test_layers.py 130.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib
import inspect
Q
Qiao Longfei 已提交
17 18
import unittest

19
import numpy as np
20
from decorator_helper import prog_scope
21
from test_imperative_base import new_program_scope
22 23 24

import paddle
import paddle.fluid as fluid
25
import paddle.fluid.layers as layers
26
import paddle.fluid.nets as nets
27
import paddle.nn.functional as F
28
from paddle.fluid import core
29 30 31 32 33 34 35
from paddle.fluid.dygraph import base, nn, to_variable
from paddle.fluid.framework import (
    Program,
    _test_eager_guard,
    default_main_program,
    program_guard,
)
J
jerrywgz 已提交
36
from paddle.fluid.initializer import Constant
37
from paddle.fluid.param_attr import ParamAttr
38
from paddle.tensor import random
39 40 41 42 43 44 45 46 47 48 49


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

50 51 52 53 54 55 56 57
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
58 59 60 61

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
62
            paddle.seed(self.seed)
L
Leo Chen 已提交
63
            paddle.framework.random._manual_program_seed(self.seed)
64 65
            yield

66 67 68
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
69
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
70
        exe.run(fluid.default_startup_program())
71 72 73 74 75 76
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
77 78

    @contextlib.contextmanager
79
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
80
        with fluid.dygraph.guard(
81 82
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
83
            paddle.seed(self.seed)
L
Leo Chen 已提交
84
            paddle.framework.random._manual_program_seed(self.seed)
85 86 87 88
            yield


class TestLayer(LayerTest):
89 90
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
91
            def __init__(self, input_size, linear1_size=4):
92
                super().__init__()
93
                self.linear1 = paddle.nn.Linear(
94 95
                    input_size, linear1_size, bias_attr=False
                )
96 97 98
                self.linear2 = paddle.nn.Linear(
                    linear1_size, 1, bias_attr=False
                )
99 100 101 102 103

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
104 105 106
                return ret

        with self.dynamic_graph():
107 108 109 110 111
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
112
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
113
                ret = custom(x, do_linear2=True)
114
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
115 116
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
117 118
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
119
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
120
            ret = custom(x, do_linear2=True)
121
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
122

S
songyouwei 已提交
123 124 125
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
126 127 128 129 130 131
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
132
            linear = paddle.nn.Linear(
133 134
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
135
            ret = linear(t)
136 137 138
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
139
        with self.dynamic_graph():
140 141
            with _test_eager_guard():
                t = base.to_variable(inp)
142
                linear = paddle.nn.Linear(
143 144
                    32,
                    4,
145 146
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
147 148 149
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
150
            t = base.to_variable(inp)
151
            linear = paddle.nn.Linear(
152 153
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
154 155 156
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

157 158
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
159

160 161 162 163 164
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
165
                linear = paddle.nn.Linear(
166 167
                    32,
                    4,
168 169
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
170 171 172 173 174 175 176 177
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
178
                linear = paddle.nn.Linear(
179 180
                    32,
                    4,
181 182
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
183 184 185 186 187 188 189
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
190 191 192 193 194 195
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
196 197
            flatten = nn.Flatten()
            ret = flatten(t)
198 199 200
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
201
        with self.dynamic_graph():
202 203 204 205 206 207
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

208 209 210 211 212
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

213 214
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
215 216 217 218 219 220

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
221
                linear = paddle.nn.Linear(
222 223
                    32,
                    4,
224 225
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
226 227 228 229 230 231 232 233
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
234
                linear = paddle.nn.Linear(
235 236
                    32,
                    4,
237 238
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
239 240 241 242
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

C
ceci3 已提交
243 244 245 246
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
247
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
248 249
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
250
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
251 252
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
253 254

            with self.dynamic_graph():
255 256 257 258 259 260
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
261 262 263 264
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
265 266
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
267

268 269 270 271 272
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
273 274
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
275 276

        with self.dynamic_graph():
277 278 279 280 281
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

282 283
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
284
            dy_ret_value = dy_ret.numpy()
285

286 287
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
288

289 290 291 292
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
K
kangguangli 已提交
293
            ret = paddle.matmul(t, t2)
294 295 296 297 298 299 300
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
301 302

        with self.dynamic_graph():
303 304 305
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
K
kangguangli 已提交
306
                dy_eager_ret = paddle.matmul(
307 308
                    base.to_variable(t), base.to_variable(t2)
                )
309 310
                dy_eager_ret_value = dy_eager_ret.numpy()

311 312
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
K
kangguangli 已提交
313
            dy_ret = paddle.matmul(base.to_variable(t), base.to_variable(t2))
314
            dy_ret_value = dy_ret.numpy()
315

316 317
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
318

X
Xin Pan 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

335
            ret = paddle.add(t, t2)
336
            ret = paddle.pow(ret, t3)
337 338 339
            ret = paddle.divide(ret, t4)
            ret = paddle.subtract(ret, t5)
            ret = paddle.multiply(ret, t6)
X
Xin Pan 已提交
340

341 342 343 344
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
345 346

        with self.dynamic_graph():
347
            with _test_eager_guard():
348
                ret = paddle.add(to_variable(n), to_variable(n2))
349
                ret = paddle.pow(ret, to_variable(n3))
350 351 352
                ret = paddle.divide(ret, to_variable(n4))
                ret = paddle.subtract(ret, to_variable(n5))
                dy_eager_ret = paddle.multiply(ret, to_variable(n6))
353 354
                dy_eager_ret_value = dy_eager_ret.numpy()

355
            ret = paddle.add(to_variable(n), to_variable(n2))
356
            ret = paddle.pow(ret, to_variable(n3))
357 358 359
            ret = paddle.divide(ret, to_variable(n4))
            ret = paddle.subtract(ret, to_variable(n5))
            dy_ret = paddle.multiply(ret, to_variable(n6))
360
            dy_ret_value = dy_ret.numpy()
361

362 363
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
364 365 366 367 368 369

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
370
            with _test_eager_guard():
371
                min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
372
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
373 374 375
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

376
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
377
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
378 379
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
380

381 382 383 384
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
385

386 387 388 389 390 391 392
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
393 394 395 396 397 398 399
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
400
            out = layers.sequence_conv(seq, 2, act='sigmoid')
401 402 403 404 405 406 407 408 409
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
410 411

        with self.static_graph():
412 413 414 415 416 417 418
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
419
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
420
            out = seq_conv(seq)
421 422 423 424 425 426 427 428 429 430 431 432
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
        np.testing.assert_array_equal(
            np.array(static_rlt), np.array(static_rlt2)
        )
433 434 435 436 437

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
438
            out = paddle.static.nn.conv2d_transpose(
439 440
                input=img,
                num_filters=10,
441
                filter_size=27,
442
                act='sigmoid',
443 444 445 446 447
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
448 449 450
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
451
                num_channels=3,
452
                num_filters=10,
453
                filter_size=27,
454
                act='sigmoid',
455 456
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
457
            out = conv2d_transpose(img)
458 459 460
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
461
        with self.dynamic_graph():
462 463 464 465 466 467
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
468 469
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
470 471 472
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

473
            conv2d_transpose = nn.Conv2DTranspose(
474
                num_channels=3,
475
                num_filters=10,
476
                filter_size=27,
477
                act='sigmoid',
478 479
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
480
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
481
            dy_rlt_value = dy_rlt.numpy()
482 483 484
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
485

486
        with self.dynamic_graph():
487 488 489 490 491
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
492 493 494 495 496 497 498 499 500 501 502 503
                        custom_weight
                    )
                )
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr,
                )
504 505 506
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
507 508
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
509 510 511 512

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
513 514
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
515
                conv2d2.weight.set_value(conv2d1_weight_np)
516 517 518
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
519 520 521
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
522
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
523 524 525

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
526 527 528 529 530 531
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
532

533 534
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
535 536 537 538 539 540 541 542 543 544 545 546 547 548
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv2d1 = nn.Conv2DTranspose(
                num_channels=3, num_filters=3, filter_size=[2, 2]
            )
            conv2d2 = nn.Conv2DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr,
            )
549 550 551 552 553 554 555
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
556 557
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
558
            conv2d2.weight.set_value(conv2d1_weight_np)
559 560 561
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
562 563 564
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
565
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
566 567 568

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
569 570 571 572 573 574
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
575

576 577 578 579 580
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
581 582 583
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
584 585 586 587 588 589 590
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
591 592 593 594 595 596
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
597 598 599 600
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

601 602 603 604 605
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
606 607 608 609 610 611
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
612
            out = paddle.static.nn.common.bilinear_tensor_product(
613 614 615 616
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
617 618
                act='sigmoid',
            )
619

620 621 622
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
623

624
        with self.static_graph():
625 626 627 628 629 630
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
631
            btp = nn.BilinearTensorProduct(
632 633
                3,
                3,
634 635
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
636 637
                act='sigmoid',
            )
638
            out = btp(data_x, data_y)
639 640 641
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
642
        with self.dynamic_graph():
643 644 645 646 647 648
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
649 650 651 652 653
                    act='sigmoid',
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
654 655
                dy_eager_rlt_value = dy_eager_rlt.numpy()

656
            btp = nn.BilinearTensorProduct(
657 658
                3,
                3,
659 660
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
661 662
                act='sigmoid',
            )
663
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
664
            dy_rlt_value = dy_rlt.numpy()
665

666
        with self.dynamic_graph():
667 668
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
669 670 671
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
672 673
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

674
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
675 676 677
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
678
            dy_rlt2_value = dy_rlt2.numpy()
679

680
        with self.static_graph():
681 682 683 684 685 686
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
687
            out2 = paddle.static.nn.common.bilinear_tensor_product(
688 689 690 691 692 693
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
694

695 696 697 698 699
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
700

701
        with self.dynamic_graph():
702 703 704 705
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
706 707 708
                        custom_weight
                    )
                )
709
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
710 711 712 713 714 715 716 717 718
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr
                )
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
719
                self.assertFalse(
720 721
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
722 723
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
724 725 726 727 728 729
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
730
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
731 732 733

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
734 735 736 737 738 739
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
740

741
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
742 743 744 745 746
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
747
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
748 749 750 751 752 753 754 755 756
            btp2 = nn.BilinearTensorProduct(
                3, 3, 6, act='sigmoid', param_attr=weight_attr
            )
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
757 758 759
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
760 761 762 763 764 765
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
766
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
767 768 769

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
770 771 772
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
773
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
774

775
    def prelu_test(self, mode):
776 777
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
778 779 780 781 782 783
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
784
            out = paddle.static.nn.prelu(
785 786 787 788 789
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0))
            )
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
790 791

        with self.static_graph():
792 793 794 795 796 797 798 799 800 801 802 803
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=data_t.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
804
            out = prelu(data_t)
805 806 807
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
808 809

        with self.dynamic_graph():
810 811 812 813 814
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
815 816
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
817 818 819
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

820 821 822 823 824 825
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
826
            dy_rlt = prelu(base.to_variable(inp_np))
827
            dy_rlt_value = dy_rlt.numpy()
828

829 830 831
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
832

833
        with self.dynamic_graph():
834 835 836 837 838 839 840
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
841 842
                    param_attr=ParamAttr(initializer=Constant(2.0)),
                )
843 844 845 846
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
847 848
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
849 850 851
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
852 853
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
                )
854
                self.assertFalse(
855 856
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
857 858 859
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
860
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
861 862

                prelu2.weight = prelu1.weight
863 864 865
                np.testing.assert_array_equal(
                    prelu1.weight.numpy(), prelu2.weight.numpy()
                )
866

867 868
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
869 870 871 872 873 874 875 876 877 878 879 880
            prelu1 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(2.0)),
            )
            prelu2 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
881 882 883
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
884 885
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
            )
886 887 888 889
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
890
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
891 892

            prelu2.weight = prelu1.weight
893 894 895
            np.testing.assert_array_equal(
                prelu1.weight.numpy(), prelu2.weight.numpy()
            )
896

897 898 899 900 901
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

902 903 904 905 906
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
907 908 909 910 911 912 913 914 915
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
916 917
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
918 919 920
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
921
            emb_rlt = emb2(data_t)
922 923 924
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
925
        with self.dynamic_graph():
926
            with _test_eager_guard():
927 928 929 930 931
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
932 933 934
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

935 936 937
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
938 939
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
940 941

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
942
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
943
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
944

945
        with self.dynamic_graph():
946 947 948 949
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
950 951 952
                        custom_weight
                    )
                )
953
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
954 955 956 957 958
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
959 960 961
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
962 963 964 965 966
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
967 968 969
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
970
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
971 972

                emb2.weight = emb1.weight
973 974 975
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
976

977
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
978 979 980 981 982
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
983
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
984 985 986
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
987 988 989
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
990
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
991 992 993
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
994
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
995 996

            emb2.weight = emb1.weight
997 998 999
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
1000

S
songyouwei 已提交
1001 1002
    def test_one_hot(self):
        with self.dynamic_graph():
1003
            with _test_eager_guard():
1004 1005 1006
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
1007 1008
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1009 1010 1011 1012 1013
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
1014

S
songyouwei 已提交
1015 1016 1017
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
1018 1019 1020 1021 1022
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
1023 1024 1025

    def test_split(self):
        with self.dynamic_graph():
1026 1027 1028
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1029 1030 1031 1032 1033
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
1034 1035
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1036

S
songyouwei 已提交
1037 1038
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1039 1040 1041 1042 1043
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
1044 1045
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1046 1047 1048

    def test_topk(self):
        with self.dynamic_graph():
1049 1050
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
1051 1052
                top5_values1, top5_indices1 = paddle.topk(input, k=5)
                top5_values2, top5_indices2 = paddle.topk(
1053 1054 1055 1056 1057 1058 1059 1060
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
1061

S
songyouwei 已提交
1062
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
1063 1064
            top5_values1, top5_indices1 = paddle.topk(input, k=5)
            top5_values2, top5_indices2 = paddle.topk(
1065 1066 1067 1068 1069 1070 1071 1072
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
1073

L
lujun 已提交
1074 1075
    def test_conv3d(self):
        with self.static_graph():
1076 1077 1078
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1079 1080 1081
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
1082
            static_ret = self.get_static_graph_result(
1083
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1084 1085
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1086 1087

        with self.static_graph():
1088 1089 1090
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1091 1092 1093
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
1094 1095
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1096
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1097 1098
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1099 1100

        with self.dynamic_graph():
1101 1102
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1103 1104 1105
                conv3d = paddle.nn.Conv3D(
                    in_channels=3, out_channels=3, kernel_size=2
                )
1106 1107 1108
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1109
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1110 1111 1112
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
1113
            dy_ret = conv3d(base.to_variable(images))
1114
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1115

1116 1117 1118
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1119

1120
        with self.dynamic_graph():
1121 1122 1123 1124 1125
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1126 1127 1128
                        custom_weight
                    )
                )
1129 1130
                conv3d1 = paddle.nn.Conv3D(
                    in_channels=3, out_channels=3, kernel_size=2
1131
                )
1132 1133 1134 1135 1136
                conv3d2 = paddle.nn.Conv3D(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
                    weight_attr=weight_attr,
1137
                )
1138 1139 1140
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1141 1142
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1143 1144 1145 1146

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1147 1148
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1149
                conv3d2.weight.set_value(conv3d1_weight_np)
1150 1151 1152
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1153 1154 1155
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1156
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1157 1158 1159

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1160 1161 1162 1163 1164 1165
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1166

1167 1168
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1169 1170 1171 1172 1173
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1174 1175 1176 1177 1178 1179 1180 1181
            conv3d1 = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
            conv3d2 = paddle.nn.Conv3D(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
1182
            )
1183 1184 1185 1186 1187 1188 1189
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1190 1191
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1192
            conv3d2.weight.set_value(conv3d1_weight_np)
1193 1194 1195
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1196 1197 1198
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1199
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1200 1201 1202

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1203 1204 1205 1206 1207 1208
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1209

L
lujun 已提交
1210 1211 1212 1213 1214 1215 1216 1217
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1218 1219 1220 1221 1222 1223 1224
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1225
            ret = layers.row_conv(input=x, future_context_size=2)
1226 1227 1228 1229 1230 1231 1232 1233 1234
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1235 1236

        with self.static_graph():
1237 1238 1239 1240 1241 1242 1243
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1244 1245
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1246 1247 1248 1249 1250 1251 1252 1253 1254
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1255

1256
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1257

1258
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1259

1260
    def func_group_norm(self):
L
lujun 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1271 1272 1273 1274 1275 1276 1277
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1278
            ret = paddle.static.nn.group_norm(
1279 1280
                input=X,
                groups=2,
1281
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1293 1294

        with self.static_graph():
1295 1296 1297 1298 1299 1300 1301
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1302 1303 1304
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1305
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1306 1307
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1308
            ret = groupNorm(X)
1309 1310 1311 1312 1313 1314 1315 1316 1317
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1318 1319

        with self.dynamic_graph():
1320 1321 1322
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1323
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1324 1325
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1326
            dy_ret = groupNorm(base.to_variable(input))
1327
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1328

1329 1330
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1331

1332 1333 1334 1335 1336
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1348 1349 1350
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1351
            ret = paddle.static.nn.instance_norm(input=X)
1352 1353 1354
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1355 1356

        with self.static_graph():
1357 1358 1359
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1360
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1361
            ret = instanceNorm(X)
1362 1363 1364
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1365 1366

        with self.dynamic_graph():
1367
            with _test_eager_guard():
1368
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1369 1370 1371
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1372
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1373 1374 1375 1376
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1377
            with _test_eager_guard():
1378
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1379 1380 1381
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1382
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1383 1384 1385
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1386 1387 1388 1389 1390
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1391 1392 1393 1394

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
1395
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1396 1397 1398 1399 1400 1401 1402
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
1403
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1404 1405 1406 1407
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1419 1420 1421 1422 1423 1424 1425
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1426
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
1427 1428 1429 1430 1431 1432 1433 1434 1435
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1436 1437

        with self.static_graph():
1438 1439 1440 1441 1442 1443 1444
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1445
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1446
            ret = spectralNorm(Weight)
1447 1448 1449 1450 1451 1452 1453 1454 1455
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1456 1457

        with self.dynamic_graph():
1458 1459 1460 1461 1462
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1463
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1464
            dy_ret = spectralNorm(base.to_variable(input))
1465
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1466

1467 1468 1469
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
1514 1515

        with self.static_graph():
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
1533
            ret = treeConv(NodesVector, EdgeSet)
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
1546 1547

        with self.dynamic_graph():
1548
            with _test_eager_guard():
1549 1550 1551 1552 1553 1554
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
1555 1556
                dy_eager_rlt_value = dy_eager_ret.numpy()

1557 1558 1559
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
1560
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
1561
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1562

1563 1564 1565
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
1566

1567
        with self.dynamic_graph():
1568 1569 1570 1571
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
1596
                self.assertFalse(
1597 1598
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1599 1600
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
1601 1602 1603 1604 1605 1606
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
1607
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1608 1609 1610

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
1611 1612 1613 1614 1615 1616
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
1617

1618
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
1645 1646 1647
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
1648 1649 1650 1651 1652 1653
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
1654
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1655 1656 1657

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
1658 1659 1660 1661 1662 1663
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
1664

L
lujun 已提交
1665
    def test_conv3d_transpose(self):
1666 1667 1668
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
1669 1670 1671

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
1672
            out = paddle.static.nn.conv3d_transpose(
1673
                input=img, num_filters=12, filter_size=12, use_cudnn=True
1674
            )
L
lujun 已提交
1675
            static_rlt = self.get_static_graph_result(
1676 1677
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
1678 1679
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
1680 1681
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
1682
            )
L
lujun 已提交
1683 1684
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
1685 1686
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
1687
        with self.dynamic_graph():
1688
            with _test_eager_guard():
1689 1690 1691 1692
                conv3d_transpose = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=12,
                    kernel_size=12,
1693
                )
1694 1695 1696
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1697 1698
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
1699
            )
L
lujun 已提交
1700
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
1701
            dy_rlt_value = dy_rlt.numpy()
1702 1703 1704
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
1705

1706
        with self.dynamic_graph():
1707 1708 1709 1710 1711
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1712 1713 1714
                        custom_weight
                    )
                )
1715 1716 1717 1718
                conv3d1 = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
1719 1720
                    bias_attr='eager_conv3d1_b',
                )
1721 1722 1723 1724 1725
                conv3d2 = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
                    weight_attr=weight_attr,
1726 1727
                    bias_attr='eager_conv3d2_b',
                )
1728 1729 1730
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1731 1732
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1733 1734 1735 1736

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1737 1738
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1739
                conv3d2.weight.set_value(conv3d1_weight_np)
1740 1741 1742
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1743 1744 1745
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1746
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1747 1748 1749

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1750 1751 1752 1753 1754 1755
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1756

1757 1758
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1759 1760 1761 1762 1763
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1764 1765 1766 1767
            conv3d1 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
1768 1769
                bias_attr='conv3d1_b',
            )
1770 1771 1772 1773 1774
            conv3d2 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
1775 1776
                bias_attr='conv3d2_b',
            )
1777 1778 1779 1780 1781 1782 1783
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1784 1785
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1786
            conv3d2.weight.set_value(conv3d1_weight_np)
1787 1788 1789
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1790 1791 1792
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1793
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1794 1795 1796

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1797 1798 1799 1800 1801 1802
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1803

1804
    def func_while_loop(self):
1805 1806 1807 1808 1809
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
L
LiYuRio 已提交
1810
                return paddle.less_than(i, ten)
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

1822
            def cond1(i):
L
LiYuRio 已提交
1823
                return paddle.less_than(i, ten)
1824

1825
            def body1(i):
1826 1827
                return i + 1

1828
            dy_ret = layers.while_loop(cond1, body1, [i])
1829 1830 1831 1832 1833 1834
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

1835
                layers.while_loop(cond1, body2, [j])
1836

1837
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
1838

1839 1840 1841 1842 1843
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

1844 1845 1846 1847 1848 1849 1850
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
L
LiYuRio 已提交
1851
            cond = paddle.less_than(x=a, y=b)
1852 1853 1854
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
1855
        with self.dynamic_graph():
1856 1857 1858
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
L
LiYuRio 已提交
1859
                dcond = paddle.less_than(x=da, y=db)
1860 1861 1862 1863

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

1864 1865
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
L
LiYuRio 已提交
1866
            dcond = paddle.less_than(x=da, y=db)
1867

1868 1869
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
1870 1871 1872 1873 1874

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
1875
            cond1 = paddle.less_equal(x=a1, y=b1)
1876 1877 1878
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
1879
        with self.dynamic_graph():
1880 1881 1882
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
1883
                dcond1 = paddle.less_equal(x=da1, y=db1)
1884 1885 1886 1887

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

1888 1889
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
1890
            dcond1 = paddle.less_equal(x=da1, y=db1)
1891 1892 1893 1894

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

1895
        # greater than
1896 1897 1898
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
1899
            cond2 = paddle.greater_than(x=a2, y=b2)
1900 1901 1902
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
1903
        with self.dynamic_graph():
1904 1905 1906
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
1907
                dcond2 = paddle.greater_than(x=da2, y=db2)
1908 1909 1910 1911

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

1912 1913
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
1914
            dcond2 = paddle.greater_than(x=da2, y=db2)
1915 1916 1917 1918

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

1919
        # greater equal
1920 1921 1922
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
1923
            cond3 = paddle.greater_equal(x=a3, y=b3)
1924 1925 1926
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
1927
        with self.dynamic_graph():
1928 1929 1930
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
1931
                dcond3 = paddle.greater_equal(x=da3, y=db3)
1932 1933 1934 1935

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

1936 1937
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
1938
            dcond3 = paddle.greater_equal(x=da3, y=db3)
1939 1940 1941 1942 1943 1944 1945 1946

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
1947
            cond4 = paddle.equal(x=a4, y=b4)
1948 1949 1950
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
1951
        with self.dynamic_graph():
1952 1953 1954
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
1955
                dcond4 = paddle.equal(x=da4, y=db4)
1956 1957 1958 1959

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

1960 1961
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
1962
            dcond4 = paddle.equal(x=da4, y=db4)
1963 1964 1965 1966 1967 1968 1969 1970

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
1971
            cond5 = paddle.equal(x=a5, y=b5)
1972 1973 1974
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
1975
        with self.dynamic_graph():
1976 1977 1978
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
1979
                dcond5 = paddle.equal(x=da5, y=db5)
1980 1981 1982 1983

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1984 1985
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
1986
            dcond5 = paddle.equal(x=da5, y=db5)
1987 1988 1989 1990

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1991 1992
    def test_cond(self):
        def less_than_branch(a, b):
1993
            return paddle.add(a, b)
1994 1995

        def greater_equal_branch(a, b):
1996
            return paddle.subtract(a, b)
1997 1998

        with self.static_graph():
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2015 2016 2017 2018 2019
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2020 2021 2022
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
2035 2036
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2037 2038 2039
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
2040 2041 2042 2043 2044
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2045 2046
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
2057 2058
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2059
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2060 2061 2062 2063 2064
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2065 2066
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2067

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
2083 2084
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
2085
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2086

2087 2088 2089
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2090 2091
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2092 2093 2094 2095 2096
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2097 2098 2099 2100
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2101 2102 2103 2104 2105
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
2106 2107
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
2108
                pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2109

2110 2111 2112 2113 2114 2115
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
2116 2117 2118
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2119 2120 2121 2122
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
2123 2124
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
2125
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2126

2127 2128 2129
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2130 2131 2132 2133
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2134 2135 2136 2137
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2173 2174
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
2175 2176
                fetch_list=[out_1, out_2, out_3]
            )
2177 2178

        with self.dynamic_graph():
2179
            with _test_eager_guard():
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
2201 2202 2203 2204 2205

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2206 2207 2208
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
2223 2224 2225 2226 2227

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2228 2229 2230 2231 2232 2233
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2234

2235 2236 2237 2238
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2239 2240 2241 2242 2243 2244
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2245
            crop_shape1 = (1, 2, 4, 4)
2246 2247 2248
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2249 2250
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2251 2252 2253
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2254 2255
            crop_offsets3 = [0, dim1, dim2, 0]

2256 2257 2258
            out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3)
2259 2260 2261 2262 2263

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2264 2265 2266
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2267 2268 2269
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2270 2271 2272

        self.assertIsNotNone(shard_label)

2273 2274 2275 2276 2277 2278 2279
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
2280
            predict = paddle.nn.functional.softmax(fc_out)
2281
            result = paddle.static.accuracy(input=predict, label=label, k=5)
2282 2283 2284 2285
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2286 2287
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2288 2289 2290
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2291

L
Leo Chen 已提交
2292
        with self.dynamic_graph(force_to_use_cpu=True):
2293 2294 2295
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
2296
            predict = paddle.nn.functional.softmax(fc_out)
2297 2298 2299
            dynamic_out = paddle.static.accuracy(
                input=predict, label=label, k=5
            )
2300

2301
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2302

Y
Yu Yang 已提交
2303

2304
class TestBook(LayerTest):
H
hong 已提交
2305 2306
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2307 2308 2309 2310 2311 2312 2313
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_kldiv_loss",
                "make_uniform_random_batch_size_like",
            }
        )
2314
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2315

2316
    def func_all_layers(self):
2317 2318 2319 2320 2321
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2322 2323 2324
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
2337 2338
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
2339

2340 2341
                else:
                    continue
H
hong 已提交
2342 2343
            if method.__name__ in self.only_static_set:
                continue
2344 2345 2346 2347 2348

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2349
                dy_result_value = dy_result.numpy()
2350

2351
            if method.__name__ in self.all_close_compare:
2352 2353 2354 2355 2356 2357
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
2358 2359 2360
                        method.__name__
                    ),
                )
2361 2362
                continue

H
hong 已提交
2363
            if method.__name__ not in self.not_compare_static_dygraph_set:
2364 2365 2366 2367
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
2368 2369 2370
                        method.__name__
                    ),
                )
2371

2372 2373 2374 2375 2376
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2377 2378 2379
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2380
            shape = [self._batch_size] + shape
2381 2382 2383 2384 2385
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
2386 2387 2388
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
2389
        elif dtype == 'int64':
2390 2391 2392 2393 2394 2395 2396
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
2397
        if base.enabled():
2398 2399 2400 2401 2402
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
2403 2404
        else:
            if set_feed_dict:
2405
                self._feed_dict[name] = self._get_np_data(
2406 2407 2408 2409 2410 2411 2412 2413
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
2414 2415

    def make_fit_a_line(self):
2416 2417 2418 2419
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
2420
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
2421
            y_predict = layers.fc(input=x, size=1, act=None)
2422
            y = self._get_data(name='y', shape=[1], dtype='float32')
2423 2424 2425
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
2426
            avg_cost = paddle.mean(cost)
2427
            return avg_cost
Y
Yu Yang 已提交
2428

2429
    def make_recognize_digits_mlp(self):
2430 2431 2432
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
2433
            # Change g_program, so the rest layers use `g_program`
2434 2435
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2436 2437
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
2438 2439 2440 2441 2442 2443
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
2444
            cost = layers.cross_entropy(input=predict, label=label)
2445
            avg_cost = paddle.mean(cost)
2446
            return avg_cost
Y
Yu Yang 已提交
2447

2448
    def make_conv2d_transpose(self):
2449 2450 2451
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2452
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
2453
            return paddle.static.nn.conv2d_transpose(
2454 2455
                input=img, num_filters=10, output_size=28
            )
2456

2457
    def make_recognize_digits_conv(self):
2458 2459 2460 2461 2462 2463
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
2464
            label = self._get_data(name='label', shape=[1], dtype='int64')
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
2481 2482 2483

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
2484
            avg_cost = paddle.mean(cost)
2485
            return avg_cost
Y
Yu Yang 已提交
2486

2487
    def make_word_embedding(self):
2488 2489 2490
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
2491 2492
            dict_size = 10000
            embed_size = 32
2493
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
2494 2495 2496
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
2497 2498 2499
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2500

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
2526 2527 2528

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
2529 2530
                axis=1,
            )
Y
Yu Yang 已提交
2531 2532

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
2533 2534 2535
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
2536
            cost = layers.cross_entropy(input=predict_word, label=next_word)
2537
            avg_cost = paddle.mean(cost)
2538
            return avg_cost
Y
Yu Yang 已提交
2539

2540
    def make_pool2d(self):
2541 2542 2543
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2544
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
2545 2546 2547
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
2548

K
Kaipeng Deng 已提交
2549
    def make_pool2d_infershape(self):
2550 2551 2552
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
2553
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
2554 2555 2556
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
2557 2558 2559
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
2560

2561
    def make_lstm_unit(self):
2562 2563 2564 2565 2566 2567
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
2568
            x_t = layers.fc(input=x_t_data, size=10)
2569 2570 2571
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
2572
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
2573 2574 2575
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
2576
            prev_cell = layers.fc(input=prev_cell_data, size=30)
2577 2578 2579
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
2580

2581
    def make_softmax(self):
2582 2583 2584
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2585
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
2586
            hid = layers.fc(input=data, size=20)
2587
            return paddle.nn.functional.softmax(hid, axis=1)
D
dangqingqing 已提交
2588

2589
    @prog_scope()
2590
    def make_nce(self):
Y
Yang Yu 已提交
2591 2592
        window_size = 5
        words = []
2593
        for i in range(window_size):
Y
Yang Yu 已提交
2594
            words.append(
2595 2596 2597 2598
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
2599 2600

        dict_size = 10000
M
minqiyang 已提交
2601
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
2602 2603

        embs = []
2604
        for i in range(window_size):
Y
Yang Yu 已提交
2605 2606 2607
            if i == label_word:
                continue

2608 2609 2610 2611 2612 2613
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
2614 2615 2616 2617

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
2618
        loss = paddle.static.nn.nce(
2619 2620 2621 2622 2623 2624
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
2625
        avg_loss = paddle.mean(loss)
2626
        return avg_loss
Y
Yang Yu 已提交
2627

2628
    def make_multiplex(self):
2629 2630 2631
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2632 2633 2634
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
2635
            out = paddle.multiplex(inputs=[x1, x2], index=index)
2636
            return out
2637 2638

    def make_softmax_with_cross_entropy(self):
2639 2640 2641
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2642 2643
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
2644
            loss, softmax = paddle.nn.functional.softmax_with_cross_entropy(
2645 2646
                x, y, return_softmax=True
            )
2647 2648 2649
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

2650
            loss = paddle.nn.functional.softmax_with_cross_entropy(x, y)
2651 2652 2653 2654 2655 2656
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
            loss1 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y1, axis=1
            )
            loss2 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y2, axis=2
            )
            loss3 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=3
            )
            loss4 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=-1
            )
2669 2670 2671 2672
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
2673
            return loss4
2674 2675

    def make_scatter(self):
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
2691
            out = paddle.scatter(x, index=idx, updates=updates)
2692
            return out
Y
yangyaming 已提交
2693

2694 2695 2696 2697
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
2698
            return one_hot_label
2699

2700 2701 2702 2703 2704
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
2705
            one_hot_label = layers.one_hot(input=label, depth=10)
2706
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
2707
            return smooth_label
2708

2709
    def make_topk(self):
2710 2711 2712
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2713
            data = self._get_data(name="label", shape=[200], dtype="float32")
2714
            values, indices = paddle.topk(data, k=5)
2715 2716
            return values
            return indices
J
jerrywgz 已提交
2717

2718
    def make_polygon_box_transform(self):
2719 2720 2721
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2722
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
2723
            output = layers.polygon_box_transform(input=x)
2724
            return output
2725

2726
    def make_l2_normalize(self):
2727 2728 2729
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2730
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
2731
            output = layers.l2_normalize(x, axis=1)
2732
            return output
2733

2734
    def make_shape(self):
2735 2736 2737 2738 2739 2740
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
2
201716010711 已提交
2741
            out = paddle.shape(input)
2742
            return out
B
Bai Yifan 已提交
2743

2744
    def make_pad2d(self):
2745 2746 2747 2748 2749 2750
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
2751 2752 2753

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
2754 2755 2756 2757
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
2758
            out = tmp_pad(input)
2759
            return out
W
whs 已提交
2760

K
Kaipeng Deng 已提交
2761
    def make_mish(self):
2762 2763 2764
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
2765 2766
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
2767
            return out
K
Kaipeng Deng 已提交
2768

2769
    def make_cross_entropy(self):
2770 2771 2772
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2773 2774
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
2775 2776
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
2777
            return out
2778

2779
    def make_uniform_random_batch_size_like(self):
2780 2781 2782 2783 2784 2785
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
2786
            out = random.uniform_random_batch_size_like(input, [-1, 11])
2787
            return out
G
fix  
gongweibao 已提交
2788

2789
    def make_gaussian_random(self):
2790 2791 2792
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
2793
            out = layers.gaussian_random(shape=[20, 30])
2794
            return out
G
fix  
gongweibao 已提交
2795

2796
    def make_sum(self):
2797 2798 2799 2800 2801 2802
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
2803

2804
            out = paddle.add_n(input)
2805
            return out
G
fix  
gongweibao 已提交
2806

2807
    def make_slice(self):
G
fix  
gongweibao 已提交
2808 2809 2810 2811
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

2812 2813 2814 2815 2816 2817
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
2818

2
201716010711 已提交
2819
            out = paddle.slice(input, axes=axes, starts=starts, ends=ends)
2820
            return out
G
merge  
gongweibao 已提交
2821

2822
    def make_scale_variable(self):
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2
201716010711 已提交
2835
            out = paddle.scale(input, scale=scale_var)
2836 2837
            return out

M
minqiyang 已提交
2838
    def make_iou_similarity(self):
2839 2840 2841
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
2842 2843
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
2844
            out = layers.iou_similarity(x, y, name='iou_similarity')
2845
            return out
2846 2847

    def make_bilinear_tensor_product_layer(self):
2848 2849 2850
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2851 2852 2853
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
2854 2855 2856
            out = paddle.static.nn.common.bilinear_tensor_product(
                data, theta, 6
            )
2857
            return out
2858 2859

    def make_batch_norm(self):
2860 2861 2862 2863 2864 2865
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
2866
            out = paddle.static.nn.batch_norm(data)
2867
            return out
2868

2869
    def make_batch_norm_momentum_variable(self):
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2882
            out = paddle.static.nn.batch_norm(data, momentum=momentum)
2883
            return out
2884

2885
    def make_range(self):
2886 2887 2888
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
2889 2890 2891
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
2892 2893 2894
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
2895
            y = paddle.arange(start, end, step, 'float64')
2896 2897 2898
            return y

    def make_spectral_norm(self):
2899 2900 2901 2902 2903 2904 2905 2906 2907
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
2908
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
2909
            return out
2910 2911

    def make_kldiv_loss(self):
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
2927 2928 2929
            loss = paddle.nn.functional.kl_div(
                input=x, label=target, reduction='batchmean'
            )
2930
            return loss
2931

M
minqiyang 已提交
2932
    def make_pixel_shuffle(self):
2933 2934 2935
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
2936
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
2937
            out = paddle.nn.functional.pixel_shuffle(x, upscale_factor=3)
2938
            return out
M
minqiyang 已提交
2939

R
ruri 已提交
2940
    def make_mse_loss(self):
2941 2942 2943
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
2944 2945
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2946
            out = paddle.nn.functional.mse_loss(input=x, label=y)
2947
            return out
R
ruri 已提交
2948

2949
    def make_square_error_cost(self):
2950 2951 2952
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2953 2954
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2955
            out = paddle.nn.functional.square_error_cost(input=x, label=y)
2956
            return out
2957

2958 2959 2960 2961
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
2962 2963 2964
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
2965 2966
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
2967 2968 2969 2970
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
2971 2972 2973 2974

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2975
            # case 1
2976
            x = layers.data(name='x', shape=[10], dtype='float32')
2977 2978 2979
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
2980 2981 2982
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
2983
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
2984 2985 2986 2987 2988 2989
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
2990

W
whs 已提交
2991
    def test_affine_grid(self):
2992
        with self.static_graph():
W
whs 已提交
2993
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
2994
            out = paddle.argsort(x=data, axis=1)
W
whs 已提交
2995 2996

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
2997
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
2998 2999
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
3000 3001 3002

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3003

W
wangchaochaohu 已提交
3004 3005 3006 3007 3008 3009 3010
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
2
201716010711 已提交
3011
            out = paddle.strided_slice(
3012 3013
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
3014 3015
            return out

3016 3017
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
3018 3019 3020 3021 3022 3023
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
3024 3025
            return out

3026 3027 3028 3029
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
3030 3031 3032 3033
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
3034

3035 3036 3037 3038 3039
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
3040
            return out
3041

3042 3043 3044 3045
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
3046
            length = layers.data(name='length', shape=[], dtype='int64')
3047
            return layers.sequence_unpad(x=x, length=length)
3048

3049 3050 3051
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3052 3053 3054
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3055
            seq = layers.fc(input=seq_data, size=20)
3056
            return layers.sequence_softmax(seq)
3057

3058 3059 3060 3061 3062
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
3063
            return out
3064

3065 3066 3067
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
3085
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
3086
            return out
W
whs 已提交
3087

3088 3089 3090 3091
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
3092 3093 3094 3095

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
3096 3097
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
3098 3099 3100 3101
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
3102

Z
zhoushiyu 已提交
3103 3104 3105
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3106 3107 3108
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
3109 3110 3111 3112 3113
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
3114
            return out1
Z
zhoushiyu 已提交
3115

3116 3117 3118 3119
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
3120 3121 3122 3123
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
3124

S
ShenLiang 已提交
3125 3126 3127 3128 3129 3130 3131 3132 3133
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
3134 3135
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
3136 3137 3138 3139
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
3140 3141 3142 3143 3144
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
3145

S
ShenLiang 已提交
3146 3147 3148
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
3149 3150 3151
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
3152 3153 3154 3155 3156 3157 3158
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
3159 3160 3161 3162 3163
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
3164

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
3175 3176 3177
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
3178
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
3179
            return output
3180 3181 3182 3183 3184 3185

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
3186
            return out
3187 3188 3189 3190

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
3191 3192 3193 3194 3195 3196
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
3197 3198 3199 3200 3201

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
3202
            out = paddle.squeeze(x, axis=[2])
3203
            return out
3204 3205 3206 3207

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
3208 3209 3210 3211 3212 3213
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
3214
            out = paddle.flatten(x, 1, -1, name="flatten")
3215
            return out
3216

Z
zhoukunsheng 已提交
3217 3218 3219
    def test_linspace(self):
        program = Program()
        with program_guard(program):
3220
            out = paddle.linspace(20, 10, 5, 'float64')
Z
zhoukunsheng 已提交
3221 3222 3223
            self.assertIsNotNone(out)
        print(str(program))

3224 3225 3226 3227
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
3228
            return out
3229

3230 3231 3232 3233
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
3234 3235 3236 3237 3238 3239
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
3240 3241
            return concat1, concat2

C
cjt222 已提交
3242
    def test_deform_roi_pooling(self):
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
3275

3276
    def test_addmm(self):
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
3292 3293

            out = paddle.addmm(input=input, x=x, y=y)
3294
            return out
3295

3296
    def test_retinanet_detection_output(self):
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
3324 3325 3326 3327 3328 3329 3330 3331 3332
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
3333 3334 3335
                nms_eta=1.0,
            )
            return nmsed_outs
3336

3337 3338 3339
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3340
            input_length = paddle.static.data(
3341 3342
                name='logits_length', shape=[11], dtype='int64'
            )
3343
            label_length = paddle.static.data(
3344 3345
                name='labels_length', shape=[12], dtype='int64'
            )
3346 3347 3348 3349
            label = paddle.static.data(
                name='label', shape=[12, 1], dtype='int32'
            )
            predict = paddle.static.data(
3350 3351
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
3352 3353 3354 3355 3356 3357
            output = paddle.nn.functional.ctc_loss(
                log_probs=predict,
                labels=label,
                input_lengths=input_length,
                label_lengths=label_length,
                reduction='none',
3358 3359
            )
            return output
3360

3361 3362 3363 3364
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
3365 3366 3367 3368 3369 3370 3371 3372 3373
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
3385 3386
                        batch_first=batch_first,
                    )
3387

Y
Yu Yang 已提交
3388

3389 3390 3391 3392
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
3414 3415 3416 3417 3418 3419
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


3420 3421
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
3422
        super().__init__()
3423
        self.weight = self.create_parameter(
3424 3425
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
3456 3457
class MyLayer(paddle.nn.Layer):
    def __init__(self):
3458
        super().__init__()
J
Jiabin Yang 已提交
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
3470
        super().__init__()
J
Jiabin Yang 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
3486
if __name__ == '__main__':
3487
    paddle.enable_static()
Y
Yu Yang 已提交
3488
    unittest.main()