test_layers.py 162.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib
import inspect
Q
Qiao Longfei 已提交
17 18
import unittest

19
import numpy as np
20
from decorator_helper import prog_scope
21
from test_imperative_base import new_program_scope
22 23 24

import paddle
import paddle.fluid as fluid
25
import paddle.fluid.layers as layers
26
import paddle.fluid.nets as nets
27
import paddle.nn.functional as F
28
from paddle.fluid import core
29 30 31 32 33 34 35
from paddle.fluid.dygraph import base, nn, to_variable
from paddle.fluid.framework import (
    Program,
    _test_eager_guard,
    default_main_program,
    program_guard,
)
J
jerrywgz 已提交
36
from paddle.fluid.initializer import Constant
37 38
from paddle.fluid.layers.device import get_places
from paddle.fluid.param_attr import ParamAttr
39
from paddle.tensor import random
40 41 42 43 44 45 46 47 48 49 50


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

51 52 53 54 55 56 57 58
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
59 60 61 62

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
63
            paddle.seed(self.seed)
L
Leo Chen 已提交
64
            paddle.framework.random._manual_program_seed(self.seed)
65 66
            yield

67 68 69
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
70
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
71
        exe.run(fluid.default_startup_program())
72 73 74 75 76 77
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
78 79

    @contextlib.contextmanager
80
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
81
        with fluid.dygraph.guard(
82 83
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
84
            paddle.seed(self.seed)
L
Leo Chen 已提交
85
            paddle.framework.random._manual_program_seed(self.seed)
86 87 88 89
            yield


class TestLayer(LayerTest):
90 91
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
92
            def __init__(self, input_size, linear1_size=4):
93
                super().__init__()
94 95 96
                self.linear1 = nn.Linear(
                    input_size, linear1_size, bias_attr=False
                )
97 98 99 100 101 102
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
103 104 105
                return ret

        with self.dynamic_graph():
106 107 108 109 110
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
111
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
112
                ret = custom(x, do_linear2=True)
113
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
114 115
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
116 117
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
118
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
119
            ret = custom(x, do_linear2=True)
120
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
121

122 123 124
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
125 126 127 128 129 130
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
131 132
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
133 134 135
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
136
            static_ret, static_ret2 = self.get_static_graph_result(
137 138
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
139
        with self.dynamic_graph():
140 141 142 143
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
144 145 146
                dy_eager_ret2 = fluid.layers.dropout(
                    t, dropout_prob=0.35, seed=1, is_test=False
                )
147 148 149
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

150 151 152
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
153 154 155
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
156 157 158
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

159 160
        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
161

162 163 164
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
165

S
songyouwei 已提交
166 167 168
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
169 170 171 172 173 174
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
S
songyouwei 已提交
175
            linear = nn.Linear(
176 177
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
178
            ret = linear(t)
179 180 181
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
182
        with self.dynamic_graph():
183 184 185 186 187
            with _test_eager_guard():
                t = base.to_variable(inp)
                linear = nn.Linear(
                    32,
                    4,
188 189
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
190 191 192
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
193 194
            t = base.to_variable(inp)
            linear = nn.Linear(
195 196
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
197 198 199
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

200 201
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
202

203 204 205 206 207 208 209 210
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
211 212
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
213 214 215 216 217 218 219 220
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
221 222 223
                linear = nn.Linear(
                    32,
                    4,
224 225
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
226 227 228 229 230 231 232
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
233 234 235 236 237 238
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
239 240
            flatten = nn.Flatten()
            ret = flatten(t)
241 242 243
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
244
        with self.dynamic_graph():
245 246 247 248 249 250
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

251 252 253 254 255
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

256 257
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
258 259 260 261 262 263 264 265 266

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
267 268
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
269 270 271 272 273 274 275 276
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
277 278 279
                linear = nn.Linear(
                    32,
                    4,
280 281
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
282 283 284 285
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

286 287 288
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
289 290 291 292 293 294
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
295 296 297
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
298 299 300 301 302
                act='sigmoid',
            )
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
303
        with self.static_graph():
304 305 306 307 308 309
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
310
            lm = nn.LayerNorm(
311
                normalized_shape=[32, 32],
312
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
313 314
                act='sigmoid',
            )
315
            ret = lm(t)
316 317 318
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
319
        with self.dynamic_graph():
320 321 322 323
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
324 325
                    act='sigmoid',
                )
326 327 328
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

329
            lm = nn.LayerNorm(
330
                normalized_shape=[32, 32],
331
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
332 333
                act='sigmoid',
            )
334
            dy_ret = lm(base.to_variable(inp))
335
            dy_ret_value = dy_ret.numpy()
336

337
        with self.dynamic_graph():
338 339 340 341 342 343 344
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
345 346
                    act='sigmoid',
                )
347 348 349 350 351
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

352
            lm = nn.LayerNorm(
353
                normalized_shape=[32, 32],
354 355 356 357
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
358 359
                act='sigmoid',
            )
360 361 362 363
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
364

365 366 367
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_eager_ret_value, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, static_ret2)
368

369
        with self.dynamic_graph():
370 371 372 373
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
374 375
                    act='sigmoid',
                )
376 377 378
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

379 380 381
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
382 383
                act='sigmoid',
            )
384 385 386
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
387 388 389 390
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
391
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
392 393
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
394
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
395 396
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
397 398

            with self.dynamic_graph():
399 400 401 402 403 404
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
405 406 407 408
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
409 410
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
411

412 413 414 415 416
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
417 418
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
419 420

        with self.dynamic_graph():
421 422 423 424 425
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

426 427
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
428
            dy_ret_value = dy_ret.numpy()
429

430 431
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
432

433 434 435 436 437
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
438 439 440 441 442 443 444
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
445 446

        with self.dynamic_graph():
447 448 449
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
450 451 452
                dy_eager_ret = layers.matmul(
                    base.to_variable(t), base.to_variable(t2)
                )
453 454
                dy_eager_ret_value = dy_eager_ret.numpy()

455 456
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
457
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
458
            dy_ret_value = dy_ret.numpy()
459

460 461
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
462

M
minqiyang 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
476 477
                input=x, hidden=hidden, size=D * 3
            )
M
minqiyang 已提交
478
            static_ret = self.get_static_graph_result(
479 480 481
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
482 483 484 485 486

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
487 488
                input=x, hidden=hidden, size=D * 3
            )
489
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
490 491 492
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
493 494 495
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
496 497

        with self.dynamic_graph():
498 499
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
500 501 502
                dy_eager_ret = gru(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
503 504 505 506
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

507
            gru = nn.GRUUnit(size=D * 3)
508 509 510
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input)
            )
511 512 513
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
514 515

        for i in range(len(static_ret)):
516 517 518 519 520 521 522 523 524
            np.testing.assert_allclose(
                static_ret[i], static_ret2[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_ret_value[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_eager_ret_value[i], rtol=1e-05
            )
M
minqiyang 已提交
525

526
        with self.dynamic_graph():
527 528 529 530
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
531 532 533
                        custom_weight
                    )
                )
534 535
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
536 537 538 539 540 541
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
542
                self.assertFalse(
543 544
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
                )
545 546 547 548
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
549 550 551 552 553 554
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
555
                for o1, o2 in zip(dy_ret1, dy_ret2):
556
                    np.testing.assert_array_equal(o1.numpy(), o2.numpy())
557 558 559

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
560 561 562 563 564 565
                np.testing.assert_array_equal(
                    gru1.weight.numpy(), gru2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    gru1.bias.numpy(), gru2.bias.numpy()
                )
566

567
            custom_weight = np.random.randn(D, D * 3).astype("float32")
568 569 570 571 572
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
573 574
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
575 576 577 578 579 580
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
581
            self.assertFalse(
582 583
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
            )
584 585 586 587
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
588 589 590 591 592 593
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
594
            for o1, o2 in zip(dy_ret1, dy_ret2):
595
                np.testing.assert_array_equal(o1.numpy(), o2.numpy())
596 597 598

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
599 600 601
            np.testing.assert_array_equal(
                gru1.weight.numpy(), gru2.weight.numpy()
            )
602
            np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy())
603

X
Xin Pan 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
621
            ret = paddle.pow(ret, t3)
X
Xin Pan 已提交
622 623 624 625
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

626 627 628 629
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
630 631

        with self.dynamic_graph():
632 633
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
634
                ret = paddle.pow(ret, to_variable(n3))
635 636 637 638 639
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

640
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
641
            ret = paddle.pow(ret, to_variable(n3))
642 643 644
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
645
            dy_ret_value = dy_ret.numpy()
646

647 648
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
649 650 651 652 653 654

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
655
            with _test_eager_guard():
656
                min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
657
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
658 659 660
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

661
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
662
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
663 664
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
665

666 667 668 669
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
670

671 672 673 674 675 676 677
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
678 679 680 681 682 683 684
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
685
            out = layers.sequence_conv(seq, 2, act='sigmoid')
686 687 688 689 690 691 692 693 694
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
695 696

        with self.static_graph():
697 698 699 700 701 702 703
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
704
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
705
            out = seq_conv(seq)
706 707 708 709 710 711 712 713 714 715 716 717
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
        np.testing.assert_array_equal(
            np.array(static_rlt), np.array(static_rlt2)
        )
718 719 720 721 722

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
723
            out = paddle.static.nn.conv2d_transpose(
724 725
                input=img,
                num_filters=10,
726
                filter_size=27,
727
                act='sigmoid',
728 729 730 731 732
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
733 734 735
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
736
                num_channels=3,
737
                num_filters=10,
738
                filter_size=27,
739
                act='sigmoid',
740 741
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
742
            out = conv2d_transpose(img)
743 744 745
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
746
        with self.dynamic_graph():
747 748 749 750 751 752
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
753 754
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
755 756 757
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

758
            conv2d_transpose = nn.Conv2DTranspose(
759
                num_channels=3,
760
                num_filters=10,
761
                filter_size=27,
762
                act='sigmoid',
763 764
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
765
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
766
            dy_rlt_value = dy_rlt.numpy()
767 768 769
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
770

771
        with self.dynamic_graph():
772 773 774 775 776
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
777 778 779 780 781 782 783 784 785 786 787 788
                        custom_weight
                    )
                )
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr,
                )
789 790 791
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
792 793
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
794 795 796 797

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
798 799
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
800
                conv2d2.weight.set_value(conv2d1_weight_np)
801 802 803
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
804 805 806
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
807
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
808 809 810

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
811 812 813 814 815 816
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
817

818 819
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
820 821 822 823 824 825 826 827 828 829 830 831 832 833
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv2d1 = nn.Conv2DTranspose(
                num_channels=3, num_filters=3, filter_size=[2, 2]
            )
            conv2d2 = nn.Conv2DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr,
            )
834 835 836 837 838 839 840
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
841 842
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
843
            conv2d2.weight.set_value(conv2d1_weight_np)
844 845 846
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
847 848 849
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
850
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
851 852 853

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
854 855 856 857 858 859
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
860

861 862 863 864 865
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
866 867 868
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
869 870 871 872 873 874 875
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
876 877 878 879 880 881
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
882 883 884 885
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

886 887 888 889 890
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
891 892 893 894 895 896
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
897 898 899 900 901
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
902 903
                act='sigmoid',
            )
904

905 906 907
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
908

909
        with self.static_graph():
910 911 912 913 914 915
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
916
            btp = nn.BilinearTensorProduct(
917 918
                3,
                3,
919 920
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
921 922
                act='sigmoid',
            )
923
            out = btp(data_x, data_y)
924 925 926
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
927
        with self.dynamic_graph():
928 929 930 931 932 933
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
934 935 936 937 938
                    act='sigmoid',
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
939 940
                dy_eager_rlt_value = dy_eager_rlt.numpy()

941
            btp = nn.BilinearTensorProduct(
942 943
                3,
                3,
944 945
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
946 947
                act='sigmoid',
            )
948
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
949
            dy_rlt_value = dy_rlt.numpy()
950

951
        with self.dynamic_graph():
952 953
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
954 955 956
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
957 958
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

959
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
960 961 962
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
963
            dy_rlt2_value = dy_rlt2.numpy()
964

965
        with self.static_graph():
966 967 968 969 970 971 972 973 974 975 976 977 978
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
979

980 981 982 983 984
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
985

986
        with self.dynamic_graph():
987 988 989 990
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
991 992 993
                        custom_weight
                    )
                )
994
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
995 996 997 998 999 1000 1001 1002 1003
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr
                )
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1004
                self.assertFalse(
1005 1006
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1007 1008
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1009 1010 1011 1012 1013 1014
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1015
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1016 1017 1018

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
1019 1020 1021 1022 1023 1024
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
1025

1026
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1027 1028 1029 1030 1031
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1032
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1033 1034 1035 1036 1037 1038 1039 1040 1041
            btp2 = nn.BilinearTensorProduct(
                3, 3, 6, act='sigmoid', param_attr=weight_attr
            )
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1042 1043 1044
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1045 1046 1047 1048 1049 1050
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1051
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1052 1053 1054

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
1055 1056 1057
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
1058
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
1059

1060
    def prelu_test(self, mode):
1061 1062
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1063 1064 1065 1066 1067 1068
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
1069
            out = paddle.static.nn.prelu(
1070 1071 1072 1073 1074
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0))
            )
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1075 1076

        with self.static_graph():
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=data_t.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1089
            out = prelu(data_t)
1090 1091 1092
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1093 1094

        with self.dynamic_graph():
1095 1096 1097 1098 1099
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1100 1101
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1102 1103 1104
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1105 1106 1107 1108 1109 1110
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1111
            dy_rlt = prelu(base.to_variable(inp_np))
1112
            dy_rlt_value = dy_rlt.numpy()
1113

1114 1115 1116
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1117

1118
        with self.dynamic_graph():
1119 1120 1121 1122 1123 1124 1125
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1126 1127
                    param_attr=ParamAttr(initializer=Constant(2.0)),
                )
1128 1129 1130 1131
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1132 1133
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1134 1135 1136
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1137 1138
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
                )
1139
                self.assertFalse(
1140 1141
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1142 1143 1144
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1145
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1146 1147

                prelu2.weight = prelu1.weight
1148 1149 1150
                np.testing.assert_array_equal(
                    prelu1.weight.numpy(), prelu2.weight.numpy()
                )
1151

1152 1153
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
            prelu1 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(2.0)),
            )
            prelu2 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1166 1167 1168
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
1169 1170
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
            )
1171 1172 1173 1174
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
1175
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1176 1177

            prelu2.weight = prelu1.weight
1178 1179 1180
            np.testing.assert_array_equal(
                prelu1.weight.numpy(), prelu2.weight.numpy()
            )
1181

1182 1183 1184 1185 1186
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1187 1188 1189 1190 1191
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1192 1193 1194 1195 1196 1197 1198 1199 1200
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
1201 1202
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1203 1204 1205
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1206
            emb_rlt = emb2(data_t)
1207 1208 1209
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
1210
        with self.dynamic_graph():
1211
            with _test_eager_guard():
1212 1213 1214 1215 1216
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
1217 1218 1219
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1220 1221 1222
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1223 1224
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1225 1226

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1227
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1228
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1229

1230
        with self.dynamic_graph():
1231 1232 1233 1234
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1235 1236 1237
                        custom_weight
                    )
                )
1238
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1239 1240 1241 1242 1243
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
1244 1245 1246
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
1247 1248 1249 1250 1251
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
1252 1253 1254
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
1255
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1256 1257

                emb2.weight = emb1.weight
1258 1259 1260
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
1261

1262
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1263 1264 1265 1266 1267
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1268
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1269 1270 1271
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
1272 1273 1274
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
1275
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
1276 1277 1278
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
1279
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1280 1281

            emb2.weight = emb1.weight
1282 1283 1284
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
1285

1286 1287 1288 1289
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1290
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1291 1292 1293 1294 1295 1296
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1297 1298 1299 1300 1301 1302 1303
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
1304 1305 1306 1307 1308
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1309 1310 1311 1312 1313 1314
                emb = fluid.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False,
                )
1315 1316 1317
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1318
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1319
            nce_loss = paddle.static.nn.nce(
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
                input=embs,
                label=wl,
                num_total_classes=dict_size,
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1331 1332 1333
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1334 1335 1336
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss]
            )[0]
W
Weilong Wu 已提交
1337

1338 1339 1340 1341
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs2.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1373

1374 1375
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1376 1377 1378 1379
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1380 1381 1382
            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2]
            )[0]
1383

L
Leo Chen 已提交
1384
        with self.dynamic_graph():
W
Weilong Wu 已提交
1385 1386 1387 1388
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1389 1390 1391 1392 1393 1394 1395 1396
                sample_weights = layers.fill_constant(
                    shape=[5, 1], dtype='float32', value=1
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
                embs3 = layers.concat(
                    input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
                )
                nce = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce.w',
                    bias_attr='eager_nce.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1420 1421 1422 1423 1424

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1425 1426 1427
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1428 1429 1430 1431 1432 1433
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1434 1435 1436 1437 1438 1439 1440 1441 1442

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
            )
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1457

1458 1459
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1460
            dy_rlt_value = dy_rlt.numpy()
1461

1462 1463 1464
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1465

L
Leo Chen 已提交
1466
        with self.dynamic_graph():
W
Weilong Wu 已提交
1467
            with _test_eager_guard():
1468 1469 1470
                custom_weight = np.random.randn(dict_size, 128).astype(
                    "float32"
                )
W
Weilong Wu 已提交
1471 1472
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1473 1474 1475
                        custom_weight
                    )
                )
W
Weilong Wu 已提交
1476 1477 1478 1479 1480 1481
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
1482 1483 1484 1485 1486 1487 1488
                    value=1,
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
                nce1 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce1.w',
                    bias_attr='eager_nce1.b',
                    sample_weight=sample_weights,
                )

                nce2 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr=weight_attr,
                    bias_attr='eager_nce2.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1522 1523 1524 1525 1526

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
1527 1528
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
                )
W
Weilong Wu 已提交
1529 1530 1531 1532
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
1533 1534 1535
                np.testing.assert_array_equal(
                    nce1_loss.numpy(), nce2_loss.numpy()
                )
W
Weilong Wu 已提交
1536 1537 1538

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
1539 1540 1541 1542 1543 1544
                np.testing.assert_array_equal(
                    nce1.weight.numpy(), nce2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    nce1.bias.numpy(), nce2.bias.numpy()
                )
W
Weilong Wu 已提交
1545

1546
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1547 1548 1549 1550 1551
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1552 1553 1554 1555
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1556 1557
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
1558 1559 1560 1561 1562
                value=1,
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
            nce1 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce1.w',
                bias_attr='nce1.b',
                sample_weight=sample_weights,
            )

            nce2 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr=weight_attr,
                bias_attr='nce2.b',
                sample_weight=sample_weights,
            )
1596

1597 1598 1599
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1600
            self.assertFalse(
1601 1602
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
            )
1603 1604
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1605 1606
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1607
            np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy())
1608 1609 1610

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
1611 1612 1613
            np.testing.assert_array_equal(
                nce1.weight.numpy(), nce2.weight.numpy()
            )
1614
            np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy())
1615

S
songyouwei 已提交
1616 1617
    def test_one_hot(self):
        with self.dynamic_graph():
1618
            with _test_eager_guard():
1619 1620 1621
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
1622 1623
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1624 1625 1626 1627 1628
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
1629

S
songyouwei 已提交
1630 1631 1632
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
1633 1634 1635 1636 1637
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
1638 1639 1640

    def test_split(self):
        with self.dynamic_graph():
1641 1642 1643
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1644 1645 1646 1647 1648
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
1649 1650
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1651

S
songyouwei 已提交
1652 1653
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1654 1655 1656 1657 1658
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
1659 1660
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1661 1662 1663

    def test_topk(self):
        with self.dynamic_graph():
1664 1665 1666 1667
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
1668 1669 1670 1671 1672 1673 1674 1675
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
1676

S
songyouwei 已提交
1677 1678 1679
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
1680 1681 1682 1683 1684 1685 1686 1687
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
1688

L
lujun 已提交
1689 1690
    def test_conv3d(self):
        with self.static_graph():
1691 1692 1693
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1694 1695 1696
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
1697
            static_ret = self.get_static_graph_result(
1698
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1699 1700
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1701 1702

        with self.static_graph():
1703 1704 1705
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1706
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1707 1708
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1709
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1710 1711
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1712 1713

        with self.dynamic_graph():
1714 1715 1716 1717 1718 1719
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1720
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1721
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1722
            dy_ret = conv3d(base.to_variable(images))
1723
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1724

1725 1726 1727
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1728

1729
        with self.dynamic_graph():
1730 1731 1732 1733 1734
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3D(
                    num_channels=3, num_filters=3, filter_size=2
                )
                conv3d2 = nn.Conv3D(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                )
1747 1748 1749
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1750 1751
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1752 1753 1754 1755

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1756 1757
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1758
                conv3d2.weight.set_value(conv3d1_weight_np)
1759 1760 1761
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1762 1763 1764
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1765
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1766 1767 1768

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1769 1770 1771 1772 1773 1774
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1775

1776 1777
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1778 1779 1780 1781 1782
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1783
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1784 1785 1786 1787 1788 1789
            conv3d2 = nn.Conv3D(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
            )
1790 1791 1792 1793 1794 1795 1796
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1797 1798
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1799
            conv3d2.weight.set_value(conv3d1_weight_np)
1800 1801 1802
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1803 1804 1805
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1806
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1807 1808 1809

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1810 1811 1812 1813 1814 1815
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1816

L
lujun 已提交
1817 1818 1819 1820 1821 1822 1823 1824
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1825 1826 1827 1828 1829 1830 1831
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1832
            ret = layers.row_conv(input=x, future_context_size=2)
1833 1834 1835 1836 1837 1838 1839 1840 1841
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1842 1843

        with self.static_graph():
1844 1845 1846 1847 1848 1849 1850
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1851 1852
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1853 1854 1855 1856 1857 1858 1859 1860 1861
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1862

1863
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1864

1865
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1866

1867
    def func_group_norm(self):
L
lujun 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1878 1879 1880 1881 1882 1883 1884
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1885
            ret = paddle.static.nn.group_norm(
1886 1887
                input=X,
                groups=2,
1888
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1900 1901

        with self.static_graph():
1902 1903 1904 1905 1906 1907 1908
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1909 1910 1911
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1912
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1913 1914
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1915
            ret = groupNorm(X)
1916 1917 1918 1919 1920 1921 1922 1923 1924
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1925 1926

        with self.dynamic_graph():
1927 1928 1929
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1930
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1931 1932
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1933
            dy_ret = groupNorm(base.to_variable(input))
1934
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1935

1936 1937
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1938

1939 1940 1941 1942 1943
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1955 1956 1957
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1958
            ret = paddle.static.nn.instance_norm(input=X)
1959 1960 1961
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1962 1963

        with self.static_graph():
1964 1965 1966
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1967
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1968
            ret = instanceNorm(X)
1969 1970 1971
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1972 1973

        with self.dynamic_graph():
1974
            with _test_eager_guard():
1975
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1976 1977 1978
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1979
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1980 1981 1982 1983
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1984
            with _test_eager_guard():
1985
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1986 1987 1988
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1989
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1990 1991 1992
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1993 1994 1995 1996 1997
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1998 1999 2000 2001

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
2002
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
2003 2004 2005 2006 2007 2008 2009
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
2010
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
2011 2012 2013 2014
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
2026 2027 2028 2029 2030 2031 2032
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
2033
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
2034 2035 2036 2037 2038 2039 2040 2041 2042
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2043 2044

        with self.static_graph():
2045 2046 2047 2048 2049 2050 2051
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
2052
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2053
            ret = spectralNorm(Weight)
2054 2055 2056 2057 2058 2059 2060 2061 2062
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2063 2064

        with self.dynamic_graph():
2065 2066 2067 2068 2069
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2070
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2071
            dy_ret = spectralNorm(base.to_variable(input))
2072
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2073

2074 2075 2076
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2121 2122

        with self.static_graph():
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2140
            ret = treeConv(NodesVector, EdgeSet)
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2153 2154

        with self.dynamic_graph():
2155
            with _test_eager_guard():
2156 2157 2158 2159 2160 2161
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2162 2163
                dy_eager_rlt_value = dy_eager_ret.numpy()

2164 2165 2166
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2167
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2168
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2169

2170 2171 2172
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
2173

2174
        with self.dynamic_graph():
2175 2176 2177 2178
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2203
                self.assertFalse(
2204 2205
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2206 2207
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2208 2209 2210 2211 2212 2213
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2214
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2215 2216 2217

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
2218 2219 2220 2221 2222 2223
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
2224

2225
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2252 2253 2254
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2255 2256 2257 2258 2259 2260
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2261
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2262 2263 2264

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
2265 2266 2267 2268 2269 2270
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
2271

L
lujun 已提交
2272
    def test_conv3d_transpose(self):
2273 2274 2275
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
2276 2277 2278

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2279
            out = paddle.static.nn.conv3d_transpose(
2280 2281
                input=img, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2282
            static_rlt = self.get_static_graph_result(
2283 2284
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2285 2286
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2287 2288 2289
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2290 2291
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
2292 2293
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2294
        with self.dynamic_graph():
2295
            with _test_eager_guard():
2296 2297 2298 2299 2300 2301
                conv3d_transpose = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False,
                )
2302 2303 2304
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2305 2306 2307
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2308
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2309
            dy_rlt_value = dy_rlt.numpy()
2310 2311 2312
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
2313

2314
        with self.dynamic_graph():
2315 2316 2317 2318 2319
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    bias_attr='eager_conv3d1_b',
                    use_cudnn=False,
                )
                conv3d2 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                    bias_attr='eager_conv3d2_b',
                    use_cudnn=False,
                )
2338 2339 2340
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
2341 2342
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2343 2344 2345 2346

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
2347 2348
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
2349
                conv3d2.weight.set_value(conv3d1_weight_np)
2350 2351 2352
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
2353 2354 2355
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2356
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2357 2358 2359

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
2360 2361 2362 2363 2364 2365
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
2366

2367 2368
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv3d1 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False,
            )
            conv3d2 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False,
            )
2389 2390 2391 2392 2393 2394 2395
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
2396 2397
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
2398
            conv3d2.weight.set_value(conv3d1_weight_np)
2399 2400 2401
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
2402 2403 2404
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
2405
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2406 2407 2408

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
2409 2410 2411 2412 2413 2414
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
2415

2416
    def func_while_loop(self):
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2434
            def cond1(i):
2435 2436
                return layers.less_than(i, ten)

2437
            def body1(i):
2438 2439
                return i + 1

2440
            dy_ret = layers.while_loop(cond1, body1, [i])
2441 2442 2443 2444 2445 2446
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2447
                layers.while_loop(cond1, body2, [j])
2448

2449
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
2450

2451 2452 2453 2454 2455
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2456 2457 2458 2459 2460 2461 2462 2463
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2464 2465 2466
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
2467
        with self.dynamic_graph():
2468 2469 2470 2471 2472 2473 2474 2475
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2476 2477 2478 2479
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2480 2481
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2482 2483 2484 2485 2486

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
2487
            cond1 = paddle.less_equal(x=a1, y=b1)
2488 2489 2490
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
2491
        with self.dynamic_graph():
2492 2493 2494
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
2495
                dcond1 = paddle.less_equal(x=da1, y=db1)
2496 2497 2498 2499

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2500 2501
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
2502
            dcond1 = paddle.less_equal(x=da1, y=db1)
2503 2504 2505 2506

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2507
        # greater than
2508 2509 2510
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
2511
            cond2 = paddle.greater_than(x=a2, y=b2)
2512 2513 2514
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
2515
        with self.dynamic_graph():
2516 2517 2518
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
2519
                dcond2 = paddle.greater_than(x=da2, y=db2)
2520 2521 2522 2523

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2524 2525
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
2526
            dcond2 = paddle.greater_than(x=da2, y=db2)
2527 2528 2529 2530

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2531
        # greater equal
2532 2533 2534
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
2535
            cond3 = paddle.greater_equal(x=a3, y=b3)
2536 2537 2538
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
2539
        with self.dynamic_graph():
2540 2541 2542
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
2543
                dcond3 = paddle.greater_equal(x=da3, y=db3)
2544 2545 2546 2547

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2548 2549
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
2550
            dcond3 = paddle.greater_equal(x=da3, y=db3)
2551 2552 2553 2554 2555 2556 2557 2558

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
2559
            cond4 = paddle.equal(x=a4, y=b4)
2560 2561 2562
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
2563
        with self.dynamic_graph():
2564 2565 2566
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
2567
                dcond4 = paddle.equal(x=da4, y=db4)
2568 2569 2570 2571

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2572 2573
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
2574
            dcond4 = paddle.equal(x=da4, y=db4)
2575 2576 2577 2578 2579 2580 2581 2582

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
2583
            cond5 = paddle.equal(x=a5, y=b5)
2584 2585 2586
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
2587
        with self.dynamic_graph():
2588 2589 2590
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
2591
                dcond5 = paddle.equal(x=da5, y=db5)
2592 2593 2594 2595

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2596 2597
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
2598
            dcond5 = paddle.equal(x=da5, y=db5)
2599 2600 2601 2602

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2603 2604 2605 2606 2607 2608 2609 2610
    def test_cond(self):
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2627 2628 2629 2630 2631
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2632 2633 2634
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
2647 2648
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2649 2650 2651
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
2652 2653 2654 2655 2656
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2657 2658
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
2669 2670
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2671
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2672 2673 2674 2675 2676
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2677 2678
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2679

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
2697
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2698

2699 2700 2701
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2702 2703
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2704 2705 2706 2707 2708
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2709 2710 2711 2712
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2713 2714 2715 2716 2717 2718 2719
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
2720
                pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2721

2722 2723 2724 2725 2726 2727
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
2728 2729 2730
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2731 2732 2733 2734 2735 2736
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
2737
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2738

2739 2740 2741
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2742 2743 2744 2745
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2746 2747 2748 2749
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2785 2786
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
2787 2788
                fetch_list=[out_1, out_2, out_3]
            )
2789 2790

        with self.dynamic_graph():
2791
            with _test_eager_guard():
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
2813 2814 2815 2816 2817

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2818 2819 2820
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
2835 2836 2837 2838 2839

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2840 2841 2842 2843 2844 2845
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2846

2847 2848 2849 2850
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2851 2852 2853 2854 2855 2856
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2857
            crop_shape1 = (1, 2, 4, 4)
2858 2859 2860
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2861 2862
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2863 2864 2865
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2866 2867
            crop_offsets3 = [0, dim1, dim2, 0]

2868 2869 2870
            out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3)
2871 2872 2873 2874 2875

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2876 2877 2878
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2879 2880 2881
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2882 2883 2884

        self.assertIsNotNone(shard_label)

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2898 2899
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2900 2901 2902
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2903

L
Leo Chen 已提交
2904
        with self.dynamic_graph(force_to_use_cpu=True):
2905 2906 2907 2908 2909 2910
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

2911
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2912

Y
Yu Yang 已提交
2913

2914
class TestBook(LayerTest):
H
hong 已提交
2915 2916
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2917 2918 2919 2920 2921 2922 2923 2924
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_kldiv_loss",
                "make_sampling_id",
                "make_uniform_random_batch_size_like",
            }
        )
2925
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2926

2927
    def func_all_layers(self):
2928 2929 2930 2931 2932
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2933 2934 2935
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
2948 2949
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
2950

2951 2952 2953
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
2954 2955
            if method.__name__ in self.only_static_set:
                continue
2956 2957 2958 2959 2960

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2961
                dy_result_value = dy_result.numpy()
2962

2963
            if method.__name__ in self.all_close_compare:
2964 2965 2966 2967 2968 2969
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
2970 2971 2972
                        method.__name__
                    ),
                )
2973 2974
                continue

H
hong 已提交
2975
            if method.__name__ not in self.not_compare_static_dygraph_set:
2976 2977 2978 2979
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
2980 2981 2982
                        method.__name__
                    ),
                )
2983

2984 2985 2986 2987 2988
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2989 2990 2991
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2992
            shape = [self._batch_size] + shape
2993 2994 2995 2996 2997
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
2998 2999 3000
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
3001
        elif dtype == 'int64':
3002 3003 3004 3005 3006 3007 3008
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
3009
        if base.enabled():
3010 3011 3012 3013 3014
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
3015 3016
        else:
            if set_feed_dict:
3017
                self._feed_dict[name] = self._get_np_data(
3018 3019 3020 3021 3022 3023 3024 3025
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
3026 3027

    def make_fit_a_line(self):
3028 3029 3030 3031
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
3032
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
3033
            y_predict = layers.fc(input=x, size=1, act=None)
3034
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
3035
            cost = layers.square_error_cost(input=y_predict, label=y)
3036
            avg_cost = paddle.mean(cost)
3037
            return avg_cost
Y
Yu Yang 已提交
3038

3039
    def make_recognize_digits_mlp(self):
3040 3041 3042
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3043
            # Change g_program, so the rest layers use `g_program`
3044 3045
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3046 3047
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
3048 3049 3050 3051 3052 3053
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
3054
            cost = layers.cross_entropy(input=predict, label=label)
3055
            avg_cost = paddle.mean(cost)
3056
            return avg_cost
Y
Yu Yang 已提交
3057

3058
    def make_conv2d_transpose(self):
3059 3060 3061
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3062
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
3063
            return paddle.static.nn.conv2d_transpose(
3064 3065
                input=img, num_filters=10, output_size=28
            )
3066

3067
    def make_recognize_digits_conv(self):
3068 3069 3070 3071 3072 3073
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
3074
            label = self._get_data(name='label', shape=[1], dtype='int64')
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
3091 3092 3093

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
3094
            avg_cost = paddle.mean(cost)
3095
            return avg_cost
Y
Yu Yang 已提交
3096

3097
    def make_word_embedding(self):
3098 3099 3100
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3101 3102
            dict_size = 10000
            embed_size = 32
3103
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3104 3105 3106
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
3107 3108 3109
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3110

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
3136 3137 3138

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
3139 3140
                axis=1,
            )
Y
Yu Yang 已提交
3141 3142

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
3143 3144 3145
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
3146
            cost = layers.cross_entropy(input=predict_word, label=next_word)
3147
            avg_cost = paddle.mean(cost)
3148
            return avg_cost
Y
Yu Yang 已提交
3149

3150
    def make_sigmoid_cross_entropy(self):
3151 3152 3153
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3154 3155
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
3156
            ignore_index = -1
3157 3158 3159
            return layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index
            )
3160 3161

    def make_pool2d(self):
3162 3163 3164
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3165
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3166 3167 3168
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
3169

K
Kaipeng Deng 已提交
3170
    def make_pool2d_infershape(self):
3171 3172 3173
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3174
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
3175 3176 3177
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
3178 3179 3180
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
3181

3182
    def make_lstm_unit(self):
3183 3184 3185 3186 3187 3188
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
3189
            x_t = layers.fc(input=x_t_data, size=10)
3190 3191 3192
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3193
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3194 3195 3196
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3197
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3198 3199 3200
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
3201

3202
    def make_softmax(self):
3203 3204 3205
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3206
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3207
            hid = layers.fc(input=data, size=20)
3208
            return layers.softmax(hid, axis=1)
D
dangqingqing 已提交
3209

3210
    def make_get_places(self):
3211 3212 3213
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3214
            get_places(device_count=1)
X
xuezhong 已提交
3215

3216
    @prog_scope()
3217
    def make_nce(self):
Y
Yang Yu 已提交
3218 3219
        window_size = 5
        words = []
3220
        for i in range(window_size):
Y
Yang Yu 已提交
3221
            words.append(
3222 3223 3224 3225
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
3226 3227

        dict_size = 10000
M
minqiyang 已提交
3228
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3229 3230

        embs = []
3231
        for i in range(window_size):
Y
Yang Yu 已提交
3232 3233 3234
            if i == label_word:
                continue

3235 3236 3237 3238 3239 3240
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
3241 3242 3243 3244

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
3245
        loss = paddle.static.nn.nce(
3246 3247 3248 3249 3250 3251
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
3252
        avg_loss = paddle.mean(loss)
3253
        return avg_loss
Y
Yang Yu 已提交
3254

3255
    def make_multiplex(self):
3256 3257 3258
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3259 3260 3261
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3262
            out = layers.multiplex(inputs=[x1, x2], index=index)
3263
            return out
3264 3265

    def make_softmax_with_cross_entropy(self):
3266 3267 3268
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3269 3270
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3271
            loss, softmax = layers.softmax_with_cross_entropy(
3272 3273
                x, y, return_softmax=True
            )
3274 3275 3276
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3277
            loss = layers.softmax_with_cross_entropy(x, y)
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
3292
            return loss4
3293 3294

    def make_smooth_l1(self):
3295 3296 3297
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3298 3299
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3300
            loss = layers.smooth_l1(x, y)
3301
            return loss
3302

3303
    def make_scatter(self):
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
3319
            out = paddle.scatter(x, index=idx, updates=updates)
3320
            return out
Y
yangyaming 已提交
3321

3322 3323 3324 3325
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3326
            return one_hot_label
3327

3328 3329 3330 3331 3332
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3333
            one_hot_label = layers.one_hot(input=label, depth=10)
3334
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
3335
            return smooth_label
3336

3337
    def make_topk(self):
3338 3339 3340
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3341 3342
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
3343 3344
            return values
            return indices
J
jerrywgz 已提交
3345

3346
    def make_resize_bilinear(self):
3347 3348 3349
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3350
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3351
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3352
            return output
K
Kaipeng Deng 已提交
3353 3354

    def make_resize_bilinear_by_scale(self):
3355 3356 3357
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3358 3359
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3360
            return output
3361

3362
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3363
        try:
3364 3365 3366
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3367 3368 3369 3370 3371 3372
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
3373 3374 3375 3376 3377 3378
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3379 3380 3381 3382
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3383 3384 3385
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3386
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3387
            output = layers.resize_nearest(x, out_shape=[12, 12])
3388
            return output
K
Kaipeng Deng 已提交
3389 3390

    def make_resize_nearest_by_scale(self):
3391 3392 3393
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3394 3395
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
3396
            return output
K
Kaipeng Deng 已提交
3397 3398 3399

    def make_resize_trilinear(self):
        try:
3400 3401 3402
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3403 3404 3405 3406 3407 3408
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
3409 3410 3411 3412 3413 3414
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3415 3416 3417 3418
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

3419 3420 3421
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3422 3423
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
3424
            return output
K
Kaipeng Deng 已提交
3425 3426

    def make_resize_trilinear_by_scale(self):
3427 3428 3429
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3430 3431
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3432
            return output
3433

3434
    def make_polygon_box_transform(self):
3435 3436 3437
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3438
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3439
            output = layers.polygon_box_transform(input=x)
3440
            return output
3441

3442
    def make_l2_normalize(self):
3443 3444 3445
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3446
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3447
            output = layers.l2_normalize(x, axis=1)
3448
            return output
3449

3450
    def make_argsort(self):
3451 3452 3453
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3454
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3455
            out, ids = layers.argsort(input=data, axis=1)
3456 3457
            return out
            return ids
3458 3459

    def make_shape(self):
3460 3461 3462 3463 3464 3465
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
G
fix  
gongweibao 已提交
3466
            out = layers.shape(input)
3467
            return out
B
Bai Yifan 已提交
3468

3469
    def make_pad2d(self):
3470 3471 3472 3473 3474 3475
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
3476 3477 3478

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
3479 3480 3481 3482
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
3483
            out = tmp_pad(input)
3484
            return out
W
whs 已提交
3485

K
Kaipeng Deng 已提交
3486
    def make_mish(self):
3487 3488 3489
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3490 3491
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
3492
            return out
K
Kaipeng Deng 已提交
3493

3494
    def make_cross_entropy(self):
3495 3496 3497
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3498 3499
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3500 3501
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3502
            return out
3503

3504
    def make_uniform_random_batch_size_like(self):
3505 3506 3507 3508 3509 3510
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
3511
            out = random.uniform_random_batch_size_like(input, [-1, 11])
3512
            return out
G
fix  
gongweibao 已提交
3513

3514
    def make_gaussian_random(self):
3515 3516 3517
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
3518
            out = layers.gaussian_random(shape=[20, 30])
3519
            return out
G
fix  
gongweibao 已提交
3520

3521
    def make_sampling_id(self):
3522 3523 3524 3525 3526 3527 3528 3529 3530
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False,
            )
G
fix  
gongweibao 已提交
3531 3532

            out = layers.sampling_id(x)
3533
            return out
G
fix  
gongweibao 已提交
3534

3535
    def make_sum(self):
3536 3537 3538 3539 3540 3541
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3542 3543

            out = layers.sum(input)
3544
            return out
G
fix  
gongweibao 已提交
3545

3546
    def make_slice(self):
G
fix  
gongweibao 已提交
3547 3548 3549 3550
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3551 3552 3553 3554 3555 3556
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
3557

2
201716010711 已提交
3558
            out = paddle.slice(input, axes=axes, starts=starts, ends=ends)
3559
            return out
G
merge  
gongweibao 已提交
3560

3561
    def make_scale_variable(self):
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2
201716010711 已提交
3574
            out = paddle.scale(input, scale=scale_var)
3575 3576
            return out

M
minqiyang 已提交
3577
    def make_iou_similarity(self):
3578 3579 3580
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3581 3582
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3583
            out = layers.iou_similarity(x, y, name='iou_similarity')
3584
            return out
3585 3586

    def make_grid_sampler(self):
3587 3588 3589
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3590 3591
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3592
            out = layers.grid_sampler(x, grid)
3593
            return out
3594 3595

    def make_bilinear_tensor_product_layer(self):
3596 3597 3598
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3599 3600 3601 3602
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
3603
            return out
3604 3605

    def make_batch_norm(self):
3606 3607 3608 3609 3610 3611
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
3612
            out = layers.batch_norm(data)
3613
            return out
3614

3615
    def make_batch_norm_momentum_variable(self):
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3628
            out = layers.batch_norm(data, momentum=momentum)
3629
            return out
3630

3631
    def make_range(self):
3632 3633 3634
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
3635 3636 3637
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
3638 3639 3640
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
3641
            y = paddle.arange(start, end, step, 'float64')
3642 3643 3644
            return y

    def make_spectral_norm(self):
3645 3646 3647 3648 3649 3650 3651 3652 3653
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
3654
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
3655
            return out
3656 3657

    def make_kldiv_loss(self):
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
3673 3674 3675
            loss = paddle.nn.functional.kl_div(
                input=x, label=target, reduction='batchmean'
            )
3676
            return loss
3677 3678

    def make_temporal_shift(self):
3679 3680 3681
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3682 3683
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
3684
            return out
3685

M
minqiyang 已提交
3686
    def make_fsp_matrix(self):
3687 3688 3689
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3690 3691 3692
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
3693
            return out
3694

M
minqiyang 已提交
3695
    def make_pixel_shuffle(self):
3696 3697 3698
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3699 3700
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
3701
            return out
M
minqiyang 已提交
3702

R
ruri 已提交
3703
    def make_mse_loss(self):
3704 3705 3706
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
3707 3708
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
3709
            out = paddle.nn.functional.mse_loss(input=x, label=y)
3710
            return out
R
ruri 已提交
3711

3712
    def make_square_error_cost(self):
3713 3714 3715
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3716 3717 3718
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
3719
            return out
3720

3721 3722 3723 3724
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
3725 3726 3727
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3728 3729
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
3730 3731 3732 3733
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
3734 3735 3736 3737 3738 3739

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
3740 3741 3742 3743 3744 3745 3746 3747
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1],
            )
            return output
3748 3749 3750 3751

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3752
            # case 1
3753
            x = layers.data(name='x', shape=[10], dtype='float32')
3754 3755 3756
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
3757 3758 3759
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
3760
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
3761 3762 3763 3764 3765 3766
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
3767

W
whs 已提交
3768
    def test_affine_grid(self):
3769
        with self.static_graph():
W
whs 已提交
3770 3771 3772 3773
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
3774
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
3775 3776
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
3777 3778 3779

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3780

W
wangchaochaohu 已提交
3781 3782 3783 3784 3785 3786 3787
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
2
201716010711 已提交
3788
            out = paddle.strided_slice(
3789 3790
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
3791 3792
            return out

3793 3794
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
3795 3796 3797 3798 3799 3800
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
3801 3802
            return out

3803 3804 3805 3806
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
3807 3808 3809 3810
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
3811

3812 3813 3814 3815 3816
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
3817
            return out
3818

3819 3820 3821 3822
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
3823
            length = layers.data(name='length', shape=[], dtype='int64')
3824
            return layers.sequence_unpad(x=x, length=length)
3825

3826 3827 3828
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3829 3830 3831
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3832
            seq = layers.fc(input=seq_data, size=20)
3833
            return layers.sequence_softmax(seq)
3834

3835 3836 3837 3838 3839
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
3840
            return out
3841

3842 3843 3844
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
3862
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
3863
            return out
W
whs 已提交
3864

3865 3866 3867 3868
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
3869 3870 3871 3872

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
3873 3874
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
3875 3876 3877 3878
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
3879

Z
zhoushiyu 已提交
3880 3881 3882
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3883 3884 3885
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
3886 3887 3888 3889 3890
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
3891
            return out1
Z
zhoushiyu 已提交
3892

3893 3894 3895 3896
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
3897 3898 3899 3900
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
3901

S
ShenLiang 已提交
3902 3903 3904 3905 3906 3907 3908 3909 3910
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
3911 3912
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
3913 3914 3915 3916
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
3917 3918 3919 3920 3921
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
3922

S
ShenLiang 已提交
3923 3924 3925
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
3926 3927 3928
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
3929 3930 3931 3932 3933 3934 3935
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
3936 3937 3938 3939 3940
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
3941

3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
3952 3953 3954
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
3955
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
3956
            return output
3957 3958 3959 3960 3961 3962

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
3963
            return out
3964 3965 3966 3967

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
3968 3969 3970 3971 3972 3973
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
3974 3975 3976 3977 3978

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
3979
            out = paddle.squeeze(x, axis=[2])
3980
            return out
3981 3982 3983 3984

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
3985 3986 3987 3988 3989 3990
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
3991
            out = paddle.flatten(x, 1, -1, name="flatten")
3992
            return out
3993

Z
zhoukunsheng 已提交
3994 3995 3996 3997 3998 3999 4000
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

4001 4002 4003 4004
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
4005
            return out
4006

4007 4008 4009 4010
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4011 4012 4013 4014 4015 4016
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
4017 4018
            return concat1, concat2

C
cjt222 已提交
4019
    def test_deform_roi_pooling(self):
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
4052

4053
    def test_retinanet_target_assign(self):
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='int32',
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.retinanet_target_assign(
                bbox_pred,
                cls_logits,
                anchor_box,
                anchor_var,
                gt_boxes,
                gt_labels,
                is_crowd,
                im_info,
                10,
            )
4116

4117
    def test_sigmoid_focal_loss(self):
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            fg_num = layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32'
            )
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2.0, alpha=0.25
            )
            return out
4140

4141
    def test_addmm(self):
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
4157 4158

            out = paddle.addmm(input=input, x=x, y=y)
4159
            return out
4160

4161
    def test_retinanet_detection_output(self):
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
4189 4190 4191 4192 4193 4194 4195 4196 4197
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
4198 4199 4200
                nms_eta=1.0,
            )
            return nmsed_outs
4201

4202 4203 4204
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4205
            input_length = paddle.static.data(
4206 4207
                name='logits_length', shape=[11], dtype='int64'
            )
4208
            label_length = paddle.static.data(
4209 4210
                name='labels_length', shape=[12], dtype='int64'
            )
4211 4212 4213 4214
            label = paddle.static.data(
                name='label', shape=[12, 1], dtype='int32'
            )
            predict = paddle.static.data(
4215 4216
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
4217 4218 4219 4220 4221 4222
            output = paddle.nn.functional.ctc_loss(
                log_probs=predict,
                labels=label,
                input_lengths=input_length,
                label_lengths=label_length,
                reduction='none',
4223 4224
            )
            return output
4225

4226 4227 4228 4229
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4230 4231 4232 4233 4234 4235 4236 4237 4238
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
4250 4251
                        batch_first=batch_first,
                    )
4252

Y
Yu Yang 已提交
4253

4254 4255 4256 4257
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
4279 4280 4281 4282 4283 4284
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4285 4286
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
4287
        super().__init__()
4288
        self.weight = self.create_parameter(
4289 4290
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4321 4322
class MyLayer(paddle.nn.Layer):
    def __init__(self):
4323
        super().__init__()
J
Jiabin Yang 已提交
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
4335
        super().__init__()
J
Jiabin Yang 已提交
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4351
if __name__ == '__main__':
4352
    paddle.enable_static()
Y
Yu Yang 已提交
4353
    unittest.main()