test_layers.py 186.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

17 18
import contextlib
import numpy as np
19
from decorator_helper import prog_scope
20
import inspect
21 22 23

import paddle
import paddle.fluid as fluid
24
from paddle.fluid.layers.device import get_places
25 26 27
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
28
from paddle.fluid import core
J
jerrywgz 已提交
29
from paddle.fluid.initializer import Constant
30 31
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
32 33
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
34
from paddle.fluid.dygraph import to_variable
35
from paddle.fluid.framework import _test_eager_guard
36 37 38 39 40 41 42 43 44 45 46


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

47 48 49 50 51 52 53 54
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
55 56 57 58

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
59
            paddle.seed(self.seed)
L
Leo Chen 已提交
60
            paddle.framework.random._manual_program_seed(self.seed)
61 62
            yield

63 64 65
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
66
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
67
        exe.run(fluid.default_startup_program())
68 69 70 71 72 73
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
74 75

    @contextlib.contextmanager
76
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
77
        with fluid.dygraph.guard(
78 79
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
80
            paddle.seed(self.seed)
L
Leo Chen 已提交
81
            paddle.framework.random._manual_program_seed(self.seed)
82 83 84 85
            yield


class TestLayer(LayerTest):
86 87
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
88
            def __init__(self, input_size, linear1_size=4):
89
                super().__init__()
90 91 92
                self.linear1 = nn.Linear(
                    input_size, linear1_size, bias_attr=False
                )
93 94 95 96 97 98
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
99 100 101
                return ret

        with self.dynamic_graph():
102 103 104 105 106
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
107
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
108
                ret = custom(x, do_linear2=True)
109
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
110 111
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
112 113
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
114
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
115
            ret = custom(x, do_linear2=True)
116
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
117

118 119 120
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
121 122 123 124 125 126
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
127 128
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
129 130 131
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
132
            static_ret, static_ret2 = self.get_static_graph_result(
133 134
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
135
        with self.dynamic_graph():
136 137 138 139
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
140 141 142
                dy_eager_ret2 = fluid.layers.dropout(
                    t, dropout_prob=0.35, seed=1, is_test=False
                )
143 144 145
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

146 147 148
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
149 150 151
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
152 153 154
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

155 156
        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
157

158 159 160
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
161

S
songyouwei 已提交
162 163 164
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
165 166 167 168 169 170
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
S
songyouwei 已提交
171
            linear = nn.Linear(
172 173
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
174
            ret = linear(t)
175 176 177
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
178
        with self.dynamic_graph():
179 180 181 182 183
            with _test_eager_guard():
                t = base.to_variable(inp)
                linear = nn.Linear(
                    32,
                    4,
184 185
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
186 187 188
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
189 190
            t = base.to_variable(inp)
            linear = nn.Linear(
191 192
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
193 194 195
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

196 197
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
198

199 200 201 202 203 204 205 206
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
207 208
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
209 210 211 212 213 214 215 216
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
217 218 219
                linear = nn.Linear(
                    32,
                    4,
220 221
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
222 223 224 225 226 227 228
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
229 230 231 232 233 234
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
235 236
            flatten = nn.Flatten()
            ret = flatten(t)
237 238 239
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
240
        with self.dynamic_graph():
241 242 243 244 245 246
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

247 248 249 250 251
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

252 253
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
254 255 256 257 258 259 260 261 262

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
263 264
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
265 266 267 268 269 270 271 272
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
273 274 275
                linear = nn.Linear(
                    32,
                    4,
276 277
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
278 279 280 281
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

282 283 284
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
285 286 287 288 289 290
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
291 292 293
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
294 295 296 297 298
                act='sigmoid',
            )
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
299
        with self.static_graph():
300 301 302 303 304 305
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
306
            lm = nn.LayerNorm(
307
                normalized_shape=[32, 32],
308
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
309 310
                act='sigmoid',
            )
311
            ret = lm(t)
312 313 314
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
315
        with self.dynamic_graph():
316 317 318 319
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
320 321
                    act='sigmoid',
                )
322 323 324
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

325
            lm = nn.LayerNorm(
326
                normalized_shape=[32, 32],
327
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
328 329
                act='sigmoid',
            )
330
            dy_ret = lm(base.to_variable(inp))
331
            dy_ret_value = dy_ret.numpy()
332

333
        with self.dynamic_graph():
334 335 336 337 338 339 340
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
341 342
                    act='sigmoid',
                )
343 344 345 346 347
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

348
            lm = nn.LayerNorm(
349
                normalized_shape=[32, 32],
350 351 352 353
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
354 355
                act='sigmoid',
            )
356 357 358 359
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
360

361 362 363
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_eager_ret_value, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, static_ret2)
364

365
        with self.dynamic_graph():
366 367 368 369
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
370 371
                    act='sigmoid',
                )
372 373 374
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

375 376 377
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
378 379
                act='sigmoid',
            )
380 381 382
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
383 384 385 386
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
387
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
388 389
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
390
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
391 392
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
393 394

            with self.dynamic_graph():
395 396 397 398 399 400
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
401 402 403 404
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
405 406
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
407

408 409 410 411 412
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
413 414
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
415 416

        with self.dynamic_graph():
417 418 419 420 421
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

422 423
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
424
            dy_ret_value = dy_ret.numpy()
425

426 427
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
428

429 430 431 432 433
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
434 435 436 437 438 439 440
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
441 442

        with self.dynamic_graph():
443 444 445
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
446 447 448
                dy_eager_ret = layers.matmul(
                    base.to_variable(t), base.to_variable(t2)
                )
449 450
                dy_eager_ret_value = dy_eager_ret.numpy()

451 452
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
453
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
454
            dy_ret_value = dy_ret.numpy()
455

456 457
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
458

M
minqiyang 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
472 473
                input=x, hidden=hidden, size=D * 3
            )
M
minqiyang 已提交
474
            static_ret = self.get_static_graph_result(
475 476 477
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
478 479 480 481 482

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
483 484
                input=x, hidden=hidden, size=D * 3
            )
485
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
486 487 488
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
489 490 491
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
492 493

        with self.dynamic_graph():
494 495
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
496 497 498
                dy_eager_ret = gru(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
499 500 501 502
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

503
            gru = nn.GRUUnit(size=D * 3)
504 505 506
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input)
            )
507 508 509
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
510 511

        for i in range(len(static_ret)):
512 513 514 515 516 517 518 519 520
            np.testing.assert_allclose(
                static_ret[i], static_ret2[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_ret_value[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_eager_ret_value[i], rtol=1e-05
            )
M
minqiyang 已提交
521

522
        with self.dynamic_graph():
523 524 525 526
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
527 528 529
                        custom_weight
                    )
                )
530 531
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
532 533 534 535 536 537
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
538
                self.assertFalse(
539 540
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
                )
541 542 543 544
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
545 546 547 548 549 550
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
551
                for o1, o2 in zip(dy_ret1, dy_ret2):
552
                    np.testing.assert_array_equal(o1.numpy(), o2.numpy())
553 554 555

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
556 557 558 559 560 561
                np.testing.assert_array_equal(
                    gru1.weight.numpy(), gru2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    gru1.bias.numpy(), gru2.bias.numpy()
                )
562

563
            custom_weight = np.random.randn(D, D * 3).astype("float32")
564 565 566 567 568
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
569 570
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
571 572 573 574 575 576
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
577
            self.assertFalse(
578 579
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
            )
580 581 582 583
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
584 585 586 587 588 589
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
590
            for o1, o2 in zip(dy_ret1, dy_ret2):
591
                np.testing.assert_array_equal(o1.numpy(), o2.numpy())
592 593 594

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
595 596 597
            np.testing.assert_array_equal(
                gru1.weight.numpy(), gru2.weight.numpy()
            )
598
            np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy())
599

X
Xin Pan 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
            ret = layers.elementwise_pow(ret, t3)
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

622 623 624 625
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
626 627

        with self.dynamic_graph():
628 629 630 631 632 633 634 635
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
                ret = layers.elementwise_pow(ret, to_variable(n3))
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

636 637 638 639 640
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
            ret = layers.elementwise_pow(ret, to_variable(n3))
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
641
            dy_ret_value = dy_ret.numpy()
642

643 644
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
645 646 647 648 649 650

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
651
            with _test_eager_guard():
652 653 654 655 656 657
                min_eager_ret = layers.elementwise_min(
                    to_variable(n), to_variable(n2)
                )
                max_eager_ret = layers.elementwise_max(
                    to_variable(n), to_variable(n2)
                )
658 659 660
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

661 662
            min_ret = layers.elementwise_min(to_variable(n), to_variable(n2))
            max_ret = layers.elementwise_max(to_variable(n), to_variable(n2))
663 664
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
665

666 667 668 669
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
670

671 672 673 674 675 676 677
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
678 679 680 681 682 683 684
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
685
            out = layers.sequence_conv(seq, 2, act='sigmoid')
686 687 688 689 690 691 692 693 694
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
695 696

        with self.static_graph():
697 698 699 700 701 702 703
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
704
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
705
            out = seq_conv(seq)
706 707 708 709 710 711 712 713 714 715 716 717
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
        np.testing.assert_array_equal(
            np.array(static_rlt), np.array(static_rlt2)
        )
718 719 720 721 722 723

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
724 725
                input=img,
                num_filters=10,
726
                filter_size=27,
727
                act='sigmoid',
728 729 730 731 732
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
733 734 735
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
736
                num_channels=3,
737
                num_filters=10,
738
                filter_size=27,
739
                act='sigmoid',
740 741
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
742
            out = conv2d_transpose(img)
743 744 745
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
746
        with self.dynamic_graph():
747 748 749 750 751 752
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
753 754
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
755 756 757
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

758
            conv2d_transpose = nn.Conv2DTranspose(
759
                num_channels=3,
760
                num_filters=10,
761
                filter_size=27,
762
                act='sigmoid',
763 764
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
765
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
766
            dy_rlt_value = dy_rlt.numpy()
767 768 769
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
770

771
        with self.dynamic_graph():
772 773 774 775 776
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
777 778 779 780 781 782 783 784 785 786 787 788
                        custom_weight
                    )
                )
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr,
                )
789 790 791
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
792 793
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
794 795 796 797

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
798 799
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
800
                conv2d2.weight.set_value(conv2d1_weight_np)
801 802 803
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
804 805 806
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
807
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
808 809 810

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
811 812 813 814 815 816
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
817

818 819
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
820 821 822 823 824 825 826 827 828 829 830 831 832 833
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv2d1 = nn.Conv2DTranspose(
                num_channels=3, num_filters=3, filter_size=[2, 2]
            )
            conv2d2 = nn.Conv2DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr,
            )
834 835 836 837 838 839 840
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
841 842
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
843
            conv2d2.weight.set_value(conv2d1_weight_np)
844 845 846
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
847 848 849
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
850
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
851 852 853

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
854 855 856 857 858 859
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
860

861 862 863 864 865
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
866 867 868
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
869 870 871 872 873 874 875
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
876 877 878 879 880 881
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
882 883 884 885
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

886 887 888 889 890
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
891 892 893 894 895 896
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
897 898 899 900 901
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
902 903
                act='sigmoid',
            )
904

905 906 907
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
908

909
        with self.static_graph():
910 911 912 913 914 915
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
916
            btp = nn.BilinearTensorProduct(
917 918
                3,
                3,
919 920
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
921 922
                act='sigmoid',
            )
923
            out = btp(data_x, data_y)
924 925 926
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
927
        with self.dynamic_graph():
928 929 930 931 932 933
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
934 935 936 937 938
                    act='sigmoid',
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
939 940
                dy_eager_rlt_value = dy_eager_rlt.numpy()

941
            btp = nn.BilinearTensorProduct(
942 943
                3,
                3,
944 945
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
946 947
                act='sigmoid',
            )
948
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
949
            dy_rlt_value = dy_rlt.numpy()
950

951
        with self.dynamic_graph():
952 953
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
954 955 956
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
957 958
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

959
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
960 961 962
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
963
            dy_rlt2_value = dy_rlt2.numpy()
964

965
        with self.static_graph():
966 967 968 969 970 971 972 973 974 975 976 977 978
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
979

980 981 982 983 984
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
985

986
        with self.dynamic_graph():
987 988 989 990
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
991 992 993
                        custom_weight
                    )
                )
994
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
995 996 997 998 999 1000 1001 1002 1003
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr
                )
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1004
                self.assertFalse(
1005 1006
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1007 1008
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1009 1010 1011 1012 1013 1014
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1015
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1016 1017 1018

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
1019 1020 1021 1022 1023 1024
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
1025

1026
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1027 1028 1029 1030 1031
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1032
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1033 1034 1035 1036 1037 1038 1039 1040 1041
            btp2 = nn.BilinearTensorProduct(
                3, 3, 6, act='sigmoid', param_attr=weight_attr
            )
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1042 1043 1044
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1045 1046 1047 1048 1049 1050
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1051
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1052 1053 1054

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
1055 1056 1057
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
1058
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
1059

1060
    def prelu_test(self, mode):
1061 1062
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0))
            )
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1075 1076

        with self.static_graph():
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=data_t.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1089
            out = prelu(data_t)
1090 1091 1092
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1093 1094

        with self.dynamic_graph():
1095 1096 1097 1098 1099
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1100 1101
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1102 1103 1104
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1105 1106 1107 1108 1109 1110
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1111
            dy_rlt = prelu(base.to_variable(inp_np))
1112
            dy_rlt_value = dy_rlt.numpy()
1113

1114 1115 1116
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1117

1118
        with self.dynamic_graph():
1119 1120 1121 1122 1123 1124 1125
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1126 1127
                    param_attr=ParamAttr(initializer=Constant(2.0)),
                )
1128 1129 1130 1131
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1132 1133
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1134 1135 1136
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1137 1138
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
                )
1139
                self.assertFalse(
1140 1141
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1142 1143 1144
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1145
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1146 1147

                prelu2.weight = prelu1.weight
1148 1149 1150
                np.testing.assert_array_equal(
                    prelu1.weight.numpy(), prelu2.weight.numpy()
                )
1151

1152 1153
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
            prelu1 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(2.0)),
            )
            prelu2 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1166 1167 1168
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
1169 1170
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
            )
1171 1172 1173 1174
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
1175
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1176 1177

            prelu2.weight = prelu1.weight
1178 1179 1180
            np.testing.assert_array_equal(
                prelu1.weight.numpy(), prelu2.weight.numpy()
            )
1181

1182 1183 1184 1185 1186
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1187 1188 1189 1190 1191
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1192 1193 1194 1195 1196 1197 1198 1199 1200
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
1201 1202
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1203 1204 1205
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1206
            emb_rlt = emb2(data_t)
1207 1208 1209
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
1210
        with self.dynamic_graph():
1211
            with _test_eager_guard():
1212 1213 1214 1215 1216
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
1217 1218 1219
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1220 1221 1222
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1223 1224
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1225 1226

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1227
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1228
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1229

1230
        with self.dynamic_graph():
1231 1232 1233 1234
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1235 1236 1237
                        custom_weight
                    )
                )
1238
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1239 1240 1241 1242 1243
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
1244 1245 1246
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
1247 1248 1249 1250 1251
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
1252 1253 1254
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
1255
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1256 1257

                emb2.weight = emb1.weight
1258 1259 1260
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
1261

1262
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1263 1264 1265 1266 1267
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1268
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1269 1270 1271
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
1272 1273 1274
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
1275
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
1276 1277 1278
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
1279
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1280 1281

            emb2.weight = emb1.weight
1282 1283 1284
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
1285

1286 1287 1288 1289
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1290
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1291 1292 1293 1294 1295 1296
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1297 1298 1299 1300 1301 1302 1303
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
1304 1305 1306 1307 1308
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1309 1310 1311 1312 1313 1314
                emb = fluid.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False,
                )
1315 1316 1317
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1318
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
            nce_loss = layers.nce(
                input=embs,
                label=wl,
                num_total_classes=dict_size,
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1331 1332 1333
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1334 1335 1336
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss]
            )[0]
W
Weilong Wu 已提交
1337

1338 1339 1340 1341
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs2.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1373

1374 1375
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1376 1377 1378 1379
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1380 1381 1382
            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2]
            )[0]
1383

L
Leo Chen 已提交
1384
        with self.dynamic_graph():
W
Weilong Wu 已提交
1385 1386 1387 1388
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1389 1390 1391 1392 1393 1394 1395 1396
                sample_weights = layers.fill_constant(
                    shape=[5, 1], dtype='float32', value=1
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
                embs3 = layers.concat(
                    input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
                )
                nce = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce.w',
                    bias_attr='eager_nce.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1420 1421 1422 1423 1424

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1425 1426 1427
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1428 1429 1430 1431 1432 1433
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1434 1435 1436 1437 1438 1439 1440 1441 1442

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
            )
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1457

1458 1459
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1460
            dy_rlt_value = dy_rlt.numpy()
1461

1462 1463 1464
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1465

L
Leo Chen 已提交
1466
        with self.dynamic_graph():
W
Weilong Wu 已提交
1467
            with _test_eager_guard():
1468 1469 1470
                custom_weight = np.random.randn(dict_size, 128).astype(
                    "float32"
                )
W
Weilong Wu 已提交
1471 1472
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1473 1474 1475
                        custom_weight
                    )
                )
W
Weilong Wu 已提交
1476 1477 1478 1479 1480 1481
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
1482 1483 1484 1485 1486 1487 1488
                    value=1,
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
                nce1 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce1.w',
                    bias_attr='eager_nce1.b',
                    sample_weight=sample_weights,
                )

                nce2 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr=weight_attr,
                    bias_attr='eager_nce2.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1522 1523 1524 1525 1526

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
1527 1528
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
                )
W
Weilong Wu 已提交
1529 1530 1531 1532
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
1533 1534 1535
                np.testing.assert_array_equal(
                    nce1_loss.numpy(), nce2_loss.numpy()
                )
W
Weilong Wu 已提交
1536 1537 1538

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
1539 1540 1541 1542 1543 1544
                np.testing.assert_array_equal(
                    nce1.weight.numpy(), nce2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    nce1.bias.numpy(), nce2.bias.numpy()
                )
W
Weilong Wu 已提交
1545

1546
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1547 1548 1549 1550 1551
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1552 1553 1554 1555
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1556 1557
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
1558 1559 1560 1561 1562
                value=1,
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
            nce1 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce1.w',
                bias_attr='nce1.b',
                sample_weight=sample_weights,
            )

            nce2 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr=weight_attr,
                bias_attr='nce2.b',
                sample_weight=sample_weights,
            )
1596

1597 1598 1599
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1600
            self.assertFalse(
1601 1602
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
            )
1603 1604
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1605 1606
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1607
            np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy())
1608 1609 1610

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
1611 1612 1613
            np.testing.assert_array_equal(
                nce1.weight.numpy(), nce2.weight.numpy()
            )
1614
            np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy())
1615

S
songyouwei 已提交
1616 1617
    def test_one_hot(self):
        with self.dynamic_graph():
1618
            with _test_eager_guard():
1619 1620 1621
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
1622 1623
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1624 1625 1626 1627 1628
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
1629

S
songyouwei 已提交
1630 1631 1632
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
1633 1634 1635 1636 1637
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
1638 1639 1640

    def test_split(self):
        with self.dynamic_graph():
1641 1642 1643
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1644 1645 1646 1647 1648
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
1649 1650
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1651

S
songyouwei 已提交
1652 1653
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1654 1655 1656 1657 1658
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
1659 1660
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1661 1662 1663

    def test_topk(self):
        with self.dynamic_graph():
1664 1665 1666 1667
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
1668 1669 1670 1671 1672 1673 1674 1675
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
1676

S
songyouwei 已提交
1677 1678 1679
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
1680 1681 1682 1683 1684 1685 1686 1687
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
1688

L
lujun 已提交
1689 1690
    def test_conv3d(self):
        with self.static_graph():
1691 1692 1693
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1694
            ret = layers.conv3d(input=images, num_filters=3, filter_size=2)
L
lujun 已提交
1695
            static_ret = self.get_static_graph_result(
1696
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1697 1698
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1699 1700

        with self.static_graph():
1701 1702 1703
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1704
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1705 1706
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1707
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1708 1709
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1710 1711

        with self.dynamic_graph():
1712 1713 1714 1715 1716 1717
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1718
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1719
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1720
            dy_ret = conv3d(base.to_variable(images))
1721
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1722

1723 1724 1725
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1726

1727
        with self.dynamic_graph():
1728 1729 1730 1731 1732
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3D(
                    num_channels=3, num_filters=3, filter_size=2
                )
                conv3d2 = nn.Conv3D(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                )
1745 1746 1747
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1748 1749
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1750 1751 1752 1753

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1754 1755
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1756
                conv3d2.weight.set_value(conv3d1_weight_np)
1757 1758 1759
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1760 1761 1762
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1763
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1764 1765 1766

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1767 1768 1769 1770 1771 1772
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1773

1774 1775
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1776 1777 1778 1779 1780
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1781
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1782 1783 1784 1785 1786 1787
            conv3d2 = nn.Conv3D(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
            )
1788 1789 1790 1791 1792 1793 1794
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1795 1796
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1797
            conv3d2.weight.set_value(conv3d1_weight_np)
1798 1799 1800
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1801 1802 1803
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1804
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1805 1806 1807

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1808 1809 1810 1811 1812 1813
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1814

L
lujun 已提交
1815 1816 1817 1818 1819 1820 1821 1822
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1823 1824 1825 1826 1827 1828 1829
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1830
            ret = layers.row_conv(input=x, future_context_size=2)
1831 1832 1833 1834 1835 1836 1837 1838 1839
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1840 1841

        with self.static_graph():
1842 1843 1844 1845 1846 1847 1848
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1849 1850
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1851 1852 1853 1854 1855 1856 1857 1858 1859
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1860

1861
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1862

1863
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1864

1865
    def func_group_norm(self):
L
lujun 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1876 1877 1878 1879 1880 1881 1882
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1883 1884 1885
            ret = layers.group_norm(
                input=X,
                groups=2,
1886
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1898 1899

        with self.static_graph():
1900 1901 1902 1903 1904 1905 1906
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1907 1908 1909
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1910
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1911 1912
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1913
            ret = groupNorm(X)
1914 1915 1916 1917 1918 1919 1920 1921 1922
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1923 1924

        with self.dynamic_graph():
1925 1926 1927
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1928
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1929 1930
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1931
            dy_ret = groupNorm(base.to_variable(input))
1932
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1933

1934 1935
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1936

1937 1938 1939 1940 1941
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1953 1954 1955
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1956
            ret = layers.instance_norm(input=X)
1957 1958 1959
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1960 1961

        with self.static_graph():
1962 1963 1964
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1965 1966
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            ret = instanceNorm(X)
1967 1968 1969
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1970 1971

        with self.dynamic_graph():
1972 1973 1974 1975 1976
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1977 1978 1979 1980 1981
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1982 1983 1984 1985 1986
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1987
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1988 1989 1990
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1991 1992 1993 1994 1995
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1996 1997 1998 1999

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
2000
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
2001 2002 2003 2004 2005 2006 2007
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
2008
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
2009 2010 2011 2012
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
2024 2025 2026 2027 2028 2029 2030
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
2031
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
2032 2033 2034 2035 2036 2037 2038 2039 2040
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2041 2042

        with self.static_graph():
2043 2044 2045 2046 2047 2048 2049
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
2050
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2051
            ret = spectralNorm(Weight)
2052 2053 2054 2055 2056 2057 2058 2059 2060
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2061 2062

        with self.dynamic_graph():
2063 2064 2065 2066 2067
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2068
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2069
            dy_ret = spectralNorm(base.to_variable(input))
2070
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2071

2072 2073 2074
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2119 2120

        with self.static_graph():
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2138
            ret = treeConv(NodesVector, EdgeSet)
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2151 2152

        with self.dynamic_graph():
2153
            with _test_eager_guard():
2154 2155 2156 2157 2158 2159
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2160 2161
                dy_eager_rlt_value = dy_eager_ret.numpy()

2162 2163 2164
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2165
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2166
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2167

2168 2169 2170
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
2171

2172
        with self.dynamic_graph():
2173 2174 2175 2176
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2201
                self.assertFalse(
2202 2203
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2204 2205
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2206 2207 2208 2209 2210 2211
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2212
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2213 2214 2215

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
2216 2217 2218 2219 2220 2221
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
2222

2223
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2250 2251 2252
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2253 2254 2255 2256 2257 2258
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2259
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2260 2261 2262

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
2263 2264 2265 2266 2267 2268
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
2269

L
lujun 已提交
2270
    def test_conv3d_transpose(self):
2271 2272 2273
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
2274 2275 2276

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2277 2278 2279
            out = layers.conv3d_transpose(
                input=img, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2280
            static_rlt = self.get_static_graph_result(
2281 2282
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2283 2284
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2285 2286 2287
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2288 2289
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
2290 2291
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2292
        with self.dynamic_graph():
2293
            with _test_eager_guard():
2294 2295 2296 2297 2298 2299
                conv3d_transpose = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False,
                )
2300 2301 2302
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2303 2304 2305
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2306
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2307
            dy_rlt_value = dy_rlt.numpy()
2308 2309 2310
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
2311

2312
        with self.dynamic_graph():
2313 2314 2315 2316 2317
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    bias_attr='eager_conv3d1_b',
                    use_cudnn=False,
                )
                conv3d2 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                    bias_attr='eager_conv3d2_b',
                    use_cudnn=False,
                )
2336 2337 2338
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
2339 2340
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2341 2342 2343 2344

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
2345 2346
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
2347
                conv3d2.weight.set_value(conv3d1_weight_np)
2348 2349 2350
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
2351 2352 2353
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2354
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2355 2356 2357

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
2358 2359 2360 2361 2362 2363
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
2364

2365 2366
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv3d1 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False,
            )
            conv3d2 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False,
            )
2387 2388 2389 2390 2391 2392 2393
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
2394 2395
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
2396
            conv3d2.weight.set_value(conv3d1_weight_np)
2397 2398 2399
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
2400 2401 2402
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
2403
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2404 2405 2406

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
2407 2408 2409 2410 2411 2412
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
2413

2414 2415 2416 2417 2418 2419 2420 2421
    def test_eye_op(self):
        np_eye = np.eye(3, 2)
        array_rlt1 = [np_eye for _ in range(3)]
        stack_rlt1 = np.stack(array_rlt1, axis=0)
        array_rlt2 = [stack_rlt1 for _ in range(4)]
        stack_rlt2 = np.stack(array_rlt2, axis=0)

        with self.dynamic_graph():
2422 2423
            with _test_eager_guard():
                eager_eye_tensor = layers.eye(num_rows=3, num_columns=2)
2424 2425 2426 2427 2428 2429
                eager_eye_tensor_rlt1 = layers.eye(
                    num_rows=3, num_columns=2, batch_shape=[3]
                )
                eager_eye_tensor_rlt2 = layers.eye(
                    num_rows=3, num_columns=2, batch_shape=[4, 3]
                )
2430 2431 2432 2433 2434 2435
                eager_diag_tensor = layers.eye(20)
                eager_eye_tensor_value = eager_eye_tensor.numpy()
                eager_eye_tensor_rlt1_value = eager_eye_tensor_rlt1.numpy()
                eager_eye_tensor_rlt2_value = eager_eye_tensor_rlt2.numpy()
                eager_diag_tensor_value = eager_diag_tensor.numpy()

2436
            eye_tensor = layers.eye(num_rows=3, num_columns=2)
2437 2438 2439 2440 2441 2442
            eye_tensor_rlt1 = layers.eye(
                num_rows=3, num_columns=2, batch_shape=[3]
            )
            eye_tensor_rlt2 = layers.eye(
                num_rows=3, num_columns=2, batch_shape=[4, 3]
            )
2443
            diag_tensor = layers.eye(20)
2444 2445 2446 2447
            eye_tensor_value = eye_tensor.numpy()
            eye_tensor_rlt1_value = eye_tensor_rlt1.numpy()
            eye_tensor_rlt2_value = eye_tensor_rlt2.numpy()
            diag_tensor_value = diag_tensor.numpy()
2448

2449
        np.testing.assert_allclose(eager_eye_tensor_value, np_eye, rtol=1e-05)
2450 2451 2452 2453 2454 2455 2456 2457 2458
        np.testing.assert_allclose(
            eager_eye_tensor_rlt1_value, stack_rlt1, rtol=1e-05
        )
        np.testing.assert_allclose(
            eager_eye_tensor_rlt2_value, stack_rlt2, rtol=1e-05
        )
        np.testing.assert_allclose(
            eager_diag_tensor_value, np.eye(20), rtol=1e-05
        )
2459 2460

        np.testing.assert_allclose(eye_tensor_value, np_eye, rtol=1e-05)
2461 2462 2463 2464 2465 2466
        np.testing.assert_allclose(
            eye_tensor_rlt1_value, stack_rlt1, rtol=1e-05
        )
        np.testing.assert_allclose(
            eye_tensor_rlt2_value, stack_rlt2, rtol=1e-05
        )
2467
        np.testing.assert_allclose(diag_tensor_value, np.eye(20), rtol=1e-05)
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

        with self.assertRaises(TypeError):
            layers.eye(num_rows=3.1)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, num_columns=2.2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=[-1])

2478
    def func_while_loop(self):
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2496
            def cond1(i):
2497 2498
                return layers.less_than(i, ten)

2499
            def body1(i):
2500 2501
                return i + 1

2502
            dy_ret = layers.while_loop(cond1, body1, [i])
2503 2504 2505 2506 2507 2508
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2509
                layers.while_loop(cond1, body2, [j])
2510

2511
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
2512

2513 2514 2515 2516 2517
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2518 2519 2520 2521 2522 2523 2524 2525
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2526 2527 2528
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
2529
        with self.dynamic_graph():
2530 2531 2532 2533 2534 2535 2536 2537
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2538 2539 2540 2541
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2542 2543
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2544 2545 2546 2547 2548 2549

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
2550 2551 2552
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
2553
        with self.dynamic_graph():
2554 2555 2556 2557 2558 2559 2560 2561
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
                dcond1 = layers.less_equal(x=da1, y=db1)

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2562 2563 2564 2565 2566 2567 2568
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2569
        # greater than
2570 2571 2572 2573
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
2574 2575 2576
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
2577
        with self.dynamic_graph():
2578 2579 2580 2581 2582 2583 2584 2585
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
                dcond2 = layers.greater_than(x=da2, y=db2)

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2586 2587 2588 2589 2590 2591 2592
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2593
        # greater equal
2594 2595 2596 2597
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
2598 2599 2600
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
2601
        with self.dynamic_graph():
2602 2603 2604 2605 2606 2607 2608 2609
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
                dcond3 = layers.greater_equal(x=da3, y=db3)

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
2622 2623 2624
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
2625
        with self.dynamic_graph():
2626 2627 2628 2629 2630 2631 2632 2633
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
                dcond4 = layers.equal(x=da4, y=db4)

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
2646 2647 2648
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
2649
        with self.dynamic_graph():
2650 2651 2652 2653 2654 2655 2656 2657
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
                dcond5 = layers.equal(x=da5, y=db5)

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2658 2659 2660 2661 2662 2663 2664
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2665 2666 2667 2668 2669 2670 2671 2672
    def test_cond(self):
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2689 2690 2691 2692 2693
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2694 2695 2696
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
2709 2710
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2711 2712 2713
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
2714 2715 2716 2717 2718
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2719 2720
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
2731 2732
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2733
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2734 2735 2736 2737 2738
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2739 2740
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2741

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2761 2762 2763
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2764 2765
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2766 2767 2768 2769 2770
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2771 2772 2773 2774
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2775 2776 2777 2778 2779 2780 2781 2782 2783
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2784 2785 2786 2787 2788 2789
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
2790 2791 2792
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2793 2794 2795 2796 2797 2798 2799 2800
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2801 2802 2803
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2804 2805 2806 2807
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2808 2809 2810 2811
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2847 2848
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
2849 2850
                fetch_list=[out_1, out_2, out_3]
            )
2851 2852

        with self.dynamic_graph():
2853
            with _test_eager_guard():
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
2875 2876 2877 2878 2879

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2880 2881 2882
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
2897 2898 2899 2900 2901

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2902 2903 2904 2905 2906 2907
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2908

2909 2910 2911 2912
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2913 2914 2915 2916 2917 2918
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2919
            crop_shape1 = (1, 2, 4, 4)
2920 2921 2922
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2923 2924
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2925 2926 2927
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2928 2929
            crop_offsets3 = [0, dim1, dim2, 0]

2930 2931 2932 2933 2934 2935 2936 2937 2938
            out1 = fluid.layers.crop_tensor(
                x, shape=crop_shape1, offsets=crop_offsets1
            )
            out2 = fluid.layers.crop_tensor(
                x, shape=crop_shape2, offsets=crop_offsets2
            )
            out3 = fluid.layers.crop_tensor(
                x, shape=crop_shape3, offsets=crop_offsets3
            )
2939 2940 2941 2942 2943

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2944 2945 2946
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2947 2948 2949
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2950 2951 2952

        self.assertIsNotNone(shard_label)

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2966 2967
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2968 2969 2970
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2971

L
Leo Chen 已提交
2972
        with self.dynamic_graph(force_to_use_cpu=True):
2973 2974 2975 2976 2977 2978
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

2979
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2980

Y
Yu Yang 已提交
2981

2982
class TestBook(LayerTest):
H
hong 已提交
2983 2984
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_gaussian_random_batch_size_like",
                "make_kldiv_loss",
                "make_prelu",
                "make_sampled_softmax_with_cross_entropy",
                "make_sampling_id",
                "make_uniform_random_batch_size_like",
            }
        )
2996
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2997

2998
    def func_all_layers(self):
2999 3000 3001 3002 3003
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
3004 3005 3006
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
3019 3020
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
3021

3022 3023 3024
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
3025 3026
            if method.__name__ in self.only_static_set:
                continue
3027 3028 3029 3030 3031

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
3032
                dy_result_value = dy_result.numpy()
3033

3034
            if method.__name__ in self.all_close_compare:
3035 3036 3037 3038 3039 3040
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
3041 3042 3043
                        method.__name__
                    ),
                )
3044 3045
                continue

H
hong 已提交
3046
            if method.__name__ not in self.not_compare_static_dygraph_set:
3047 3048 3049 3050
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
3051 3052 3053
                        method.__name__
                    ),
                )
3054

3055 3056 3057 3058 3059
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

3060 3061 3062
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
3063
            shape = [self._batch_size] + shape
3064 3065 3066 3067 3068
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
3069 3070 3071
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
3072
        elif dtype == 'int64':
3073 3074 3075 3076 3077 3078 3079
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
3080
        if base.enabled():
3081 3082 3083 3084 3085
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
3086 3087
        else:
            if set_feed_dict:
3088
                self._feed_dict[name] = self._get_np_data(
3089 3090 3091 3092 3093 3094 3095 3096
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
3097 3098

    def make_sampled_softmax_with_cross_entropy(self):
3099 3100 3101
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3102
            logits = self._get_data(name='Logits', shape=[256], dtype='float32')
M
minqiyang 已提交
3103
            label = self._get_data(name='Label', shape=[1], dtype='int64')
3104
            num_samples = 25
3105
            output = layers.sampled_softmax_with_cross_entropy(
3106 3107 3108
                logits, label, num_samples
            )
            return output
3109 3110

    def make_fit_a_line(self):
3111 3112 3113 3114
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
3115
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
3116
            y_predict = layers.fc(input=x, size=1, act=None)
3117
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
3118
            cost = layers.square_error_cost(input=y_predict, label=y)
3119
            avg_cost = paddle.mean(cost)
3120
            return avg_cost
Y
Yu Yang 已提交
3121

3122
    def make_recognize_digits_mlp(self):
3123 3124 3125
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3126
            # Change g_program, so the rest layers use `g_program`
3127 3128
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3129 3130
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
3131 3132 3133 3134 3135 3136
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
3137
            cost = layers.cross_entropy(input=predict, label=label)
3138
            avg_cost = paddle.mean(cost)
3139
            return avg_cost
Y
Yu Yang 已提交
3140

3141
    def make_conv2d_transpose(self):
3142 3143 3144
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3145
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
3146 3147 3148
            return layers.conv2d_transpose(
                input=img, num_filters=10, output_size=28
            )
3149

3150
    def make_recognize_digits_conv(self):
3151 3152 3153 3154 3155 3156
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
3157
            label = self._get_data(name='label', shape=[1], dtype='int64')
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
3174 3175 3176

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
3177
            avg_cost = paddle.mean(cost)
3178
            return avg_cost
Y
Yu Yang 已提交
3179

3180
    def make_word_embedding(self):
3181 3182 3183
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3184 3185
            dict_size = 10000
            embed_size = 32
3186
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3187 3188 3189
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
3190 3191 3192
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3193

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
3219 3220 3221

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
3222 3223
                axis=1,
            )
Y
Yu Yang 已提交
3224 3225

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
3226 3227 3228
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
3229
            cost = layers.cross_entropy(input=predict_word, label=next_word)
3230
            avg_cost = paddle.mean(cost)
3231
            return avg_cost
Y
Yu Yang 已提交
3232

3233
    def make_sigmoid_cross_entropy(self):
3234 3235 3236
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3237 3238
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
3239
            ignore_index = -1
3240 3241 3242
            return layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index
            )
3243 3244 3245 3246 3247 3248

    def make_hsigmoid(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[2], dtype='float32')
            y = self._get_data(name='y', shape=[2], dtype='int64')
3249
            return layers.hsigmoid(input=x, label=y, num_classes=2)
W
weixing02 已提交
3250

J
JiabinYang 已提交
3251
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
3252 3253
        program2 = Program()
        with program_guard(program2):
3254 3255
            x2 = self._get_data(name='x2', shape=[4, 8], dtype='float32')
            y2 = self._get_data(name='y2', shape=[4], dtype='int64')
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
            path_table = self._get_data(
                name='path_table', shape=[4, 6], dtype='int64'
            )
            path_code = self._get_data(
                name='path_code', shape=[4, 6], dtype='int64'
            )
            return layers.hsigmoid(
                input=x2,
                label=y2,
                num_classes=6,
                path_table=path_table,
                path_code=path_code,
                is_custom=True,
            )
J
JiabinYang 已提交
3270

3271
    def make_pool2d(self):
3272 3273 3274
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3275
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3276 3277 3278
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
3279

K
Kaipeng Deng 已提交
3280
    def make_pool2d_infershape(self):
3281 3282 3283
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3284 3285
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
            x = fluid.layers.affine_grid(theta, out_shape=[2, 3, 244, 244])
3286 3287 3288
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
3289 3290

    def make_pool3d(self):
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 244, 244, 244], dtype='float32'
            )
            return layers.pool3d(
                x,
                pool_size=[5, 3, 2],
                pool_stride=[1, 2, 3],
                pool_padding=(2, 1, 1),
            )
K
Kaipeng Deng 已提交
3303

3304
    def make_adaptive_pool2d(self):
3305 3306 3307
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3308
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3309
            return layers.adaptive_pool2d(x, [3, 3], pool_type='avg')
D
dengkaipeng 已提交
3310
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
3311 3312 3313
            return pool
            return mask
            return layers.adaptive_pool2d(x, 3, pool_type='avg')
3314
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
3315 3316
            return pool
            return mask
3317 3318

    def make_adaptive_pool3d(self):
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 244, 224, 224], dtype='float32'
            )
            return layers.adaptive_pool3d(x, [3, 3, 3], pool_type='avg')
            pool, mask = layers.adaptive_pool3d(
                x, [3, 3, 3], require_index=True
            )
            return pool
            return mask
            return layers.adaptive_pool3d(x, 3, pool_type='avg')
3332
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
3333 3334
            return pool
            return mask
3335

3336
    def make_lstm_unit(self):
3337 3338 3339 3340 3341 3342
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
3343
            x_t = layers.fc(input=x_t_data, size=10)
3344 3345 3346
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3347
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3348 3349 3350
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3351
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3352 3353 3354
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
3355

3356
    def make_softmax(self):
3357 3358 3359
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3360
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3361
            hid = layers.fc(input=data, size=20)
3362
            return layers.softmax(hid, axis=1)
D
dangqingqing 已提交
3363

3364
    def make_space_to_depth(self):
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data',
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.space_to_depth(data, 3)
J
JiabinYang 已提交
3375

3376
    def make_lrn(self):
3377 3378 3379
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3380
            data = self._get_data(name='data', shape=[6, 2, 2], dtype='float32')
3381
            return layers.lrn(data)
3382

3383
    def make_get_places(self):
3384 3385 3386
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3387
            get_places(device_count=1)
X
xuezhong 已提交
3388

3389
    @prog_scope()
3390
    def make_nce(self):
Y
Yang Yu 已提交
3391 3392
        window_size = 5
        words = []
3393
        for i in range(window_size):
Y
Yang Yu 已提交
3394
            words.append(
3395 3396 3397 3398
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
3399 3400

        dict_size = 10000
M
minqiyang 已提交
3401
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3402 3403

        embs = []
3404
        for i in range(window_size):
Y
Yang Yu 已提交
3405 3406 3407
            if i == label_word:
                continue

3408 3409 3410 3411 3412 3413
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
3414 3415 3416 3417

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
3418 3419 3420 3421 3422 3423 3424
        loss = layers.nce(
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
3425
        avg_loss = paddle.mean(loss)
3426
        return avg_loss
Y
Yang Yu 已提交
3427

3428
    def make_multiplex(self):
3429 3430 3431
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3432 3433 3434
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3435
            out = layers.multiplex(inputs=[x1, x2], index=index)
3436
            return out
3437 3438

    def make_softmax_with_cross_entropy(self):
3439 3440 3441
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3442 3443
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3444
            loss, softmax = layers.softmax_with_cross_entropy(
3445 3446
                x, y, return_softmax=True
            )
3447 3448 3449
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3450
            loss = layers.softmax_with_cross_entropy(x, y)
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
3465
            return loss4
3466 3467

    def make_smooth_l1(self):
3468 3469 3470
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3471 3472
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3473
            loss = layers.smooth_l1(x, y)
3474
            return loss
3475

3476
    def make_scatter(self):
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
3492
            out = layers.scatter(input=x, index=idx, updates=updates)
3493
            return out
Y
yangyaming 已提交
3494

3495 3496 3497 3498
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3499
            return one_hot_label
3500

3501 3502 3503 3504 3505
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3506
            one_hot_label = layers.one_hot(input=label, depth=10)
3507 3508 3509 3510
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="int32"
            )
            return smooth_label
3511

3512
    def make_topk(self):
3513 3514 3515
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3516 3517
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
3518 3519
            return values
            return indices
J
jerrywgz 已提交
3520

3521
    def make_resize_bilinear(self):
3522 3523 3524
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3525
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3526
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3527
            return output
K
Kaipeng Deng 已提交
3528 3529

    def make_resize_bilinear_by_scale(self):
3530 3531 3532
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3533 3534
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3535
            return output
3536

3537
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3538
        try:
3539 3540 3541
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3542 3543 3544 3545 3546 3547
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
3548 3549 3550 3551 3552 3553
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3554 3555 3556 3557
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3558 3559 3560
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3561
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3562
            output = layers.resize_nearest(x, out_shape=[12, 12])
3563
            return output
K
Kaipeng Deng 已提交
3564 3565

    def make_resize_nearest_by_scale(self):
3566 3567 3568
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3569 3570
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
3571
            return output
K
Kaipeng Deng 已提交
3572 3573 3574

    def make_resize_trilinear(self):
        try:
3575 3576 3577
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3578 3579 3580 3581 3582 3583
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
3584 3585 3586 3587 3588 3589
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3590 3591 3592 3593
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

3594 3595 3596
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3597 3598
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
3599
            return output
K
Kaipeng Deng 已提交
3600 3601

    def make_resize_trilinear_by_scale(self):
3602 3603 3604
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3605 3606
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3607
            return output
3608

3609
    def make_polygon_box_transform(self):
3610 3611 3612
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3613
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3614
            output = layers.polygon_box_transform(input=x)
3615
            return output
3616

3617
    def make_l2_normalize(self):
3618 3619 3620
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3621
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3622
            output = layers.l2_normalize(x, axis=1)
3623
            return output
3624

3625
    def make_crop(self):
3626 3627 3628
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3629 3630
            x = self._get_data(name='x', shape=[3, 5], dtype="float32")
            y = self._get_data(name='y', shape=[2, 3], dtype="float32")
3631
            output = layers.crop(x, shape=y)
3632
            return output
3633 3634 3635 3636

    def make_mean_iou(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[16], dtype='int32')
M
minqiyang 已提交
3637 3638
            y = self._get_data(name='label', shape=[16], dtype='int32')
            iou = layers.mean_iou(x, y, self._high_data_bound)
3639
            return iou
W
whs 已提交
3640

3641
    def make_argsort(self):
3642 3643 3644
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3645
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3646
            out, ids = layers.argsort(input=data, axis=1)
3647 3648
            return out
            return ids
3649 3650

    def make_rank_loss(self):
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            label = self._get_data(
                name='label',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32",
            )
            left = self._get_data(
                name='left',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32",
            )
            right = self._get_data(
                name='right',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32",
            )
3672
            out = layers.rank_loss(label, left, right, name="rank_loss")
3673
            return out
3674

3675
    def make_shape(self):
3676 3677 3678 3679 3680 3681
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
G
fix  
gongweibao 已提交
3682
            out = layers.shape(input)
3683
            return out
B
Bai Yifan 已提交
3684

3685
    def make_pad2d(self):
3686 3687 3688 3689 3690 3691
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
3692
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
            return out
            return out_1
W
whs 已提交
3709

3710
    def make_prelu(self):
3711 3712 3713 3714 3715 3716
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[5, 200, 100, 100], dtype="float32"
            )
J
jerrywgz 已提交
3717
            mode = 'channel'
3718 3719 3720 3721 3722 3723 3724
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu',
            )
            return out
J
jerrywgz 已提交
3725

3726
    def make_soft_relu(self):
3727 3728 3729
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3730
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3731
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
3732
            return out
T
tensor-tang 已提交
3733

3734
    def make_sigmoid(self):
3735 3736 3737
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3738
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3739
            out = layers.sigmoid(input, name='sigmoid')
3740
            return out
T
tensor-tang 已提交
3741

3742
    def make_exp(self):
3743 3744 3745
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3746
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3747
            out = layers.exp(input, name='exp')
3748
            return out
T
tensor-tang 已提交
3749

3750
    def make_tanh(self):
3751 3752 3753
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3754
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3755
            out = layers.tanh(input, name='tanh')
3756
            return out
T
tensor-tang 已提交
3757

3758
    def make_tanh_shrink(self):
3759 3760 3761
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3762
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3763
            out = layers.tanh_shrink(input, name='tanh_shrink')
3764
            return out
T
tensor-tang 已提交
3765

3766
    def make_sqrt(self):
3767 3768 3769
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3770
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3771
            out = layers.sqrt(input, name='sqrt')
3772
            return out
T
tensor-tang 已提交
3773

3774
    def make_abs(self):
3775 3776 3777
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3778
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3779
            out = layers.abs(input, name='abs')
3780
            return out
T
tensor-tang 已提交
3781

3782
    def make_ceil(self):
3783 3784 3785
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3786
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3787
            out = layers.ceil(input, name='ceil')
3788
            return out
T
tensor-tang 已提交
3789

3790
    def make_floor(self):
3791 3792 3793
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3794
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3795
            out = layers.floor(input, name='floor')
3796
            return out
T
tensor-tang 已提交
3797

3798
    def make_cos(self):
3799 3800 3801
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3802
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3803
            out = layers.cos(input, name='cos')
3804
            return out
T
tensor-tang 已提交
3805

3806
    def make_sin(self):
3807 3808 3809
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3810
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3811
            out = layers.sin(input, name='sin')
3812
            return out
T
tensor-tang 已提交
3813

3814
    def make_round(self):
3815 3816 3817
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3818
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3819
            out = layers.round(input, name='round')
3820
            return out
T
tensor-tang 已提交
3821

3822
    def make_reciprocal(self):
3823 3824 3825
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3826
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3827
            out = layers.reciprocal(input, name='reciprocal')
3828
            return out
T
tensor-tang 已提交
3829

3830
    def make_square(self):
3831 3832 3833
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3834
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3835
            out = layers.square(input, name='square')
3836
            return out
T
tensor-tang 已提交
3837

3838
    def make_softplus(self):
3839 3840 3841
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3842
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3843
            out = layers.softplus(input, name='softplus')
3844
            return out
T
tensor-tang 已提交
3845

3846
    def make_softsign(self):
3847 3848 3849
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3850
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3851
            out = layers.softsign(input, name='softsign')
3852
            return out
T
tensor-tang 已提交
3853

K
Kaipeng Deng 已提交
3854
    def make_mish(self):
3855 3856 3857
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3858 3859
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
3860
            return out
K
Kaipeng Deng 已提交
3861

3862
    def make_cross_entropy(self):
3863 3864 3865
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3866 3867
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3868 3869
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3870
            return out
3871

3872 3873 3874 3875 3876
    def make_bpr_loss(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3877
            out = layers.bpr_loss(x, label)
3878
            return out
3879

3880
    def make_expand(self):
3881 3882 3883
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3884
            x = self._get_data(name="input", shape=[10], dtype='int32')
W
whs 已提交
3885
            out = layers.expand(x, [1, 2])
3886
            return out
W
whs 已提交
3887

3888
    def make_uniform_random_batch_size_like(self):
3889 3890 3891 3892 3893 3894
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3895
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
3896
            return out
G
fix  
gongweibao 已提交
3897

3898
    def make_gaussian_random(self):
3899 3900 3901
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
3902
            out = layers.gaussian_random(shape=[20, 30])
3903
            return out
G
fix  
gongweibao 已提交
3904

3905
    def make_sampling_id(self):
3906 3907 3908 3909 3910 3911 3912 3913 3914
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False,
            )
G
fix  
gongweibao 已提交
3915 3916

            out = layers.sampling_id(x)
3917
            return out
G
fix  
gongweibao 已提交
3918

3919
    def make_gaussian_random_batch_size_like(self):
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0
            )
            return out
G
fix  
gongweibao 已提交
3931

3932
    def make_sum(self):
3933 3934 3935 3936 3937 3938
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3939 3940

            out = layers.sum(input)
3941
            return out
G
fix  
gongweibao 已提交
3942

3943
    def make_slice(self):
G
fix  
gongweibao 已提交
3944 3945 3946 3947
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3948 3949 3950 3951 3952 3953
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
3954 3955

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
3956
            return out
G
merge  
gongweibao 已提交
3957

3958
    def make_scale_variable(self):
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3971
            out = layers.scale(input, scale=scale_var)
3972 3973
            return out

3974
    def make_softshrink(self):
3975 3976 3977
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3978
            input = self._get_data(name="input", shape=[16], dtype="float32")
3979
            out = layers.softshrink(input, alpha=0.3)
3980
            return out
G
fix  
gongweibao 已提交
3981

M
minqiyang 已提交
3982
    def make_iou_similarity(self):
3983 3984 3985
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3986 3987
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3988
            out = layers.iou_similarity(x, y, name='iou_similarity')
3989
            return out
3990 3991

    def make_grid_sampler(self):
3992 3993 3994
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3995 3996
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3997
            out = layers.grid_sampler(x, grid)
3998
            return out
3999 4000

    def make_bilinear_tensor_product_layer(self):
4001 4002 4003
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4004 4005 4006 4007
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
4008
            return out
4009 4010

    def make_batch_norm(self):
4011 4012 4013 4014 4015 4016
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
4017
            out = layers.batch_norm(data)
4018
            return out
4019

4020
    def make_batch_norm_momentum_variable(self):
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
4033
            out = layers.batch_norm(data, momentum=momentum)
4034
            return out
4035

K
Kaipeng Deng 已提交
4036
    def make_inplace_abn(self):
4037 4038 4039 4040 4041 4042
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
K
Kaipeng Deng 已提交
4043
            out = layers.inplace_abn(data, act='leaky_relu', act_alpha=0.2)
4044
            return out
K
Kaipeng Deng 已提交
4045 4046

    def make_inplace_abn_momentum_variable(self):
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.inplace_abn(
                data, momentum=momentum, act='elu', act_alpha=2.0
            )
            return out
K
Kaipeng Deng 已提交
4063

4064
    def make_range(self):
4065 4066 4067
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4068
            layers.range(0, 10, 2, 'int32')
4069 4070 4071 4072 4073 4074
            layers.range(0.1, 10.0, 0.2, 'float32')
            layers.range(0.1, 10.0, 0.2, 'float64')
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
            y = layers.range(start, end, step, 'float64')
4075 4076 4077
            return y

    def make_spectral_norm(self):
4078 4079 4080 4081 4082 4083 4084 4085 4086
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
4087
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
4088
            return out
4089 4090

    def make_kldiv_loss(self):
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
4106
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
4107
            return loss
4108 4109

    def make_temporal_shift(self):
4110 4111 4112
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4113 4114
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
4115
            return out
4116 4117

    def make_shuffle_channel(self):
4118 4119 4120
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4121 4122
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
4123
            return out
4124

M
minqiyang 已提交
4125
    def make_fsp_matrix(self):
4126 4127 4128
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4129 4130 4131
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
4132
            return out
4133

M
minqiyang 已提交
4134
    def make_pixel_shuffle(self):
4135 4136 4137
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
4138 4139
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
4140
            return out
M
minqiyang 已提交
4141

R
ruri 已提交
4142
    def make_mse_loss(self):
4143 4144 4145
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
4146 4147 4148
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
4149
            return out
R
ruri 已提交
4150

4151
    def make_square_error_cost(self):
4152 4153 4154
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4155 4156 4157
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
4158
            return out
4159

4160 4161 4162 4163
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
4164 4165 4166
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
4167 4168
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
4169 4170 4171 4172
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
4173 4174 4175 4176

    def test_linear_chain_crf(self):
        with self.static_graph():
            label_dict_len = 10
4177 4178 4179
            feature = layers.data(name='feature', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10)
4180 4181 4182 4183 4184 4185
            crf = layers.linear_chain_crf(
                input=emission, label=label, param_attr=ParamAttr(name="crfw")
            )
            crf_decode = layers.crf_decoding(
                input=emission, param_attr=ParamAttr(name="crfw")
            )
4186 4187
            self.assertIsNotNone(crf)
            self.assertIsNotNone(crf_decode)
4188 4189 4190 4191 4192 4193
            return layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) // 2,
            )
4194 4195 4196 4197

    def test_linear_chain_crf_padding(self):
        with self.static_graph():
            label_dict_len, max_len = 10, 20
4198 4199 4200
            feature = layers.data(
                name='feature', shape=[max_len, 784], dtype='float32'
            )
4201 4202 4203
            label = layers.data(name='label', shape=[max_len], dtype='int64')
            length = layers.data(name='length', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10, num_flatten_dims=2)
4204 4205 4206 4207 4208 4209 4210 4211 4212
            crf = layers.linear_chain_crf(
                input=emission,
                label=label,
                length=length,
                param_attr=ParamAttr(name="crfw"),
            )
            crf_decode = layers.crf_decoding(
                input=emission, length=length, param_attr=ParamAttr(name="crfw")
            )
4213 4214
            self.assertIsNotNone(crf)
            self.assertIsNotNone(crf_decode)
4215 4216 4217 4218 4219 4220 4221
            return layers.chunk_eval(
                input=crf_decode,
                label=label,
                seq_length=length,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) // 2,
            )
4222 4223 4224 4225 4226 4227

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
4228 4229 4230 4231 4232 4233 4234 4235
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1],
            )
            return output
4236 4237 4238 4239

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4240
            # case 1
4241
            x = layers.data(name='x', shape=[10], dtype='float32')
4242 4243 4244
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
4245 4246 4247
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
4248
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
4249 4250 4251 4252 4253 4254
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
4255

W
whs 已提交
4256
    def test_affine_grid(self):
4257
        with self.static_graph():
W
whs 已提交
4258 4259 4260 4261
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
4262
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
W
whs 已提交
4263 4264 4265 4266 4267
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
4268

W
wangchaochaohu 已提交
4269 4270 4271 4272 4273 4274 4275
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
4276 4277 4278
            out = layers.strided_slice(
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
4279 4280
            return out

4281 4282
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
4283 4284 4285 4286 4287 4288
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
4289 4290
            return out

4291 4292 4293 4294
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
4295 4296 4297
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1
            )
4298
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
4299
            return output
4300

4301 4302 4303 4304
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
4305 4306 4307 4308
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
4309

4310 4311 4312 4313 4314
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
4315
            return out
4316

4317 4318 4319 4320
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
4321
            length = layers.data(name='length', shape=[], dtype='int64')
4322
            return layers.sequence_unpad(x=x, length=length)
4323

4324 4325 4326
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4327 4328 4329
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
4330
            seq = layers.fc(input=seq_data, size=20)
4331
            return layers.sequence_softmax(seq)
4332

4333 4334 4335 4336 4337
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
4338
            return out
4339

4340 4341 4342
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
4360
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
4361
            return out
W
whs 已提交
4362

4363 4364 4365 4366
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
4367 4368 4369 4370

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
4371 4372
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
4373 4374 4375 4376
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
4377

J
Jiawei Wang 已提交
4378 4379 4380
    def test_filter_by_instag(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
            x1 = layers.data(
                name='Ins', shape=[32, 1], dtype='float32', lod_level=0
            )
            x2 = layers.data(
                name='Ins_tag',
                shape=[32, 1],
                dtype='int64',
                lod_level=0,
                stop_gradient=True,
            )
            x3 = layers.create_global_var(
                shape=[1, 1],
                value=20,
                dtype='int64',
                persistable=True,
                force_cpu=True,
                name='Filter_tag',
            )
J
Jiawei Wang 已提交
4399 4400
            out1, out2 = layers.filter_by_instag(x1, x2, x3, is_lod=True)

Z
zhoushiyu 已提交
4401 4402 4403
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4404 4405 4406
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
4407 4408 4409 4410 4411
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
4412
            return out1
Z
zhoushiyu 已提交
4413

4414 4415 4416 4417
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4418 4419 4420 4421
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
4422

S
ShenLiang 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
4432 4433
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
4434 4435 4436 4437
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
4438 4439 4440 4441 4442
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
4443

S
ShenLiang 已提交
4444 4445 4446
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
4447 4448 4449
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
4450 4451 4452 4453 4454 4455 4456
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
4457 4458 4459 4460 4461
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
4462

4463
    def test_roi_pool(self):
4464 4465 4466 4467
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4468
        with self.static_graph():
4469 4470 4471 4472
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_pool(x, rois, 4, 4, 0.5, rois_num=rois_num)
4473 4474 4475 4476
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4477 4478

        with self.dynamic_graph():
4479 4480 4481 4482
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4483 4484 4485
                dy_eager_res = layers.roi_pool(
                    x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
                )
4486 4487
                dy_eager_res_value = dy_eager_res[0].numpy()

4488 4489 4490
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4491 4492 4493
            dy_res = layers.roi_pool(
                x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
            )
4494
            dy_res_value = dy_res[0].numpy()
4495 4496
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4497 4498 4499 4500 4501 4502 4503 4504

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
4505 4506 4507 4508
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4509
        with self.static_graph():
4510 4511 4512 4513
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_align(x, rois, 4, 4, 0.5, 2, rois_num=rois_num)
4514 4515 4516 4517
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4518 4519

        with self.dynamic_graph():
4520 4521 4522 4523
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4524 4525 4526
                dy_eager_res = layers.roi_align(
                    x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
                )
4527 4528
                dy_eager_res_value = dy_eager_res.numpy()

4529 4530 4531
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4532 4533 4534
            dy_res = layers.roi_align(
                x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
            )
4535
            dy_res_value = dy_res.numpy()
4536 4537
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
        np.testing.assert_array_equal(static_res, dy_res_value)
4538

4539 4540 4541 4542 4543 4544 4545
    def test_dice_loss(self):
        num_classes = 4
        eps = 1e-6
        input_np = np.random.rand(2, 3, num_classes).astype('float32')
        label_np = np.random.randint(0, num_classes, [2, 3, 1], dtype=np.int64)

        with self.static_graph():
4546 4547 4548 4549 4550 4551
            input_ = layers.data(
                name="input", shape=[None, 3, num_classes], dtype="float32"
            )
            label_ = layers.data(
                name="label", shape=[None, 3, 1], dtype="int64"
            )
4552
            output = layers.dice_loss(input_, label_, eps)
4553 4554 4555
            static_res = self.get_static_graph_result(
                feed={'input': input_np, 'label': label_np}, fetch_list=[output]
            )[0]
4556 4557

        with self.dynamic_graph():
4558 4559 4560 4561 4562 4563
            with _test_eager_guard():
                input_ = base.to_variable(input_np)
                label_ = base.to_variable(label_np)
                dy_eager_res = layers.dice_loss(input_, label_, eps)
                dy_eager_res_value = dy_eager_res.numpy()

4564 4565 4566 4567
            input_ = base.to_variable(input_np)
            label_ = base.to_variable(label_np)
            dy_res = layers.dice_loss(input_, label_, eps)
            dy_res_value = dy_res.numpy()
4568 4569
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4570

4571 4572 4573 4574
    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
4575 4576 4577
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
4578
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
4579
            return output
4580 4581 4582 4583 4584 4585

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
4586
            return out
4587 4588 4589 4590

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
4591 4592 4593 4594 4595 4596
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
4597 4598 4599 4600 4601 4602

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
4603
            return out
4604 4605 4606 4607

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
4608 4609 4610 4611 4612 4613
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
4614
            out = layers.flatten(x, axis=1, name="flatten")
4615
            return out
4616

Z
zhoukunsheng 已提交
4617 4618 4619 4620 4621 4622 4623
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

4624 4625 4626 4627
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
4628
            return out
4629

4630 4631 4632 4633
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4634 4635 4636 4637 4638 4639
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
4640 4641
            return concat1, concat2

C
cjt222 已提交
4642
    def test_deform_roi_pooling(self):
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
4675

4676
    def test_retinanet_target_assign(self):
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='int32',
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.retinanet_target_assign(
                bbox_pred,
                cls_logits,
                anchor_box,
                anchor_var,
                gt_boxes,
                gt_labels,
                is_crowd,
                im_info,
                10,
            )
4739

4740
    def test_sigmoid_focal_loss(self):
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            fg_num = layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32'
            )
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2.0, alpha=0.25
            )
            return out
4763

4764
    def test_addmm(self):
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
4780 4781

            out = paddle.addmm(input=input, x=x, y=y)
4782
            return out
4783

4784
    def test_retinanet_detection_output(self):
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
4812 4813 4814 4815 4816 4817 4818 4819 4820
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
4821 4822 4823
                nms_eta=1.0,
            )
            return nmsed_outs
4824

4825 4826 4827
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4828 4829 4830 4831 4832 4833
            input_length = layers.data(
                name='logits_length', shape=[11], dtype='int64'
            )
            label_length = layers.data(
                name='labels_length', shape=[12], dtype='int64'
            )
4834
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
            predict = layers.data(
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
            output = layers.warpctc(
                input=predict,
                label=label,
                input_length=input_length,
                label_length=label_length,
            )
            return output
4845

4846 4847
    def test_edit_distance(self):
        with self.static_graph():
4848 4849 4850 4851 4852 4853
            predict = layers.data(
                name='predict', shape=[-1, 1], dtype='int64', lod_level=1
            )
            label = layers.data(
                name='label', shape=[-1, 1], dtype='int64', lod_level=1
            )
4854 4855 4856
            evaluator = fluid.evaluator.EditDistance(predict, label)
            return evaluator.metrics

4857 4858 4859 4860
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4861 4862 4863 4864 4865 4866 4867 4868 4869
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
4881 4882
                        batch_first=batch_first,
                    )
4883

Y
Yu Yang 已提交
4884

4885 4886 4887 4888
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
4910 4911 4912 4913 4914 4915
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4916 4917
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
4918
        super().__init__()
4919
        self.weight = self.create_parameter(
4920 4921
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4952 4953
class MyLayer(paddle.nn.Layer):
    def __init__(self):
4954
        super().__init__()
J
Jiabin Yang 已提交
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
4966
        super().__init__()
J
Jiabin Yang 已提交
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4982
if __name__ == '__main__':
4983
    paddle.enable_static()
Y
Yu Yang 已提交
4984
    unittest.main()