test_layers.py 89.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib
import inspect
Q
Qiao Longfei 已提交
17 18
import unittest

19
import numpy as np
20
from decorator_helper import prog_scope
21
from test_imperative_base import new_program_scope
22 23 24

import paddle
import paddle.fluid as fluid
25
import paddle.fluid.layers as layers
26
import paddle.fluid.nets as nets
27
import paddle.nn.functional as F
28
from paddle.fluid import core
29
from paddle.fluid.dygraph import base, to_variable
30
from paddle.fluid.framework import Program, default_main_program, program_guard
31
from paddle.tensor import random
32 33 34 35 36 37 38 39 40 41 42


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

43 44 45 46 47 48 49 50
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
51 52 53 54

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
55
            paddle.seed(self.seed)
L
Leo Chen 已提交
56
            paddle.framework.random._manual_program_seed(self.seed)
57 58
            yield

59 60 61
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
62
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
63
        exe.run(fluid.default_startup_program())
64 65 66 67 68 69
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
70 71

    @contextlib.contextmanager
72
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
73
        with fluid.dygraph.guard(
74 75
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
76
            paddle.seed(self.seed)
L
Leo Chen 已提交
77
            paddle.framework.random._manual_program_seed(self.seed)
78 79 80 81
            yield


class TestLayer(LayerTest):
82 83
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
84
            def __init__(self, input_size, linear1_size=4):
85
                super().__init__()
86
                self.linear1 = paddle.nn.Linear(
87 88
                    input_size, linear1_size, bias_attr=False
                )
89 90 91
                self.linear2 = paddle.nn.Linear(
                    linear1_size, 1, bias_attr=False
                )
92 93 94 95 96

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
97 98 99 100 101
                return ret

        with self.dynamic_graph():
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
102 103
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
104
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
105
            ret = custom(x, do_linear2=True)
106
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
107

C
ccrrong 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            dropout = paddle.nn.Dropout(p=0.35)
            ret = dropout(t)
            ret2 = paddle.nn.functional.dropout(t, p=0.35)
            static_ret, static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
        with self.dynamic_graph():
            t = base.to_variable(inp)
            dropout = paddle.nn.Dropout(p=0.35)
            dy_ret = dropout(t)
            dy_ret2 = paddle.nn.functional.dropout(t, p=0.35)
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)

S
songyouwei 已提交
135 136 137
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
138 139 140 141 142 143
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
144
            linear = paddle.nn.Linear(
145 146
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
147
            ret = linear(t)
148 149 150
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
151 152
        with self.dynamic_graph():
            t = base.to_variable(inp)
153
            linear = paddle.nn.Linear(
154 155
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
156 157 158
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

159
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
160

161 162 163 164 165
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
166
                linear = paddle.nn.Linear(
167 168
                    32,
                    4,
169 170
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
171 172 173 174 175 176 177 178
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
179
                linear = paddle.nn.Linear(
180 181
                    32,
                    4,
182 183
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
184 185 186 187
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

W
wangzhen38 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    def test_cvm(self):
        inp = np.ones([10, 10], dtype='float32')
        arr = [[0.6931472, -1.904654e-09, 1, 1, 1, 1, 1, 1, 1, 1]] * 10
        cvm1 = np.array(arr, dtype='float32')
        cvm2 = np.ones([10, 8], dtype='float32')
        show_clk = np.ones([10, 2], dtype='float32')
        with self.static_graph():
            x = paddle.static.data(
                name='data',
                shape=[10, 10],
                dtype='float32',
            )
            u = paddle.static.data(
                name='show_click',
                shape=[10, 2],
                dtype='float32',
            )
            no_cvm = paddle.static.nn.continuous_value_model(x, u, True)
            static_ret1 = self.get_static_graph_result(
                feed={'data': inp, 'show_click': show_clk},
                fetch_list=[no_cvm],
            )[0]
        with self.static_graph():
            x = paddle.static.data(
                name='data',
                shape=[10, 10],
                dtype='float32',
            )
            u = paddle.static.data(
                name='show_click',
                shape=[10, 2],
                dtype='float32',
            )
            cvm = paddle.static.nn.continuous_value_model(x, u, False)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp, 'show_click': show_clk}, fetch_list=[cvm]
            )[0]
        np.testing.assert_allclose(static_ret1, cvm1, rtol=1e-5, atol=1e-06)
        np.testing.assert_allclose(static_ret2, cvm2, rtol=1e-5, atol=1e-06)

228 229 230
    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
231 232 233 234 235 236
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
237
            flatten = paddle.nn.Flatten()
238
            ret = flatten(t)
239 240 241
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
242 243
        with self.dynamic_graph():
            t = base.to_variable(inp)
244
            flatten = paddle.nn.Flatten()
245 246 247
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

248
        np.testing.assert_array_equal(static_ret, dy_ret_value)
249 250 251 252 253 254

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
255
                linear = paddle.nn.Linear(
256 257
                    32,
                    4,
258 259
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
260 261 262 263 264 265 266 267
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
268
                linear = paddle.nn.Linear(
269 270
                    32,
                    4,
271 272
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
273 274 275 276
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

C
ceci3 已提交
277 278 279 280
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
281
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
282 283
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
284
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
285 286
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
287 288 289 290 291 292

            with self.dynamic_graph():
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
293
            np.testing.assert_array_equal(static_ret, dy_ret_value)
C
ceci3 已提交
294

295 296 297
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
298
            ret = F.relu(t)
299
            static_ret = self.get_static_graph_result(
300 301
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
302 303 304

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
305
            dy_ret = F.relu(base.to_variable(t))
306
            dy_ret_value = dy_ret.numpy()
307

308
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
C
ceci3 已提交
309

310 311 312 313
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
K
kangguangli 已提交
314
            ret = paddle.matmul(t, t2)
315 316 317 318 319 320 321
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
322 323 324 325

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
K
kangguangli 已提交
326
            dy_ret = paddle.matmul(base.to_variable(t), base.to_variable(t2))
327
            dy_ret_value = dy_ret.numpy()
328

329
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
330

X
Xin Pan 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

347
            ret = paddle.add(t, t2)
348
            ret = paddle.pow(ret, t3)
349 350 351
            ret = paddle.divide(ret, t4)
            ret = paddle.subtract(ret, t5)
            ret = paddle.multiply(ret, t6)
X
Xin Pan 已提交
352

353 354 355 356
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
357 358

        with self.dynamic_graph():
359
            ret = paddle.add(to_variable(n), to_variable(n2))
360
            ret = paddle.pow(ret, to_variable(n3))
361 362 363
            ret = paddle.divide(ret, to_variable(n4))
            ret = paddle.subtract(ret, to_variable(n5))
            dy_ret = paddle.multiply(ret, to_variable(n6))
364
            dy_ret_value = dy_ret.numpy()
365

366
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
X
Xin Pan 已提交
367 368 369 370 371 372

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
373
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
374
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
375 376
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
377

378 379
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
X
Xin Pan 已提交
380

381 382 383 384
    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
385
            out = paddle.static.nn.conv2d_transpose(
386 387
                input=img,
                num_filters=10,
388
                filter_size=27,
389
                act='sigmoid',
390 391 392 393 394
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
395 396
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
397 398 399 400
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
401 402
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
403
            out = conv2d_transpose(img)
404
            out = paddle.nn.functional.sigmoid(out)
405 406 407
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
408
        with self.dynamic_graph():
409 410 411 412
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
413 414
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
415
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
416
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
417
            dy_rlt_value = dy_rlt.numpy()
418 419
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
420

421 422 423
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
424 425 426 427 428
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
429 430 431 432 433 434
            conv2d1 = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
            conv2d2 = paddle.nn.Conv2DTranspose(
                3,
                3,
                [2, 2],
                weight_attr=weight_attr,
435
            )
436 437 438 439 440 441 442
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
443 444
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
445
            conv2d2.weight.set_value(conv2d1_weight_np)
446 447 448
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
449 450 451
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
452
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
453 454 455

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
456 457 458 459 460 461
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
462

463 464 465 466 467
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
468
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
469 470 471 472 473 474 475
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
476 477 478
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
479
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
480 481 482 483
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

484 485 486 487 488
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
489 490 491 492 493 494
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
495
            out = paddle.static.nn.common.bilinear_tensor_product(
496 497 498 499
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
500 501
                act='sigmoid',
            )
502

503 504 505
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
506

507
        with self.static_graph():
508 509 510 511 512 513
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
514
            btp = paddle.nn.Bilinear(
515 516
                3,
                3,
517 518
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
519
            )
520
            out = btp(data_x, data_y)
521
            out = paddle.nn.functional.sigmoid(out)
522 523 524
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
525
        with self.dynamic_graph():
526
            btp = paddle.nn.Bilinear(
527 528
                3,
                3,
529 530
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
531
            )
532
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
533
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
534
            dy_rlt_value = dy_rlt.numpy()
535

536
        with self.dynamic_graph():
537
            btp2 = paddle.nn.Bilinear(3, 3, 6)
538 539 540
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
541
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
542
            dy_rlt2_value = dy_rlt2.numpy()
543

544
        with self.static_graph():
545 546 547 548 549 550
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
551
            out2 = paddle.static.nn.common.bilinear_tensor_product(
552 553 554 555 556 557
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
558

559 560 561
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
562

563 564
        with self.dynamic_graph():
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
565 566 567 568 569
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
570 571
            btp1 = paddle.nn.Bilinear(3, 3, 6)
            btp2 = paddle.nn.Bilinear(3, 3, 6, weight_attr=weight_attr)
572 573 574
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
575
            dy_rlt1 = paddle.nn.functional.sigmoid(dy_rlt1)
576 577 578
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
579
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
580 581 582
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
583 584 585 586 587 588
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
589
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
590 591 592

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
593 594 595
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
596
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
597

598 599 600 601 602
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
603 604 605 606 607 608 609 610 611
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
612 613
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
614 615
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr='emb.w', sparse=False
616
            )
617
            emb_rlt = emb2(data_t)
618 619 620
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
621
        with self.dynamic_graph():
622

623 624
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr='emb.w', sparse=False
625
            )
626 627
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
628 629

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
630
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
631

632 633
        with self.dynamic_graph():
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
634 635 636 637 638
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
639 640 641
            emb1 = paddle.nn.Embedding(dict_size, 32, sparse=False)
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr=weight_attr, sparse=False
642
            )
643 644 645
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
646
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
647 648 649
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
650
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
651 652

            emb2.weight = emb1.weight
653 654 655
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
656

S
songyouwei 已提交
657 658 659 660 661
    def test_one_hot(self):
        with self.dynamic_graph():
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
662 663 664 665 666
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
667 668 669 670

    def test_split(self):
        with self.dynamic_graph():
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
671 672
            x0, x1 = paddle.split(input, num_or_sections=2, axis=1)
            x00, x11 = paddle.split(
673 674
                input,
                num_or_sections=2,
675
                axis=fluid.dygraph.to_variable(np.array([1])),
676
            )
677 678
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
679 680 681 682

    def test_topk(self):
        with self.dynamic_graph():
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
683 684
            top5_values1, top5_indices1 = paddle.topk(input, k=5)
            top5_values2, top5_indices2 = paddle.topk(
685 686 687 688 689 690 691 692
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
693

L
lujun 已提交
694 695
    def test_conv3d(self):
        with self.static_graph():
696 697 698
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
699 700 701
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
702
            static_ret = self.get_static_graph_result(
703
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
704 705
                fetch_list=[ret],
            )[0]
L
lujun 已提交
706 707

        with self.static_graph():
708 709 710
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
711 712 713
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
714 715
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
716
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
717 718
                fetch_list=[ret],
            )[0]
L
lujun 已提交
719 720 721

        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
722 723 724
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
725
            dy_ret = conv3d(base.to_variable(images))
726
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
727

728 729
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
730

731 732 733
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
734 735 736 737 738
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
739 740 741 742 743 744 745 746
            conv3d1 = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
            conv3d2 = paddle.nn.Conv3D(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
747
            )
748 749 750 751 752 753 754
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
755 756
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
757
            conv3d2.weight.set_value(conv3d1_weight_np)
758 759 760
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
761 762 763
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
764
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
765 766 767

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
768 769 770 771 772 773
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
774

775
    def test_group_norm(self):
L
lujun 已提交
776 777 778 779 780 781 782 783 784 785
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
786 787 788 789 790 791 792
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
793
            ret = paddle.static.nn.group_norm(
794 795
                input=X,
                groups=2,
796
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
797 798 799 800 801 802 803 804 805 806 807
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
808 809

        with self.static_graph():
810 811 812 813 814 815 816
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
817 818 819 820
            groupNorm = paddle.nn.GroupNorm(
                num_channels=shape[1],
                num_groups=2,
                weight_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
821 822
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
823
            ret = groupNorm(X)
824 825 826 827 828 829 830 831 832
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
833 834

        with self.dynamic_graph():
835 836 837 838
            groupNorm = paddle.nn.GroupNorm(
                num_channels=shape[1],
                num_groups=2,
                weight_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
839 840
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
841
            dy_ret = groupNorm(base.to_variable(input))
842
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
843

844 845
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
846

847 848 849 850 851 852 853 854 855 856 857
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
858 859 860
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
861
            ret = paddle.static.nn.instance_norm(input=X)
862 863 864
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
865 866

        with self.static_graph():
867 868 869
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
870
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
871
            ret = instanceNorm(X)
872 873 874
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
875 876

        with self.dynamic_graph():
877
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
878 879 880 881
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
882
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
883 884 885
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

886 887 888
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
889 890 891 892

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
893
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
894 895 896 897 898 899 900
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
901
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
902 903 904 905
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
906 907 908 909 910 911 912 913 914 915 916
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
917 918 919 920 921 922 923
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
924
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
925 926 927 928 929 930 931 932 933
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
934 935

        with self.static_graph():
936 937 938 939 940 941 942
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
943
            spectralNorm = paddle.nn.SpectralNorm(shape, axis=1, power_iters=2)
L
lujun 已提交
944
            ret = spectralNorm(Weight)
945 946 947 948 949 950 951 952 953
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
954 955

        with self.dynamic_graph():
956
            spectralNorm = paddle.nn.SpectralNorm(shape, axis=1, power_iters=2)
L
lujun 已提交
957
            dy_ret = spectralNorm(base.to_variable(input))
958
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
959

960 961
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
962 963

    def test_conv3d_transpose(self):
964 965 966
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
967 968 969

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
970
            out = paddle.static.nn.conv3d_transpose(
971
                input=img, num_filters=12, filter_size=12, use_cudnn=True
972
            )
L
lujun 已提交
973
            static_rlt = self.get_static_graph_result(
974 975
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
976 977
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
978 979
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
980
            )
L
lujun 已提交
981 982
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
983 984
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
985
        with self.dynamic_graph():
986 987
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
988
            )
L
lujun 已提交
989
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
990
            dy_rlt_value = dy_rlt.numpy()
991 992
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
993

994 995 996
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
997 998 999 1000 1001
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1002 1003 1004 1005
            conv3d1 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
1006 1007
                bias_attr='conv3d1_b',
            )
1008 1009 1010 1011 1012
            conv3d2 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
1013 1014
                bias_attr='conv3d2_b',
            )
1015 1016 1017 1018 1019 1020 1021
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1022 1023
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1024
            conv3d2.weight.set_value(conv3d1_weight_np)
1025 1026 1027
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1028 1029 1030
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1031
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1032 1033 1034

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1035 1036 1037 1038 1039 1040
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1041

1042
    def test_while_loop(self):
1043 1044 1045 1046 1047
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
L
LiYuRio 已提交
1048
                return paddle.less_than(i, ten)
1049 1050 1051 1052

            def body(i):
                return i + 1

1053
            out = paddle.static.nn.while_loop(cond, body, [i])
1054 1055 1056 1057 1058 1059
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

1060
            def cond1(i):
L
LiYuRio 已提交
1061
                return paddle.less_than(i, ten)
1062

1063
            def body1(i):
1064 1065
                return i + 1

1066
            dy_ret = paddle.static.nn.while_loop(cond1, body1, [i])
1067 1068 1069 1070 1071 1072
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

1073
                paddle.static.nn.while_loop(cond1, body2, [j])
1074

1075
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
1076

1077 1078 1079 1080 1081 1082 1083
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
L
LiYuRio 已提交
1084
            cond = paddle.less_than(x=a, y=b)
1085 1086 1087
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
1088 1089 1090
        with self.dynamic_graph():
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
L
LiYuRio 已提交
1091
            dcond = paddle.less_than(x=da, y=db)
1092

1093 1094
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
1095 1096 1097 1098 1099

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
1100
            cond1 = paddle.less_equal(x=a1, y=b1)
1101 1102 1103
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
1104 1105 1106
        with self.dynamic_graph():
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
1107
            dcond1 = paddle.less_equal(x=da1, y=db1)
1108 1109 1110 1111

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

1112
        # greater than
1113 1114 1115
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
1116
            cond2 = paddle.greater_than(x=a2, y=b2)
1117 1118 1119
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
1120 1121 1122
        with self.dynamic_graph():
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
1123
            dcond2 = paddle.greater_than(x=da2, y=db2)
1124 1125 1126 1127

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

1128
        # greater equal
1129 1130 1131
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
1132
            cond3 = paddle.greater_equal(x=a3, y=b3)
1133 1134 1135
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
1136 1137 1138
        with self.dynamic_graph():
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
1139
            dcond3 = paddle.greater_equal(x=da3, y=db3)
1140 1141 1142 1143 1144 1145 1146 1147

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
1148
            cond4 = paddle.equal(x=a4, y=b4)
1149 1150 1151
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
1152 1153 1154
        with self.dynamic_graph():
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
1155
            dcond4 = paddle.equal(x=da4, y=db4)
1156 1157 1158 1159 1160 1161 1162 1163

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
1164
            cond5 = paddle.equal(x=a5, y=b5)
1165 1166 1167
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
1168 1169 1170
        with self.dynamic_graph():
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
1171
            dcond5 = paddle.equal(x=da5, y=db5)
1172 1173 1174 1175

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1176 1177
    def test_cond(self):
        def less_than_branch(a, b):
1178
            return paddle.add(a, b)
1179 1180

        def greater_equal_branch(a, b):
1181
            return paddle.subtract(a, b)
1182 1183

        with self.static_graph():
1184 1185 1186 1187 1188 1189
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
1190
            out = paddle.static.nn.cond(
1191 1192 1193 1194 1195 1196 1197 1198 1199
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1200 1201 1202 1203 1204 1205 1206
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
1207
            out = paddle.static.nn.cond(
1208 1209 1210 1211
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
1212
            out2 = paddle.static.nn.cond(
1213 1214 1215 1216
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
1217 1218
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
1219
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
1220
            with self.assertRaises(TypeError):
1221
                paddle.static.nn.cond(a < b, 'str', 'str')
1222
            with self.assertRaises(TypeError):
1223
                paddle.static.nn.cond(a >= b, 'str', 'str')
1224

1225
        np.testing.assert_array_equal(static_res, dynamic_res)
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1242 1243
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1244
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1245

1246
            out_1 = paddle.static.nn.case(
1247 1248
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1249 1250 1251
            out_2 = paddle.static.nn.case(
                pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
            )
1252

1253 1254 1255 1256 1257
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1258 1259 1260 1261 1262 1263 1264 1265
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1266 1267
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1268
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1269

1270
            out_1 = paddle.static.nn.case(
1271 1272
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1273 1274 1275
            out_2 = paddle.static.nn.case(
                pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
            )
1276 1277 1278
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

1279 1280
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1296
            out_1 = paddle.static.nn.switch_case(
1297 1298 1299 1300
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
1301
            out_2 = paddle.static.nn.switch_case(
1302 1303 1304 1305
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
1306
            out_3 = paddle.static.nn.switch_case(
1307 1308 1309 1310 1311 1312 1313 1314 1315
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1316 1317
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
1318 1319
                fetch_list=[out_1, out_2, out_3]
            )
1320 1321 1322 1323 1324

        with self.dynamic_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1325
            out_1 = paddle.static.nn.switch_case(
1326 1327 1328 1329
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
1330
            out_2 = paddle.static.nn.switch_case(
1331 1332 1333 1334
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
1335
            out_3 = paddle.static.nn.switch_case(
1336 1337 1338
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
1339 1340 1341 1342 1343

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

1344 1345 1346
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
1347

1348 1349 1350 1351
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

1352 1353 1354 1355 1356 1357
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
1358
            crop_shape1 = (1, 2, 4, 4)
1359 1360 1361
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
1362 1363
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
1364 1365 1366
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
1367 1368
            crop_offsets3 = [0, dim1, dim2, 0]

1369 1370 1371
            out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3)
1372 1373 1374 1375 1376

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

1377 1378 1379
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
1380
            shard_label = paddle.shard_index(
1381 1382
                input=x, index_num=20, nshards=2, shard_id=0
            )
1383 1384 1385

        self.assertIsNotNone(shard_label)

1386 1387 1388 1389 1390 1391 1392
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
1393
            predict = paddle.nn.functional.softmax(fc_out)
1394
            result = paddle.static.accuracy(input=predict, label=label, k=5)
1395 1396 1397 1398
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
1399 1400
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
1401 1402 1403
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
1404

L
Leo Chen 已提交
1405
        with self.dynamic_graph(force_to_use_cpu=True):
1406 1407 1408
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
1409
            predict = paddle.nn.functional.softmax(fc_out)
1410 1411 1412
            dynamic_out = paddle.static.accuracy(
                input=predict, label=label, k=5
            )
1413

1414
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
1415

Y
Yu Yang 已提交
1416

1417
class TestBook(LayerTest):
H
hong 已提交
1418 1419
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
1420 1421 1422 1423 1424 1425 1426
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_kldiv_loss",
                "make_uniform_random_batch_size_like",
            }
        )
1427
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
1428

1429
    def test_all_layers(self):
1430 1431 1432 1433 1434
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
1435 1436 1437
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
1450 1451
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
1452

1453 1454
                else:
                    continue
H
hong 已提交
1455 1456
            if method.__name__ in self.only_static_set:
                continue
1457 1458 1459 1460 1461

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
1462
                dy_result_value = dy_result.numpy()
1463

1464
            if method.__name__ in self.all_close_compare:
1465 1466 1467 1468 1469 1470
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
1471 1472 1473
                        method.__name__
                    ),
                )
1474 1475
                continue

H
hong 已提交
1476
            if method.__name__ not in self.not_compare_static_dygraph_set:
1477 1478 1479 1480
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
1481 1482 1483
                        method.__name__
                    ),
                )
1484 1485 1486 1487

    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
1488
            shape = [self._batch_size] + shape
1489 1490 1491 1492 1493
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
1494 1495 1496
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
1497
        elif dtype == 'int64':
1498 1499 1500 1501 1502 1503 1504
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
1505
        if base.enabled():
1506 1507 1508 1509 1510
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
1511 1512
        else:
            if set_feed_dict:
1513
                self._feed_dict[name] = self._get_np_data(
1514 1515 1516 1517 1518 1519 1520 1521
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
1522 1523

    def make_fit_a_line(self):
1524 1525 1526 1527
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
1528
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
1529
            y_predict = layers.fc(input=x, size=1, act=None)
1530
            y = self._get_data(name='y', shape=[1], dtype='float32')
1531 1532 1533
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
1534
            avg_cost = paddle.mean(cost)
1535
            return avg_cost
Y
Yu Yang 已提交
1536

1537
    def make_recognize_digits_mlp(self):
1538 1539 1540
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
1541
            # Change g_program, so the rest layers use `g_program`
1542 1543
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1544 1545
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
1546 1547 1548 1549 1550 1551
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
1552 1553 1554
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
1555
            avg_cost = paddle.mean(cost)
1556
            return avg_cost
Y
Yu Yang 已提交
1557

1558
    def make_conv2d_transpose(self):
1559 1560 1561
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1562
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
1563
            return paddle.static.nn.conv2d_transpose(
1564 1565
                input=img, num_filters=10, output_size=28
            )
1566

1567
    def make_recognize_digits_conv(self):
1568 1569 1570 1571 1572 1573
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
1574
            label = self._get_data(name='label', shape=[1], dtype='int64')
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
1591 1592

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
1593 1594 1595
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
1596
            avg_cost = paddle.mean(cost)
1597
            return avg_cost
Y
Yu Yang 已提交
1598

1599
    def make_word_embedding(self):
1600 1601 1602
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
1603 1604
            dict_size = 10000
            embed_size = 32
1605
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
1606 1607 1608
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
1609 1610 1611
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
1638 1639 1640

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
1641 1642
                axis=1,
            )
Y
Yu Yang 已提交
1643 1644

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
1645 1646 1647
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
1648 1649 1650 1651 1652 1653
            cost = paddle.nn.functional.cross_entropy(
                input=predict_word,
                label=next_word,
                reduction='none',
                use_softmax=False,
            )
1654
            avg_cost = paddle.mean(cost)
1655
            return avg_cost
Y
Yu Yang 已提交
1656

1657
    def make_pool2d(self):
1658 1659 1660
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1661
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
C
ccrrong 已提交
1662 1663
            return paddle.nn.functional.max_pool2d(
                x, kernel_size=[5, 3], stride=[1, 2], padding=(2, 1)
1664
            )
1665

K
Kaipeng Deng 已提交
1666
    def make_pool2d_infershape(self):
1667 1668 1669
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
1670
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
1671 1672 1673
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
C
ccrrong 已提交
1674 1675
            return paddle.nn.functional.max_pool2d(
                x, kernel_size=[5, 3], stride=[1, 2], padding=(2, 1)
1676
            )
K
Kaipeng Deng 已提交
1677

1678
    def make_softmax(self):
1679 1680 1681
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1682
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
1683
            hid = layers.fc(input=data, size=20)
1684
            return paddle.nn.functional.softmax(hid, axis=1)
D
dangqingqing 已提交
1685

1686
    @prog_scope()
1687
    def make_nce(self):
Y
Yang Yu 已提交
1688 1689
        window_size = 5
        words = []
1690
        for i in range(window_size):
Y
Yang Yu 已提交
1691
            words.append(
1692 1693 1694 1695
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
1696 1697

        dict_size = 10000
M
minqiyang 已提交
1698
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
1699 1700

        embs = []
1701
        for i in range(window_size):
Y
Yang Yu 已提交
1702 1703 1704
            if i == label_word:
                continue

1705 1706 1707 1708 1709 1710
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
1711 1712 1713 1714

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
1715
        loss = paddle.static.nn.nce(
1716 1717 1718 1719 1720 1721
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
1722
        avg_loss = paddle.mean(loss)
1723
        return avg_loss
Y
Yang Yu 已提交
1724

1725
    def make_multiplex(self):
1726 1727 1728
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1729 1730 1731
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
1732
            out = paddle.multiplex(inputs=[x1, x2], index=index)
1733
            return out
1734 1735

    def make_softmax_with_cross_entropy(self):
1736 1737 1738
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1739 1740
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
1741
            loss, softmax = paddle.nn.functional.softmax_with_cross_entropy(
1742 1743
                x, y, return_softmax=True
            )
1744 1745 1746
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

1747
            loss = paddle.nn.functional.softmax_with_cross_entropy(x, y)
1748 1749 1750 1751 1752 1753
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
            loss1 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y1, axis=1
            )
            loss2 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y2, axis=2
            )
            loss3 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=3
            )
            loss4 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=-1
            )
1766 1767 1768 1769
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
1770
            return loss4
1771 1772

    def make_scatter(self):
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
1788
            out = paddle.scatter(x, index=idx, updates=updates)
1789
            return out
Y
yangyaming 已提交
1790

1791 1792 1793 1794
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
1795
            return one_hot_label
1796

1797 1798 1799 1800 1801
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
1802
            one_hot_label = layers.one_hot(input=label, depth=10)
1803
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
1804
            return smooth_label
1805

1806
    def make_topk(self):
1807 1808 1809
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1810
            data = self._get_data(name="label", shape=[200], dtype="float32")
1811
            values, indices = paddle.topk(data, k=5)
1812 1813
            return values
            return indices
J
jerrywgz 已提交
1814

1815
    def make_l2_normalize(self):
1816 1817 1818
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1819
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
1820
            output = paddle.nn.functional.normalize(x, axis=1)
1821
            return output
1822

1823
    def make_shape(self):
1824 1825 1826 1827 1828 1829
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
2
201716010711 已提交
1830
            out = paddle.shape(input)
1831
            return out
B
Bai Yifan 已提交
1832

1833
    def make_pad2d(self):
1834 1835 1836 1837 1838 1839
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
1840 1841 1842

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
1843 1844 1845 1846
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
1847
            out = tmp_pad(input)
1848
            return out
W
whs 已提交
1849

K
Kaipeng Deng 已提交
1850
    def make_mish(self):
1851 1852 1853
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
1854
            input = self._get_data(name="input", shape=[16], dtype="float32")
1855
            out = paddle.nn.functional.mish(input, name='mish')
1856
            return out
K
Kaipeng Deng 已提交
1857

1858
    def make_cross_entropy(self):
1859 1860 1861
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1862 1863
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
1864
            mode = 'channel'
1865 1866 1867 1868 1869 1870 1871 1872
            out = paddle.nn.functional.cross_entropy(
                x,
                label,
                soft_label=False,
                ignore_index=4,
                reduction='none',
                use_softmax=False,
            )
1873
            return out
1874

1875
    def make_uniform_random_batch_size_like(self):
1876 1877 1878 1879 1880 1881
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
1882
            out = random.uniform_random_batch_size_like(input, [-1, 11])
1883
            return out
G
fix  
gongweibao 已提交
1884

1885
    def make_gaussian_random(self):
1886 1887 1888
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1889
            out = random.gaussian(shape=[20, 30])
1890
            return out
G
fix  
gongweibao 已提交
1891

1892
    def make_sum(self):
1893 1894 1895 1896 1897 1898
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
1899

1900
            out = paddle.add_n(input)
1901
            return out
G
fix  
gongweibao 已提交
1902

1903
    def make_slice(self):
G
fix  
gongweibao 已提交
1904 1905 1906 1907
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

1908 1909 1910 1911 1912 1913
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
1914

2
201716010711 已提交
1915
            out = paddle.slice(input, axes=axes, starts=starts, ends=ends)
1916
            return out
G
merge  
gongweibao 已提交
1917

1918
    def make_scale_variable(self):
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2
201716010711 已提交
1931
            out = paddle.scale(input, scale=scale_var)
1932 1933
            return out

1934
    def make_bilinear_tensor_product_layer(self):
1935 1936 1937
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1938 1939 1940
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
1941 1942 1943
            out = paddle.static.nn.common.bilinear_tensor_product(
                data, theta, 6
            )
1944
            return out
1945 1946

    def make_batch_norm(self):
1947 1948 1949 1950 1951 1952
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
1953
            out = paddle.static.nn.batch_norm(data)
1954
            return out
1955

1956
    def make_batch_norm_momentum_variable(self):
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
1969
            out = paddle.static.nn.batch_norm(data, momentum=momentum)
1970
            return out
1971

1972
    def make_range(self):
1973 1974 1975
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
1976 1977 1978
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
1979 1980 1981
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
1982
            y = paddle.arange(start, end, step, 'float64')
1983 1984 1985
            return y

    def make_spectral_norm(self):
1986 1987 1988 1989 1990 1991 1992 1993 1994
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
1995
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
1996
            return out
1997 1998

    def make_kldiv_loss(self):
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
2014 2015 2016
            loss = paddle.nn.functional.kl_div(
                input=x, label=target, reduction='batchmean'
            )
2017
            return loss
2018

M
minqiyang 已提交
2019
    def make_pixel_shuffle(self):
2020 2021 2022
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
2023
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
2024
            out = paddle.nn.functional.pixel_shuffle(x, upscale_factor=3)
2025
            return out
M
minqiyang 已提交
2026

R
ruri 已提交
2027
    def make_mse_loss(self):
2028 2029 2030
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
2031 2032
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2033
            out = paddle.nn.functional.mse_loss(input=x, label=y)
2034
            return out
R
ruri 已提交
2035

2036
    def make_square_error_cost(self):
2037 2038 2039
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2040 2041
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2042
            out = paddle.nn.functional.square_error_cost(input=x, label=y)
2043
            return out
2044

W
whs 已提交
2045
    def test_affine_grid(self):
2046
        with self.static_graph():
W
whs 已提交
2047
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
2048
            out = paddle.argsort(x=data, axis=1)
W
whs 已提交
2049 2050

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
2051
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
2052 2053
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
2054 2055 2056

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
2057

W
wangchaochaohu 已提交
2058 2059 2060 2061 2062 2063 2064
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
2
201716010711 已提交
2065
            out = paddle.strided_slice(
2066 2067
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
2068 2069
            return out

2070 2071
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
2072 2073 2074 2075 2076 2077
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
2078 2079
            return out

2080 2081 2082 2083
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
2084 2085 2086 2087
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
2088

2089 2090 2091 2092 2093
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
2094
            return out
2095

2096 2097 2098 2099
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
2100
            length = layers.data(name='length', shape=[], dtype='int64')
2101
            return layers.sequence_unpad(x=x, length=length)
2102

2103 2104 2105
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2106 2107 2108
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
2109
            seq = layers.fc(input=seq_data, size=20)
2110
            return layers.sequence_softmax(seq)
2111

2112 2113 2114 2115
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
2116
            out = paddle.unsqueeze(x, axis=[1])
2117
            return out
2118

2119 2120 2121
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
2139
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
2140
            return out
W
whs 已提交
2141

2142 2143 2144 2145
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
2146 2147 2148 2149

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
2150 2151
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
2152 2153 2154 2155
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
2156

Z
zhoushiyu 已提交
2157 2158 2159
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2160 2161 2162
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
2163 2164 2165 2166 2167
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
2168
            return out1
Z
zhoushiyu 已提交
2169

2170 2171 2172 2173
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
2174 2175 2176 2177
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
2178

S
ShenLiang 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
2188 2189
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
2190 2191 2192 2193
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
2194 2195 2196 2197 2198
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
2199

S
ShenLiang 已提交
2200 2201 2202
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
2203 2204 2205
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
2206 2207 2208 2209 2210 2211 2212
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
2213 2214 2215 2216 2217
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
2218

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
2230
            return out
2231 2232 2233 2234

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
2235 2236 2237
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
2238
            return paddle.static.nn.conv2d(
2239 2240
                input=images, num_filters=3, filter_size=[4, 4]
            )
2241 2242 2243 2244 2245

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
2246
            out = paddle.squeeze(x, axis=[2])
2247
            return out
2248 2249 2250 2251

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
2252 2253 2254 2255 2256 2257
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
2258
            out = paddle.flatten(x, 1, -1, name="flatten")
2259
            return out
2260

Z
zhoukunsheng 已提交
2261 2262 2263
    def test_linspace(self):
        program = Program()
        with program_guard(program):
2264
            out = paddle.linspace(20, 10, 5, 'float64')
Z
zhoukunsheng 已提交
2265 2266 2267
            self.assertIsNotNone(out)
        print(str(program))

2268 2269 2270
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
2271
            out = paddle.nn.functional.unfold(x, [3, 3], 1, 1, 1)
2272
            return out
2273

2274 2275 2276 2277
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
2278 2279 2280 2281 2282 2283
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
2284 2285
            return concat1, concat2

2286
    def test_addmm(self):
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
2302 2303

            out = paddle.addmm(input=input, x=x, y=y)
2304
            return out
2305

2306 2307 2308
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2309
            input_length = paddle.static.data(
2310 2311
                name='logits_length', shape=[11], dtype='int64'
            )
2312
            label_length = paddle.static.data(
2313 2314
                name='labels_length', shape=[12], dtype='int64'
            )
2315 2316 2317 2318
            label = paddle.static.data(
                name='label', shape=[12, 1], dtype='int32'
            )
            predict = paddle.static.data(
2319 2320
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
2321 2322 2323 2324 2325 2326
            output = paddle.nn.functional.ctc_loss(
                log_probs=predict,
                labels=label,
                input_lengths=input_length,
                label_lengths=label_length,
                reduction='none',
2327 2328
            )
            return output
2329

2330 2331 2332 2333
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
2334 2335 2336 2337 2338 2339 2340 2341 2342
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
2354 2355
                        batch_first=batch_first,
                    )
2356

Y
Yu Yang 已提交
2357

2358 2359
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
2360
        super().__init__()
2361
        self.weight = self.create_parameter(
2362 2363
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
2394 2395
class MyLayer(paddle.nn.Layer):
    def __init__(self):
2396
        super().__init__()
J
Jiabin Yang 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
2408
        super().__init__()
J
Jiabin Yang 已提交
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
2424
if __name__ == '__main__':
2425
    paddle.enable_static()
Y
Yu Yang 已提交
2426
    unittest.main()