LiYuRio 已提交
1063
                return paddle.less_than(i, ten)
1064

1065
            def body1(i):
1066 1067
                return i + 1

1068
            dy_ret = paddle.static.nn.while_loop(cond1, body1, [i])
1069 1070 1071 1072 1073 1074
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

1075
                paddle.static.nn.while_loop(cond1, body2, [j])
1076

1077
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
1078

1079 1080 1081 1082 1083 1084 1085
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
L
LiYuRio 已提交
1086
            cond = paddle.less_than(x=a, y=b)
1087 1088 1089
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
1090 1091 1092
        with self.dynamic_graph():
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
L
LiYuRio 已提交
1093
            dcond = paddle.less_than(x=da, y=db)
1094

1095 1096
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
1097 1098 1099 1100 1101

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
1102
            cond1 = paddle.less_equal(x=a1, y=b1)
1103 1104 1105
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
1106 1107 1108
        with self.dynamic_graph():
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
1109
            dcond1 = paddle.less_equal(x=da1, y=db1)
1110 1111 1112 1113

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

1114
        # greater than
1115 1116 1117
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
1118
            cond2 = paddle.greater_than(x=a2, y=b2)
1119 1120 1121
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
1122 1123 1124
        with self.dynamic_graph():
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
1125
            dcond2 = paddle.greater_than(x=da2, y=db2)
1126 1127 1128 1129

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

1130
        # greater equal
1131 1132 1133
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
1134
            cond3 = paddle.greater_equal(x=a3, y=b3)
1135 1136 1137
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
1138 1139 1140
        with self.dynamic_graph():
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
1141
            dcond3 = paddle.greater_equal(x=da3, y=db3)
1142 1143 1144 1145 1146 1147 1148 1149

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
1150
            cond4 = paddle.equal(x=a4, y=b4)
1151 1152 1153
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
1154 1155 1156
        with self.dynamic_graph():
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
1157
            dcond4 = paddle.equal(x=da4, y=db4)
1158 1159 1160 1161 1162 1163 1164 1165

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
1166
            cond5 = paddle.equal(x=a5, y=b5)
1167 1168 1169
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
1170 1171 1172
        with self.dynamic_graph():
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
1173
            dcond5 = paddle.equal(x=da5, y=db5)
1174 1175 1176 1177

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1178 1179
    def test_cond(self):
        def less_than_branch(a, b):
1180
            return paddle.add(a, b)
1181 1182

        def greater_equal_branch(a, b):
1183
            return paddle.subtract(a, b)
1184 1185

        with self.static_graph():
1186 1187 1188 1189 1190 1191
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
1192
            out = paddle.static.nn.cond(
1193 1194 1195 1196 1197 1198 1199 1200 1201
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1202 1203 1204 1205 1206 1207 1208
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
1209
            out = paddle.static.nn.cond(
1210 1211 1212 1213
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
1214
            out2 = paddle.static.nn.cond(
1215 1216 1217 1218
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
1219 1220
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
1221
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
1222
            with self.assertRaises(TypeError):
1223
                paddle.static.nn.cond(a < b, 'str', 'str')
1224
            with self.assertRaises(TypeError):
1225
                paddle.static.nn.cond(a >= b, 'str', 'str')
1226

1227
        np.testing.assert_array_equal(static_res, dynamic_res)
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1244 1245
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1246
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1247

1248
            out_1 = paddle.static.nn.case(
1249 1250
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1251 1252 1253
            out_2 = paddle.static.nn.case(
                pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
            )
1254

1255 1256 1257 1258 1259
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1260 1261 1262 1263 1264 1265 1266 1267
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1268 1269
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1270
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1271

1272
            out_1 = paddle.static.nn.case(
1273 1274
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1275 1276 1277
            out_2 = paddle.static.nn.case(
                pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
            )
1278 1279 1280
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

1281 1282
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1298
            out_1 = paddle.static.nn.switch_case(
1299 1300 1301 1302
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
1303
            out_2 = paddle.static.nn.switch_case(
1304 1305 1306 1307
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
1308
            out_3 = paddle.static.nn.switch_case(
1309 1310 1311 1312 1313 1314 1315 1316 1317
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1318 1319
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
1320 1321
                fetch_list=[out_1, out_2, out_3]
            )
1322 1323 1324 1325 1326

        with self.dynamic_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1327
            out_1 = paddle.static.nn.switch_case(
1328 1329 1330 1331
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
1332
            out_2 = paddle.static.nn.switch_case(
1333 1334 1335 1336
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
1337
            out_3 = paddle.static.nn.switch_case(
1338 1339 1340
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
1341 1342 1343 1344 1345

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

1346 1347 1348
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
1349

1350 1351 1352 1353
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

1354 1355 1356 1357 1358 1359
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
1360
            crop_shape1 = (1, 2, 4, 4)
1361 1362 1363
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
1364 1365
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
1366 1367 1368
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
1369 1370
            crop_offsets3 = [0, dim1, dim2, 0]

1371 1372 1373
            out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3)
1374 1375 1376 1377 1378

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

1379 1380 1381
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
1382
            shard_label = paddle.shard_index(
1383 1384
                input=x, index_num=20, nshards=2, shard_id=0
            )
1385 1386 1387

        self.assertIsNotNone(shard_label)

1388 1389 1390 1391 1392 1393 1394
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
1395
            predict = paddle.nn.functional.softmax(fc_out)
1396
            result = paddle.static.accuracy(input=predict, label=label, k=5)
1397 1398 1399 1400
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
1401 1402
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
1403 1404 1405
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
1406

L
Leo Chen 已提交
1407
        with self.dynamic_graph(force_to_use_cpu=True):
1408 1409 1410
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
1411
            predict = paddle.nn.functional.softmax(fc_out)
1412 1413 1414
            dynamic_out = paddle.static.accuracy(
                input=predict, label=label, k=5
            )
1415

1416
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
1417

Y
Yu Yang 已提交
1418

1419
class TestBook(LayerTest):
H
hong 已提交
1420 1421
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
1422 1423 1424 1425 1426 1427 1428
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_kldiv_loss",
                "make_uniform_random_batch_size_like",
            }
        )
1429
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
1430

1431
    def test_all_layers(self):
1432 1433 1434 1435 1436
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
1437 1438 1439
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
1452 1453
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
1454

1455 1456
                else:
                    continue
H
hong 已提交
1457 1458
            if method.__name__ in self.only_static_set:
                continue
1459 1460 1461 1462 1463

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
1464
                dy_result_value = dy_result.numpy()
1465

1466
            if method.__name__ in self.all_close_compare:
1467 1468 1469 1470 1471 1472
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
1473 1474 1475
                        method.__name__
                    ),
                )
1476 1477
                continue

H
hong 已提交
1478
            if method.__name__ not in self.not_compare_static_dygraph_set:
1479 1480 1481 1482
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
1483 1484 1485
                        method.__name__
                    ),
                )
1486 1487 1488 1489

    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
1490
            shape = [self._batch_size] + shape
1491 1492 1493 1494 1495
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
1496 1497 1498
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
1499
        elif dtype == 'int64':
1500 1501 1502 1503 1504 1505 1506
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
1507
        if base.enabled():
1508 1509 1510 1511 1512
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
1513 1514
        else:
            if set_feed_dict:
1515
                self._feed_dict[name] = self._get_np_data(
1516 1517 1518 1519 1520 1521 1522 1523
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
1524 1525

    def make_fit_a_line(self):
1526 1527 1528 1529
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
1530
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
1531
            y_predict = layers.fc(input=x, size=1, act=None)
1532
            y = self._get_data(name='y', shape=[1], dtype='float32')
1533 1534 1535
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
1536
            avg_cost = paddle.mean(cost)
1537
            return avg_cost
Y
Yu Yang 已提交
1538

1539
    def make_recognize_digits_mlp(self):
1540 1541 1542
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
1543
            # Change g_program, so the rest layers use `g_program`
1544 1545
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1546 1547
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
1548 1549 1550 1551 1552 1553
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
1554 1555 1556
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
1557
            avg_cost = paddle.mean(cost)
1558
            return avg_cost
Y
Yu Yang 已提交
1559

1560
    def make_conv2d_transpose(self):
1561 1562 1563
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1564
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
1565
            return paddle.static.nn.conv2d_transpose(
1566 1567
                input=img, num_filters=10, output_size=28
            )
1568

1569
    def make_recognize_digits_conv(self):
1570 1571 1572 1573 1574 1575
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
1576
            label = self._get_data(name='label', shape=[1], dtype='int64')
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
1593 1594

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
1595 1596 1597
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
1598
            avg_cost = paddle.mean(cost)
1599
            return avg_cost
Y
Yu Yang 已提交
1600

1601
    def make_word_embedding(self):
1602 1603 1604
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
1605 1606
            dict_size = 10000
            embed_size = 32
1607
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
1608 1609 1610
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
1611 1612 1613
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1614

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
1640 1641 1642

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
1643 1644
                axis=1,
            )
Y
Yu Yang 已提交
1645 1646

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
1647 1648 1649
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
1650 1651 1652 1653 1654 1655
            cost = paddle.nn.functional.cross_entropy(
                input=predict_word,
                label=next_word,
                reduction='none',
                use_softmax=False,
            )
1656
            avg_cost = paddle.mean(cost)
1657
            return avg_cost
Y
Yu Yang 已提交
1658

1659
    def make_pool2d(self):
1660 1661 1662
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1663
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
C
ccrrong 已提交
1664 1665
            return paddle.nn.functional.max_pool2d(
                x, kernel_size=[5, 3], stride=[1, 2], padding=(2, 1)
1666
            )
1667

K
Kaipeng Deng 已提交
1668
    def make_pool2d_infershape(self):
1669 1670 1671
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
1672
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
1673 1674 1675
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
C
ccrrong 已提交
1676 1677
            return paddle.nn.functional.max_pool2d(
                x, kernel_size=[5, 3], stride=[1, 2], padding=(2, 1)
1678
            )
K
Kaipeng Deng 已提交
1679

1680
    def make_softmax(self):
1681 1682 1683
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1684
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
1685
            hid = layers.fc(input=data, size=20)
1686
            return paddle.nn.functional.softmax(hid, axis=1)
D
dangqingqing 已提交
1687

1688
    @prog_scope()
1689
    def make_nce(self):
Y
Yang Yu 已提交
1690 1691
        window_size = 5
        words = []
1692
        for i in range(window_size):
Y
Yang Yu 已提交
1693
            words.append(
1694 1695 1696 1697
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
1698 1699

        dict_size = 10000
M
minqiyang 已提交
1700
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
1701 1702

        embs = []
1703
        for i in range(window_size):
Y
Yang Yu 已提交
1704 1705 1706
            if i == label_word:
                continue

1707 1708 1709 1710 1711 1712
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
1713 1714 1715 1716

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
1717
        loss = paddle.static.nn.nce(
1718 1719 1720 1721 1722 1723
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
1724
        avg_loss = paddle.mean(loss)
1725
        return avg_loss
Y
Yang Yu 已提交
1726

1727
    def make_multiplex(self):
1728 1729 1730
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1731 1732 1733
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
1734
            out = paddle.multiplex(inputs=[x1, x2], index=index)
1735
            return out
1736 1737

    def make_softmax_with_cross_entropy(self):
1738 1739 1740
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1741 1742
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
1743
            loss, softmax = paddle.nn.functional.softmax_with_cross_entropy(
1744 1745
                x, y, return_softmax=True
            )
1746 1747 1748
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

1749
            loss = paddle.nn.functional.softmax_with_cross_entropy(x, y)
1750 1751 1752 1753 1754 1755
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
            loss1 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y1, axis=1
            )
            loss2 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y2, axis=2
            )
            loss3 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=3
            )
            loss4 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=-1
            )
1768 1769 1770 1771
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
1772
            return loss4
1773 1774

    def make_scatter(self):
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
1790
            out = paddle.scatter(x, index=idx, updates=updates)
1791
            return out
Y
yangyaming 已提交
1792

1793 1794 1795
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
1796
            one_hot_label = paddle.nn.functional.one_hot(label, 10)
1797
            return one_hot_label
1798

1799 1800 1801 1802 1803
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
1804
            one_hot_label = paddle.nn.functional.one_hot(label, 10)
1805
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
1806
            return smooth_label
1807

1808
    def make_topk(self):
1809 1810 1811
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1812
            data = self._get_data(name="label", shape=[200], dtype="float32")
1813
            values, indices = paddle.topk(data, k=5)
1814 1815
            return values
            return indices
J
jerrywgz 已提交
1816

1817
    def make_l2_normalize(self):
1818 1819 1820
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1821
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
1822
            output = paddle.nn.functional.normalize(x, axis=1)
1823
            return output
1824

1825
    def make_shape(self):
1826 1827 1828 1829 1830 1831
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
2
201716010711 已提交
1832
            out = paddle.shape(input)
1833
            return out
B
Bai Yifan 已提交
1834

1835
    def make_pad2d(self):
1836 1837 1838 1839 1840 1841
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
1842 1843 1844

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
1845 1846 1847 1848
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
1849
            out = tmp_pad(input)
1850
            return out
W
whs 已提交
1851

K
Kaipeng Deng 已提交
1852
    def make_mish(self):
1853 1854 1855
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
1856
            input = self._get_data(name="input", shape=[16], dtype="float32")
1857
            out = paddle.nn.functional.mish(input, name='mish')
1858
            return out
K
Kaipeng Deng 已提交
1859

1860
    def make_cross_entropy(self):
1861 1862 1863
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1864 1865
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
1866
            mode = 'channel'
1867 1868 1869 1870 1871 1872 1873 1874
            out = paddle.nn.functional.cross_entropy(
                x,
                label,
                soft_label=False,
                ignore_index=4,
                reduction='none',
                use_softmax=False,
            )
1875
            return out
1876

1877
    def make_uniform_random_batch_size_like(self):
1878 1879 1880 1881 1882 1883
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
1884
            out = random.uniform_random_batch_size_like(input, [-1, 11])
1885
            return out
G
fix  
gongweibao 已提交
1886

1887
    def make_gaussian_random(self):
1888 1889 1890
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1891
            out = random.gaussian(shape=[20, 30])
1892
            return out
G
fix  
gongweibao 已提交
1893

1894
    def make_sum(self):
1895 1896 1897 1898 1899 1900
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
1901

1902
            out = paddle.add_n(input)
1903
            return out
G
fix  
gongweibao 已提交
1904

1905
    def make_slice(self):
G
fix  
gongweibao 已提交
1906 1907 1908 1909
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

1910 1911 1912 1913 1914 1915
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
1916

2
201716010711 已提交
1917
            out = paddle.slice(input, axes=axes, starts=starts, ends=ends)
1918
            return out
G
merge  
gongweibao 已提交
1919

1920
    def make_scale_variable(self):
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2
201716010711 已提交
1933
            out = paddle.scale(input, scale=scale_var)
1934 1935
            return out

1936
    def make_bilinear_tensor_product_layer(self):
1937 1938 1939
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1940 1941 1942
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
1943 1944 1945
            out = paddle.static.nn.common.bilinear_tensor_product(
                data, theta, 6
            )
1946
            return out
1947 1948

    def make_batch_norm(self):
1949 1950 1951 1952 1953 1954
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
1955
            out = paddle.static.nn.batch_norm(data)
1956
            return out
1957

1958
    def make_batch_norm_momentum_variable(self):
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
1971
            out = paddle.static.nn.batch_norm(data, momentum=momentum)
1972
            return out
1973

1974
    def make_range(self):
1975 1976 1977
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
1978 1979 1980
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
1981 1982 1983
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
1984
            y = paddle.arange(start, end, step, 'float64')
1985 1986 1987
            return y

    def make_spectral_norm(self):
1988 1989 1990 1991 1992 1993 1994 1995 1996
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
1997
            out = paddle.static.nn.spectral_norm(weight, dim=1, power_iters=1)
1998
            return out
1999 2000

    def make_kldiv_loss(self):
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
2016 2017 2018
            loss = paddle.nn.functional.kl_div(
                input=x, label=target, reduction='batchmean'
            )
2019
            return loss
2020

M
minqiyang 已提交
2021
    def make_pixel_shuffle(self):
2022 2023 2024
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
2025
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
2026
            out = paddle.nn.functional.pixel_shuffle(x, upscale_factor=3)
2027
            return out
M
minqiyang 已提交
2028

R
ruri 已提交
2029
    def make_mse_loss(self):
2030 2031 2032
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
2033 2034
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2035
            out = paddle.nn.functional.mse_loss(input=x, label=y)
2036
            return out
R
ruri 已提交
2037

2038
    def make_square_error_cost(self):
2039 2040 2041
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2042 2043
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2044
            out = paddle.nn.functional.square_error_cost(input=x, label=y)
2045
            return out
2046

W
whs 已提交
2047
    def test_affine_grid(self):
2048
        with self.static_graph():
W
whs 已提交
2049
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
2050
            out = paddle.argsort(x=data, axis=1)
W
whs 已提交
2051 2052

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
2053
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
2054 2055
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
2056 2057 2058

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
2059

W
wangchaochaohu 已提交
2060 2061 2062 2063 2064 2065 2066
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
2
201716010711 已提交
2067
            out = paddle.strided_slice(
2068 2069
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
2070 2071
            return out

2072 2073
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
2074 2075 2076 2077 2078 2079
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
2080 2081
            return out

2082 2083 2084 2085
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
2086 2087 2088 2089
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
2090

2091 2092 2093 2094 2095
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
2096
            return out
2097

2098 2099 2100 2101
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
2102
            length = layers.data(name='length', shape=[], dtype='int64')
2103
            return layers.sequence_unpad(x=x, length=length)
2104

2105 2106 2107
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2108 2109 2110
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
2111
            seq = layers.fc(input=seq_data, size=20)
2112
            return layers.sequence_softmax(seq)
2113

2114 2115 2116 2117
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
2118
            out = paddle.unsqueeze(x, axis=[1])
2119
            return out
2120

2121 2122 2123
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
2141
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
2142
            return out
W
whs 已提交
2143

2144 2145 2146 2147
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
2148 2149 2150 2151

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
2152 2153
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
2154 2155 2156 2157
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
2158

Z
zhoushiyu 已提交
2159 2160 2161
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2162 2163 2164
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
2165 2166 2167 2168 2169
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
2170
            return out1
Z
zhoushiyu 已提交
2171

2172 2173 2174 2175
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
2176 2177 2178 2179
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
2180

S
ShenLiang 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
2190 2191
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
2192 2193 2194 2195
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
2196 2197 2198 2199 2200
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
2201

S
ShenLiang 已提交
2202 2203 2204
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
2205 2206 2207
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
2208 2209 2210 2211 2212 2213 2214
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
2215 2216 2217 2218 2219
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
2220

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
2231
            out = paddle.static.nn.row_conv(input=x, future_context_size=2)
2232
            return out
2233 2234 2235 2236

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
2237 2238 2239
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
2240
            return paddle.static.nn.conv2d(
2241 2242
                input=images, num_filters=3, filter_size=[4, 4]
            )
2243 2244 2245 2246 2247

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
2248
            out = paddle.squeeze(x, axis=[2])
2249
            return out
2250 2251 2252 2253

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
2254 2255 2256 2257 2258 2259
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
2260
            out = paddle.flatten(x, 1, -1, name="flatten")
2261
            return out
2262

Z
zhoukunsheng 已提交
2263 2264 2265
    def test_linspace(self):
        program = Program()
        with program_guard(program):
2266
            out = paddle.linspace(20, 10, 5, 'float64')
Z
zhoukunsheng 已提交
2267 2268 2269
            self.assertIsNotNone(out)
        print(str(program))

2270 2271 2272
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
2273
            out = paddle.nn.functional.unfold(x, [3, 3], 1, 1, 1)
2274
            return out
2275

2276 2277 2278 2279
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
2280 2281 2282 2283 2284 2285
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
2286 2287
            return concat1, concat2

2288
    def test_addmm(self):
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
2304 2305

            out = paddle.addmm(input=input, x=x, y=y)
2306
            return out
2307

2308 2309 2310
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2311
            input_length = paddle.static.data(
2312 2313
                name='logits_length', shape=[11], dtype='int64'
            )
2314
            label_length = paddle.static.data(
2315 2316
                name='labels_length', shape=[12], dtype='int64'
            )
2317 2318 2319 2320
            label = paddle.static.data(
                name='label', shape=[12, 1], dtype='int32'
            )
            predict = paddle.static.data(
2321 2322
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
2323 2324 2325 2326 2327 2328
            output = paddle.nn.functional.ctc_loss(
                log_probs=predict,
                labels=label,
                input_lengths=input_length,
                label_lengths=label_length,
                reduction='none',
2329 2330
            )
            return output
2331

2332 2333 2334 2335
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
2336 2337 2338 2339 2340 2341 2342 2343 2344
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
2356 2357
                        batch_first=batch_first,
                    )
2358

Y
Yu Yang 已提交
2359

2360 2361
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
2362
        super().__init__()
2363
        self.weight = self.create_parameter(
2364 2365
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
2396 2397
class MyLayer(paddle.nn.Layer):
    def __init__(self):
2398
        super().__init__()
J
Jiabin Yang 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
2410
        super().__init__()
J
Jiabin Yang 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
2426
if __name__ == '__main__':
2427
    paddle.enable_static()
Y
Yu Yang 已提交
2428
    unittest.main()