test_layers.py 210.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest

18 19
import contextlib
import numpy as np
20
from decorator_helper import prog_scope
21 22
import inspect
from six.moves import filter
23 24 25

import paddle
import paddle.fluid as fluid
26
from paddle.fluid.layers.device import get_places
27 28 29
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
30
from paddle.fluid import core
J
jerrywgz 已提交
31
from paddle.fluid.initializer import Constant
32 33
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
34 35
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
36
from paddle.fluid.dygraph import to_variable
37
from paddle.fluid.framework import _test_eager_guard
38 39 40


class LayerTest(unittest.TestCase):
41

42 43 44 45 46 47 48 49
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

50 51 52 53 54 55 56 57
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
58 59 60 61

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
62
            paddle.seed(self.seed)
L
Leo Chen 已提交
63
            paddle.framework.random._manual_program_seed(self.seed)
64 65
            yield

66 67 68 69 70 71
    def get_static_graph_result(self,
                                feed,
                                fetch_list,
                                with_lod=False,
                                force_to_use_cpu=False):
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
72 73 74
        exe.run(fluid.default_startup_program())
        return exe.run(fluid.default_main_program(),
                       feed=feed,
75 76
                       fetch_list=fetch_list,
                       return_numpy=(not with_lod))
77 78

    @contextlib.contextmanager
79
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
80
        with fluid.dygraph.guard(
81
                self._get_place(force_to_use_cpu=force_to_use_cpu)):
C
cnn 已提交
82
            paddle.seed(self.seed)
L
Leo Chen 已提交
83
            paddle.framework.random._manual_program_seed(self.seed)
84 85 86 87
            yield


class TestLayer(LayerTest):
88

89
    def test_custom_layer_with_kwargs(self):
90

91
        class CustomLayer(fluid.Layer):
92

93 94
            def __init__(self, input_size, linear1_size=4):
                super(CustomLayer, self).__init__()
95 96 97
                self.linear1 = nn.Linear(input_size,
                                         linear1_size,
                                         bias_attr=False)
98 99 100 101 102 103
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
104 105 106
                return ret

        with self.dynamic_graph():
107 108 109 110 111 112 113 114
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
                self.assertTrue(np.array_equal(ret.numpy().shape, [3, 2]))
                ret = custom(x, do_linear2=True)
                self.assertTrue(np.array_equal(ret.numpy().shape, [3, 1]))
115 116
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
117 118
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
119
            self.assertTrue(np.array_equal(ret.numpy().shape, [3, 2]))
120
            ret = custom(x, do_linear2=True)
121 122
            self.assertTrue(np.array_equal(ret.numpy().shape, [3, 1]))

123 124 125
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
126 127 128 129
            t = layers.data(name='data',
                            shape=[3, 32, 32],
                            dtype='float32',
                            append_batch_size=False)
130 131
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
132 133 134 135
            ret2 = fluid.layers.dropout(t,
                                        dropout_prob=0.35,
                                        seed=1,
                                        is_test=False)
136 137 138
            static_ret, static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret, ret2])
        with self.dynamic_graph():
139 140 141 142
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
143 144 145 146
                dy_eager_ret2 = fluid.layers.dropout(t,
                                                     dropout_prob=0.35,
                                                     seed=1,
                                                     is_test=False)
147 148 149
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

150 151 152
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
153 154 155 156
            dy_ret2 = fluid.layers.dropout(t,
                                           dropout_prob=0.35,
                                           seed=1,
                                           is_test=False)
157 158 159
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

160 161 162
        self.assertTrue(np.array_equal(dy_eager_ret_value, dy_eager_ret2_value))
        self.assertTrue(np.array_equal(static_ret, dy_eager_ret_value))

163 164 165 166
        self.assertTrue(np.array_equal(static_ret, static_ret2))
        self.assertTrue(np.array_equal(dy_ret_value, dy_ret2_value))
        self.assertTrue(np.array_equal(static_ret, dy_ret_value))

S
songyouwei 已提交
167 168 169
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
170 171 172 173
            t = layers.data(name='data',
                            shape=[3, 32, 32],
                            dtype='float32',
                            append_batch_size=False)
S
songyouwei 已提交
174 175 176
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            ret = linear(t)
177 178
            static_ret = self.get_static_graph_result(feed={'data': inp},
                                                      fetch_list=[ret])[0]
S
songyouwei 已提交
179
        with self.dynamic_graph():
180 181 182 183 184 185 186 187 188
            with _test_eager_guard():
                t = base.to_variable(inp)
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
189 190 191 192 193 194
            t = base.to_variable(inp)
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

195
        self.assertTrue(np.array_equal(static_ret, dy_eager_ret_value))
S
songyouwei 已提交
196 197
        self.assertTrue(np.array_equal(static_ret, dy_ret_value))

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
215 216 217 218 219 220 221 222 223 224 225
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
226 227 228 229
            t = layers.data(name='data',
                            shape=[3, 4, 4, 5],
                            dtype='float32',
                            append_batch_size=False)
230 231
            flatten = nn.Flatten()
            ret = flatten(t)
232 233
            static_ret = self.get_static_graph_result(feed={'data': inp},
                                                      fetch_list=[ret])[0]
234
        with self.dynamic_graph():
235 236 237 238 239 240
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

241 242 243 244 245
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

246
        self.assertTrue(np.array_equal(static_ret, dy_eager_ret_value))
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        self.assertTrue(np.array_equal(static_ret, dy_ret_value))

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
266 267 268 269 270 271 272 273
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

274 275 276
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
277 278 279 280
            t = layers.data(name='data',
                            shape=[3, 32, 32],
                            dtype='float32',
                            append_batch_size=False)
281 282 283 284
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
285 286
            static_ret = self.get_static_graph_result(feed={'data': inp},
                                                      fetch_list=[ret])[0]
287
        with self.static_graph():
288 289 290 291
            t = layers.data(name='data',
                            shape=[3, 32, 32],
                            dtype='float32',
                            append_batch_size=False)
292
            lm = nn.LayerNorm(
293
                normalized_shape=[32, 32],
294 295
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
296
            ret = lm(t)
297 298
            static_ret2 = self.get_static_graph_result(feed={'data': inp},
                                                       fetch_list=[ret])[0]
299
        with self.dynamic_graph():
300 301 302 303 304 305 306 307
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

308
            lm = nn.LayerNorm(
309
                normalized_shape=[32, 32],
310 311
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
312
            dy_ret = lm(base.to_variable(inp))
313
            dy_ret_value = dy_ret.numpy()
314

315
        with self.dynamic_graph():
316 317 318 319 320 321 322 323 324 325 326 327 328
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

329
            lm = nn.LayerNorm(
330
                normalized_shape=[32, 32],
331 332 333 334 335 336 337 338 339
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
340

341
        self.assertTrue(np.array_equal(static_ret, static_ret2))
342
        self.assertTrue(np.array_equal(dy_eager_ret_value, static_ret2))
343
        self.assertTrue(np.array_equal(dy_ret_value, static_ret2))
344

345
        with self.dynamic_graph():
346 347 348 349 350 351 352 353
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

354 355 356 357 358 359 360
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
361 362 363 364
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
365
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
366 367
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
368
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
C
ceci3 已提交
369 370 371
                    fetch_list=[ret])[0]

            with self.dynamic_graph():
372 373 374 375 376 377
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
378 379 380 381
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
382
            self.assertTrue(np.array_equal(static_ret, dy_ret_value))
383
            self.assertTrue(np.array_equal(static_ret, dy_eager_ret_value))
C
ceci3 已提交
384

385 386 387 388 389
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
390 391
                feed={'t': np.ones([3, 3],
                                   dtype='float32')}, fetch_list=[ret])[0]
392 393

        with self.dynamic_graph():
394 395 396 397 398
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

399 400
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
401
            dy_ret_value = dy_ret.numpy()
402

403
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
404
        self.assertTrue(np.allclose(static_ret, dy_eager_ret_value))
C
ceci3 已提交
405

406 407 408 409 410
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
411 412 413 414 415 416 417
            static_ret = self.get_static_graph_result(feed={
                't':
                np.ones([3, 3], dtype='float32'),
                't2':
                np.ones([3, 3], dtype='float32')
            },
                                                      fetch_list=[ret])[0]
418 419

        with self.dynamic_graph():
420 421 422
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
423 424
                dy_eager_ret = layers.matmul(base.to_variable(t),
                                             base.to_variable(t2))
425 426
                dy_eager_ret_value = dy_eager_ret.numpy()

427 428
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
429
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
430
            dy_ret_value = dy_ret.numpy()
431

432
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
433
        self.assertTrue(np.allclose(static_ret, dy_eager_ret_value))
434

435 436 437 438 439
    def test_conv2d(self):
        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            ret = layers.conv2d(input=images, num_filters=3, filter_size=[2, 2])
            static_ret = self.get_static_graph_result(
440
                feed={'pixel': np.ones([2, 3, 5, 5], dtype='float32')},
441 442 443 444
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
445 446 447
            conv2d = nn.Conv2D(num_channels=3,
                               num_filters=3,
                               filter_size=[2, 2])
448 449
            ret = conv2d(images)
            static_ret2 = self.get_static_graph_result(
450
                feed={'pixel': np.ones([2, 3, 5, 5], dtype='float32')},
451 452 453
                fetch_list=[ret])[0]

        with self.dynamic_graph():
454 455
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
456 457 458
                conv2d = nn.Conv2D(num_channels=3,
                                   num_filters=3,
                                   filter_size=[2, 2])
459 460 461
                dy_eager_ret = conv2d(base.to_variable(images))
                dy_eager_ret_value = dy_eager_ret.numpy()

462
            images = np.ones([2, 3, 5, 5], dtype='float32')
463 464 465
            conv2d = nn.Conv2D(num_channels=3,
                               num_filters=3,
                               filter_size=[2, 2])
466
            dy_ret = conv2d(base.to_variable(images))
467
            dy_ret_value = dy_ret.numpy()
468

469
        with self.dynamic_graph():
470 471
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
472 473 474 475
                conv2d = nn.Conv2D(num_channels=3,
                                   num_filters=3,
                                   filter_size=[2, 2],
                                   bias_attr=False)
476 477 478
                dy_ret = conv2d(base.to_variable(images))
                self.assertTrue(conv2d.bias is None)

479
            images = np.ones([2, 3, 5, 5], dtype='float32')
480 481 482 483
            conv2d = nn.Conv2D(num_channels=3,
                               num_filters=3,
                               filter_size=[2, 2],
                               bias_attr=False)
484
            dy_ret = conv2d(base.to_variable(images))
485
            self.assertTrue(conv2d.bias is None)
486

487 488 489 490
        with self.static_graph():
            # the input of Conv2D must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
491 492 493
                conv2d = nn.Conv2D(num_channels=3,
                                   num_filters=3,
                                   filter_size=[2, 2])
494 495 496 497 498 499 500
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2D must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
501 502 503 504 505 506
                images = layers.data(name='pixel',
                                     shape=[3, 5, 5],
                                     dtype='int32')
                conv2d = nn.Conv2D(num_channels=3,
                                   num_filters=3,
                                   filter_size=[2, 2])
507 508 509 510
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

511
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
512
        self.assertTrue(np.allclose(static_ret, dy_eager_ret_value))
513
        self.assertTrue(np.allclose(static_ret, static_ret2))
Y
Yu Yang 已提交
514

515
        with self.dynamic_graph():
516 517 518 519 520 521
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
522 523 524 525 526 527 528
                conv2d1 = nn.Conv2D(num_channels=3,
                                    num_filters=3,
                                    filter_size=[2, 2])
                conv2d2 = nn.Conv2D(num_channels=3,
                                    num_filters=3,
                                    filter_size=[2, 2],
                                    param_attr=weight_attr)
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
                conv2d2.weight.set_value(conv2d1_weight_np)
                self.assertTrue(
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
544 545
                self.assertTrue(np.array_equal(dy_ret1.numpy(),
                                               dy_ret2.numpy()))
546 547 548 549 550 551 552 553 554

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
                self.assertTrue(
                    np.array_equal(conv2d1.weight.numpy(),
                                   conv2d2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

555 556
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
557 558 559 560 561 562 563 564 565
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
            conv2d1 = nn.Conv2D(num_channels=3,
                                num_filters=3,
                                filter_size=[2, 2])
            conv2d2 = nn.Conv2D(num_channels=3,
                                num_filters=3,
                                filter_size=[2, 2],
                                param_attr=weight_attr)
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
            self.assertTrue(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
            self.assertTrue(
                np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

M
minqiyang 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            static_ret = self.get_static_graph_result(
604 605 606 607
                feed={
                    'x': input,
                    'hidden': hidden_input
                },
M
minqiyang 已提交
608 609 610 611 612 613 614
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
615
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
616 617 618
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
619 620 621 622
                feed={
                    'x': input,
                    'hidden': hidden_input
                },
M
minqiyang 已提交
623 624 625
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.dynamic_graph():
626 627
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
628 629
                dy_eager_ret = gru(base.to_variable(input),
                                   base.to_variable(hidden_input))
630 631 632 633
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

634
            gru = nn.GRUUnit(size=D * 3)
635 636
            dy_ret = gru(base.to_variable(input),
                         base.to_variable(hidden_input))
637 638 639
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
640 641 642

        for i in range(len(static_ret)):
            self.assertTrue(np.allclose(static_ret[i], static_ret2[i]))
643
            self.assertTrue(np.allclose(static_ret[i], dy_ret_value[i]))
644
            self.assertTrue(np.allclose(static_ret[i], dy_eager_ret_value[i]))
M
minqiyang 已提交
645

646
        with self.dynamic_graph():
647 648 649 650 651 652 653
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
654 655 656 657
                dy_ret1 = gru1(base.to_variable(input),
                               base.to_variable(hidden_input))
                dy_ret2 = gru2(base.to_variable(input),
                               base.to_variable(hidden_input))
658 659 660 661 662 663
                self.assertFalse(
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
664 665 666 667
                dy_ret1 = gru1(base.to_variable(input),
                               base.to_variable(hidden_input))
                dy_ret2 = gru2(base.to_variable(input),
                               base.to_variable(hidden_input))
668 669 670 671 672 673 674 675 676 677
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertTrue(np.array_equal(o1.numpy(), o2.numpy()))

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
                self.assertTrue(
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(gru1.bias.numpy(), gru2.bias.numpy()))

678
            custom_weight = np.random.randn(D, D * 3).astype("float32")
679 680
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
681 682
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
683 684 685 686
            dy_ret1 = gru1(base.to_variable(input),
                           base.to_variable(hidden_input))
            dy_ret2 = gru2(base.to_variable(input),
                           base.to_variable(hidden_input))
687 688 689 690 691 692
            self.assertFalse(
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
693 694 695 696
            dy_ret1 = gru1(base.to_variable(input),
                           base.to_variable(hidden_input))
            dy_ret2 = gru2(base.to_variable(input),
                           base.to_variable(hidden_input))
697 698 699 700 701 702 703
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertTrue(np.array_equal(o1.numpy(), o2.numpy()))

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
            self.assertTrue(
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
704 705
            self.assertTrue(np.array_equal(gru1.bias.numpy(),
                                           gru2.bias.numpy()))
706

X
Xin Pan 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
            ret = layers.elementwise_pow(ret, t3)
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

729 730 731 732 733 734 735 736 737
            static_ret = self.get_static_graph_result(feed={
                't': n,
                't2': n2,
                't3': n3,
                't4': n4,
                't5': n5,
                't6': n6
            },
                                                      fetch_list=[ret])[0]
X
Xin Pan 已提交
738 739

        with self.dynamic_graph():
740 741 742 743 744 745 746 747
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
                ret = layers.elementwise_pow(ret, to_variable(n3))
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

748 749 750 751 752
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
            ret = layers.elementwise_pow(ret, to_variable(n3))
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
753
            dy_ret_value = dy_ret.numpy()
754

755
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
756
        self.assertTrue(np.allclose(static_ret, dy_eager_ret_value))
X
Xin Pan 已提交
757 758 759 760 761 762

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
763
            with _test_eager_guard():
764 765 766 767
                min_eager_ret = layers.elementwise_min(to_variable(n),
                                                       to_variable(n2))
                max_eager_ret = layers.elementwise_max(to_variable(n),
                                                       to_variable(n2))
768 769 770
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

771 772
            min_ret = layers.elementwise_min(to_variable(n), to_variable(n2))
            max_ret = layers.elementwise_max(to_variable(n), to_variable(n2))
773 774
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
775

776 777
        self.assertTrue(np.allclose(n, min_ret_value))
        self.assertTrue(np.allclose(n2, max_ret_value))
778 779
        self.assertTrue(np.allclose(n, min_eager_ret_value))
        self.assertTrue(np.allclose(n2, max_eager_ret_value))
X
Xin Pan 已提交
780

781 782 783 784 785 786 787
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
788 789 790 791 792
            seq = layers.data(name='seq_in',
                              shape=[3, 4],
                              dtype='float32',
                              lod_level=1,
                              append_batch_size=False)
793
            out = layers.sequence_conv(seq, 2, act='sigmoid')
794 795 796 797 798 799 800 801
            static_rlt = self.get_static_graph_result(feed={
                "seq_in":
                fluid.create_lod_tensor(data=inp_np,
                                        recursive_seq_lens=[[1, 1, 1]],
                                        place=place)
            },
                                                      fetch_list=[out],
                                                      with_lod=True)[0]
802 803

        with self.static_graph():
804 805 806 807 808
            seq = layers.data(name='seq_in',
                              shape=[3, 4],
                              dtype='float32',
                              lod_level=1,
                              append_batch_size=False)
809
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
810
            out = seq_conv(seq)
811 812 813 814 815 816 817 818
            static_rlt2 = self.get_static_graph_result(feed={
                "seq_in":
                fluid.create_lod_tensor(data=inp_np,
                                        recursive_seq_lens=[[1, 1, 1]],
                                        place=place)
            },
                                                       fetch_list=[out],
                                                       with_lod=True)[0]
819
        self.assertTrue(
820
            np.array_equal(np.array(static_rlt), np.array(static_rlt2)))
821 822 823 824 825 826

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
827 828
                input=img,
                num_filters=10,
829
                filter_size=27,
830 831
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
832 833
            static_rlt = self.get_static_graph_result(feed={'pixel': inp_np},
                                                      fetch_list=[out])[0]
834 835 836
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
837
                num_channels=3,
838
                num_filters=10,
839
                filter_size=27,
840 841
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
842
            out = conv2d_transpose(img)
843 844
            static_rlt2 = self.get_static_graph_result(feed={'pixel': inp_np},
                                                       fetch_list=[out])[0]
845
        with self.dynamic_graph():
846 847 848 849 850 851 852 853 854 855
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

856
            conv2d_transpose = nn.Conv2DTranspose(
857
                num_channels=3,
858
                num_filters=10,
859
                filter_size=27,
860 861
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
862
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
863
            dy_rlt_value = dy_rlt.numpy()
864
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
865
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt2))
866
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt2))
867

868
        with self.dynamic_graph():
869 870 871 872 873 874
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
875 876 877 878 879 880 881
                conv2d1 = nn.Conv2DTranspose(num_channels=3,
                                             num_filters=3,
                                             filter_size=[2, 2])
                conv2d2 = nn.Conv2DTranspose(num_channels=3,
                                             num_filters=3,
                                             filter_size=[2, 2],
                                             param_attr=weight_attr)
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
                conv2d2.weight.set_value(conv2d1_weight_np)
                self.assertTrue(
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
897 898
                self.assertTrue(np.array_equal(dy_ret1.numpy(),
                                               dy_ret2.numpy()))
899 900 901 902 903 904 905 906 907

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
                self.assertTrue(
                    np.array_equal(conv2d1.weight.numpy(),
                                   conv2d2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

908 909
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
910 911 912 913 914 915 916 917 918
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
            conv2d1 = nn.Conv2DTranspose(num_channels=3,
                                         num_filters=3,
                                         filter_size=[2, 2])
            conv2d2 = nn.Conv2DTranspose(num_channels=3,
                                         num_filters=3,
                                         filter_size=[2, 2],
                                         param_attr=weight_attr)
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
            self.assertTrue(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
            self.assertTrue(
                np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

942 943 944 945 946
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
947 948 949
                conv2d = nn.Conv2DTranspose(num_channels=3,
                                            num_filters=3,
                                            filter_size=[2, 2])
950 951 952 953 954 955 956
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
957 958 959 960 961 962
                images = layers.data(name='pixel',
                                     shape=[3, 5, 5],
                                     dtype='int32')
                conv2d = nn.Conv2DTranspose(num_channels=3,
                                            num_filters=3,
                                            filter_size=[2, 2])
963 964 965 966
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

967 968 969 970 971
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
972 973 974 975 976 977 978 979
            data_x = layers.data(name='x',
                                 shape=[1, 3],
                                 dtype="float32",
                                 append_batch_size=False)
            data_y = layers.data(name='y',
                                 shape=[1, 3],
                                 dtype="float32",
                                 append_batch_size=False)
980 981 982 983 984 985
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
986

987 988 989 990 991
            static_rlt = self.get_static_graph_result(feed={
                'x': inp_np_x,
                'y': inp_np_y
            },
                                                      fetch_list=[out])[0]
992

993
        with self.static_graph():
994 995 996 997 998 999 1000 1001
            data_x = layers.data(name='x',
                                 shape=[1, 3],
                                 dtype="float32",
                                 append_batch_size=False)
            data_y = layers.data(name='y',
                                 shape=[1, 3],
                                 dtype="float32",
                                 append_batch_size=False)
1002
            btp = nn.BilinearTensorProduct(
1003 1004
                3,
                3,
1005 1006 1007
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
1008
            out = btp(data_x, data_y)
1009 1010 1011 1012 1013
            static_rlt2 = self.get_static_graph_result(feed={
                'x': inp_np_x,
                'y': inp_np_y
            },
                                                       fetch_list=[out])[0]
1014
        with self.dynamic_graph():
1015 1016 1017 1018 1019 1020 1021
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
1022 1023
                dy_eager_rlt = btp(base.to_variable(inp_np_x),
                                   base.to_variable(inp_np_y))
1024 1025
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1026
            btp = nn.BilinearTensorProduct(
1027 1028
                3,
                3,
1029 1030 1031
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
1032
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
1033
            dy_rlt_value = dy_rlt.numpy()
1034

1035
        with self.dynamic_graph():
1036 1037
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1038 1039
                dy_eager_rlt2 = btp2(base.to_variable(inp_np_x),
                                     base.to_variable(inp_np_y))
1040 1041
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

1042
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1043 1044
            dy_rlt2 = btp2(base.to_variable(inp_np_x),
                           base.to_variable(inp_np_y))
1045
            dy_rlt2_value = dy_rlt2.numpy()
1046

1047
        with self.static_graph():
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
            data_x2 = layers.data(name='x',
                                  shape=[1, 3],
                                  dtype="float32",
                                  append_batch_size=False)
            data_y2 = layers.data(name='y',
                                  shape=[1, 3],
                                  dtype="float32",
                                  append_batch_size=False)
            out2 = layers.bilinear_tensor_product(data_x2,
                                                  data_y2,
                                                  6,
                                                  act='sigmoid')

            static_rlt3 = self.get_static_graph_result(feed={
                'x': inp_np_x,
                'y': inp_np_y
            },
                                                       fetch_list=[out2])[0]
1066

1067
        self.assertTrue(np.array_equal(dy_rlt2_value, static_rlt3))
1068
        self.assertTrue(np.array_equal(dy_eager_rlt2_value, static_rlt3))
1069
        self.assertTrue(np.array_equal(static_rlt2, static_rlt))
1070
        self.assertTrue(np.array_equal(dy_rlt_value, static_rlt))
1071
        self.assertTrue(np.array_equal(dy_eager_rlt_value, static_rlt))
1072

1073
        with self.dynamic_graph():
1074 1075 1076 1077 1078 1079
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1080 1081 1082 1083 1084 1085 1086 1087 1088
                btp2 = nn.BilinearTensorProduct(3,
                                                3,
                                                6,
                                                act='sigmoid',
                                                param_attr=weight_attr)
                dy_rlt1 = btp1(base.to_variable(inp_np_x),
                               base.to_variable(inp_np_y))
                dy_rlt2 = btp2(base.to_variable(inp_np_x),
                               base.to_variable(inp_np_y))
1089 1090 1091 1092
                self.assertFalse(
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1093 1094 1095 1096 1097 1098
                dy_rlt1 = btp1(base.to_variable(inp_np_x),
                               base.to_variable(inp_np_y))
                dy_rlt2 = btp2(base.to_variable(inp_np_x),
                               base.to_variable(inp_np_y))
                self.assertTrue(np.array_equal(dy_rlt1.numpy(),
                                               dy_rlt2.numpy()))
1099 1100 1101 1102 1103 1104 1105 1106

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
                self.assertTrue(
                    np.array_equal(btp1.weight.numpy(), btp2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(btp1.bias.numpy(), btp2.bias.numpy()))

1107
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1108 1109
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
1110
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1111 1112 1113 1114 1115 1116 1117 1118 1119
            btp2 = nn.BilinearTensorProduct(3,
                                            3,
                                            6,
                                            act='sigmoid',
                                            param_attr=weight_attr)
            dy_rlt1 = btp1(base.to_variable(inp_np_x),
                           base.to_variable(inp_np_y))
            dy_rlt2 = btp2(base.to_variable(inp_np_x),
                           base.to_variable(inp_np_y))
1120 1121 1122
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1123 1124 1125 1126
            dy_rlt1 = btp1(base.to_variable(inp_np_x),
                           base.to_variable(inp_np_y))
            dy_rlt2 = btp2(base.to_variable(inp_np_x),
                           base.to_variable(inp_np_y))
1127 1128 1129 1130 1131 1132
            self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
            self.assertTrue(
                np.array_equal(btp1.weight.numpy(), btp2.weight.numpy()))
1133 1134
            self.assertTrue(np.array_equal(btp1.bias.numpy(),
                                           btp2.bias.numpy()))
1135

1136
    def prelu_test(self, mode):
1137 1138
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1139 1140 1141 1142 1143 1144 1145 1146 1147
            data_t = layers.data(name="input",
                                 shape=[5, 200, 100, 100],
                                 dtype="float32",
                                 append_batch_size=False)
            out = layers.prelu(data_t,
                               mode,
                               param_attr=ParamAttr(initializer=Constant(1.0)))
            static_rlt = self.get_static_graph_result(feed={"input": inp_np},
                                                      fetch_list=[out])[0]
1148 1149

        with self.static_graph():
1150 1151 1152 1153 1154 1155 1156 1157
            data_t = layers.data(name="input",
                                 shape=[5, 200, 100, 100],
                                 dtype="float32",
                                 append_batch_size=False)
            prelu = nn.PRelu(mode=mode,
                             channel=inp_np.shape[1],
                             input_shape=data_t.shape,
                             param_attr=ParamAttr(initializer=Constant(1.0)))
1158
            out = prelu(data_t)
1159 1160
            static_rlt2 = self.get_static_graph_result(feed={"input": inp_np},
                                                       fetch_list=[out])[0]
1161 1162

        with self.dynamic_graph():
1163 1164 1165 1166 1167 1168 1169 1170 1171
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
                    param_attr=ParamAttr(initializer=Constant(1.0)))
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1172 1173 1174 1175
            prelu = nn.PRelu(mode=mode,
                             channel=inp_np.shape[1],
                             input_shape=inp_np.shape,
                             param_attr=ParamAttr(initializer=Constant(1.0)))
1176
            dy_rlt = prelu(base.to_variable(inp_np))
1177
            dy_rlt_value = dy_rlt.numpy()
1178 1179

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1180
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1181
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1182

1183
        with self.dynamic_graph():
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
                    param_attr=ParamAttr(initializer=Constant(2.0)))
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
                    param_attr=ParamAttr(initializer=Constant(1.0)))
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1200 1201
                    np.array_equal(prelu1.weight.numpy(),
                                   prelu2.weight.numpy()))
1202 1203 1204 1205 1206
                self.assertFalse(
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1207 1208
                self.assertTrue(np.array_equal(dy_rlt1.numpy(),
                                               dy_rlt2.numpy()))
1209 1210 1211

                prelu2.weight = prelu1.weight
                self.assertTrue(
1212 1213
                    np.array_equal(prelu1.weight.numpy(),
                                   prelu2.weight.numpy()))
1214

1215 1216
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1217 1218 1219 1220 1221 1222 1223 1224
            prelu1 = nn.PRelu(mode=mode,
                              channel=inp_np.shape[1],
                              input_shape=inp_np.shape,
                              param_attr=ParamAttr(initializer=Constant(2.0)))
            prelu2 = nn.PRelu(mode=mode,
                              channel=inp_np.shape[1],
                              input_shape=inp_np.shape,
                              param_attr=ParamAttr(initializer=Constant(1.0)))
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()))
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

            prelu2.weight = prelu1.weight
            self.assertTrue(
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()))

1239 1240 1241 1242 1243
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1244 1245 1246 1247 1248
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1249 1250 1251 1252 1253 1254
            emb = layers.embedding(input=data_t,
                                   size=[dict_size, 32],
                                   param_attr='emb.w',
                                   is_sparse=False)
            static_rlt = self.get_static_graph_result(feed={'word': inp_word},
                                                      fetch_list=[emb])[0]
1255 1256
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1257 1258 1259
            emb2 = nn.Embedding(size=[dict_size, 32],
                                param_attr='emb.w',
                                is_sparse=False)
1260
            emb_rlt = emb2(data_t)
1261 1262
            static_rlt2 = self.get_static_graph_result(feed={'word': inp_word},
                                                       fetch_list=[emb_rlt])[0]
1263
        with self.dynamic_graph():
1264
            with _test_eager_guard():
1265 1266 1267
                emb2 = nn.Embedding(size=[dict_size, 32],
                                    param_attr='eager_emb.w',
                                    is_sparse=False)
1268 1269 1270
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1271 1272 1273
            emb2 = nn.Embedding(size=[dict_size, 32],
                                param_attr='emb.w',
                                is_sparse=False)
1274 1275
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1276 1277

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1278
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1279
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1280

1281
        with self.dynamic_graph():
1282 1283 1284 1285 1286 1287
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1288 1289 1290
                emb2 = nn.Embedding(size=[dict_size, 32],
                                    param_attr=weight_attr,
                                    is_sparse=False)
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
                    np.array_equal(emb1.weight.numpy(), custom_weight))
                self.assertTrue(
                    np.array_equal(emb2.weight.numpy(), custom_weight))
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
                self.assertTrue(np.array_equal(rep1.numpy(), rep2.numpy()))

                emb2.weight = emb1.weight
                self.assertTrue(
                    np.array_equal(emb1.weight.numpy(), emb2.weight.numpy()))

1306
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1307 1308
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
1309
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1310 1311 1312
            emb2 = nn.Embedding(size=[dict_size, 32],
                                param_attr=weight_attr,
                                is_sparse=False)
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
            self.assertTrue(np.array_equal(emb2.weight.numpy(), custom_weight))
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
            self.assertTrue(np.array_equal(rep1.numpy(), rep2.numpy()))

            emb2.weight = emb1.weight
            self.assertTrue(
                np.array_equal(emb1.weight.numpy(), emb2.weight.numpy()))

1326 1327 1328 1329
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1330
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1331 1332 1333 1334 1335 1336
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1337 1338 1339 1340 1341 1342
                    layers.data(name='word_{0}'.format(i),
                                shape=[None],
                                dtype='int64'))
            sample_weights = layers.fill_constant(shape=[5, 1],
                                                  dtype='float32',
                                                  value=1)
1343 1344 1345 1346 1347
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1348 1349 1350 1351
                emb = fluid.embedding(input=words[i],
                                      size=[dict_size, 32],
                                      param_attr='emb.w',
                                      is_sparse=False)
1352 1353 1354
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1355
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1356
            nce_loss = layers.nce(input=embs,
1357
                                  label=wl,
1358 1359 1360 1361 1362 1363
                                  num_total_classes=dict_size,
                                  num_neg_samples=2,
                                  sampler="custom_dist",
                                  custom_dist=nid_freq_arr.tolist(),
                                  seed=seed,
                                  param_attr='nce.w',
1364 1365
                                  bias_attr='nce.b',
                                  sample_weight=sample_weights)
1366 1367 1368
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1369 1370
            static_rlt = self.get_static_graph_result(feed=feed_dict,
                                                      fetch_list=[nce_loss])[0]
W
Weilong Wu 已提交
1371

1372 1373 1374 1375
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1376 1377 1378 1379 1380 1381 1382 1383 1384
                    layers.data(name='word_{0}'.format(i),
                                shape=[None],
                                dtype='int64'))
            sample_weights = layers.fill_constant(shape=[5, 1],
                                                  dtype='float32',
                                                  value=1)
            emb = nn.Embedding(size=[dict_size, 32],
                               param_attr='emb.w',
                               is_sparse=False)
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1395 1396
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs2.shape[1],
1397 1398 1399 1400 1401
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
1402 1403
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
1404

1405 1406
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1407 1408 1409 1410
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1411 1412 1413
            static_rlt2 = self.get_static_graph_result(feed=feed_dict,
                                                       fetch_list=[nce_loss2
                                                                   ])[0]
1414

L
Leo Chen 已提交
1415
        with self.dynamic_graph():
W
Weilong Wu 已提交
1416 1417 1418 1419
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1420 1421 1422 1423 1424 1425
                sample_weights = layers.fill_constant(shape=[5, 1],
                                                      dtype='float32',
                                                      value=1)
                emb = nn.Embedding(size=[dict_size, 32],
                                   param_attr='eager_emb.w',
                                   is_sparse=False)
W
Weilong Wu 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1435 1436 1437
                embs3 = layers.concat(input=embs3,
                                      axis=fluid.dygraph.to_variable(
                                          np.array([1])))
W
Weilong Wu 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
                nce = nn.NCE(num_total_classes=dict_size,
                             dim=embs3.shape[1],
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=seed,
                             param_attr='eager_nce.w',
                             bias_attr='eager_nce.b',
                             sample_weight=sample_weights)

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1452 1453 1454
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1455 1456 1457 1458 1459 1460
            sample_weights = layers.fill_constant(shape=[5, 1],
                                                  dtype='float32',
                                                  value=1)
            emb = nn.Embedding(size=[dict_size, 32],
                               param_attr='emb.w',
                               is_sparse=False)
1461 1462 1463 1464 1465 1466 1467 1468 1469

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1470 1471
            embs3 = layers.concat(input=embs3,
                                  axis=fluid.dygraph.to_variable(np.array([1])))
1472 1473
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs3.shape[1],
1474 1475 1476 1477 1478
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
1479 1480
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
1481

1482 1483
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1484
            dy_rlt_value = dy_rlt.numpy()
1485 1486

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1487
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
W
Weilong Wu 已提交
1488
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1489

L
Leo Chen 已提交
1490
        with self.dynamic_graph():
W
Weilong Wu 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size,
                                                128).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
                    value=1)
1504 1505 1506
                emb = nn.Embedding(size=[dict_size, 32],
                                   param_attr='eager_emb.w',
                                   is_sparse=False)
W
Weilong Wu 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
                nce1 = nn.NCE(num_total_classes=dict_size,
                              dim=embs3.shape[1],
                              num_neg_samples=2,
                              sampler="custom_dist",
                              custom_dist=nid_freq_arr.tolist(),
                              seed=seed,
                              param_attr='eager_nce1.w',
                              bias_attr='eager_nce1.b',
                              sample_weight=sample_weights)

                nce2 = nn.NCE(num_total_classes=dict_size,
                              dim=embs3.shape[1],
                              num_neg_samples=2,
                              sampler="custom_dist",
                              custom_dist=nid_freq_arr.tolist(),
                              seed=seed,
                              param_attr=weight_attr,
                              bias_attr='eager_nce2.b',
                              sample_weight=sample_weights)

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertTrue(
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
                self.assertTrue(
                    np.array_equal(nce1.weight.numpy(), nce2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(nce1.bias.numpy(), nce2.bias.numpy()))

1556
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1557 1558
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
1559 1560 1561 1562
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1563 1564 1565
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
                value=1)
1566 1567 1568
            emb = nn.Embedding(size=[dict_size, 32],
                               param_attr='emb.w',
                               is_sparse=False)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1579 1580
            nce1 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
1581 1582 1583 1584 1585 1586 1587 1588
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
                          param_attr='nce1.w',
                          bias_attr='nce1.b',
                          sample_weight=sample_weights)

1589 1590
            nce2 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
1591 1592 1593 1594
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
1595
                          param_attr=weight_attr,
1596 1597 1598
                          bias_attr='nce2.b',
                          sample_weight=sample_weights)

1599 1600 1601
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1602 1603 1604 1605
            self.assertFalse(
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1606 1607
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1608 1609
            self.assertTrue(np.array_equal(nce1_loss.numpy(),
                                           nce2_loss.numpy()))
1610 1611 1612 1613 1614

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
            self.assertTrue(
                np.array_equal(nce1.weight.numpy(), nce2.weight.numpy()))
1615 1616
            self.assertTrue(np.array_equal(nce1.bias.numpy(),
                                           nce2.bias.numpy()))
1617

S
songyouwei 已提交
1618 1619
    def test_one_hot(self):
        with self.dynamic_graph():
1620
            with _test_eager_guard():
1621 1622
                label = fluid.dygraph.to_variable(np.array([[1], [1], [3],
                                                            [0]]))
1623 1624
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1625
                    input=label, depth=fluid.dygraph.to_variable(np.array([4])))
1626 1627 1628 1629
                self.assertTrue(
                    np.array_equal(one_hot_label1.numpy(),
                                   one_hot_label2.numpy()))

S
songyouwei 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
                input=label, depth=fluid.dygraph.to_variable(np.array([4])))
            self.assertTrue(
                np.array_equal(one_hot_label1.numpy(), one_hot_label2.numpy()))

    def test_split(self):
        with self.dynamic_graph():
1639 1640 1641
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1642 1643 1644 1645
                x00, x11 = fluid.layers.split(input,
                                              num_or_sections=2,
                                              dim=fluid.dygraph.to_variable(
                                                  np.array([1])))
1646 1647 1648
                self.assertTrue(np.array_equal(x0.numpy(), x00.numpy()))
                self.assertTrue(np.array_equal(x1.numpy(), x11.numpy()))

S
songyouwei 已提交
1649 1650
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1651 1652 1653 1654
            x00, x11 = fluid.layers.split(input,
                                          num_or_sections=2,
                                          dim=fluid.dygraph.to_variable(
                                              np.array([1])))
S
songyouwei 已提交
1655 1656 1657 1658 1659
            self.assertTrue(np.array_equal(x0.numpy(), x00.numpy()))
            self.assertTrue(np.array_equal(x1.numpy(), x11.numpy()))

    def test_topk(self):
        with self.dynamic_graph():
1660 1661 1662 1663 1664 1665 1666 1667
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
                    input, k=fluid.dygraph.to_variable(np.array([5])))
                self.assertTrue(
                    np.array_equal(top5_values1.numpy(), top5_values2.numpy()))
                self.assertTrue(
1668 1669
                    np.array_equal(top5_indices1.numpy(),
                                   top5_indices2.numpy()))
1670

S
songyouwei 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
                input, k=fluid.dygraph.to_variable(np.array([5])))
            self.assertTrue(
                np.array_equal(top5_values1.numpy(), top5_values2.numpy()))
            self.assertTrue(
                np.array_equal(top5_indices1.numpy(), top5_indices2.numpy()))

L
lujun 已提交
1680 1681
    def test_conv3d(self):
        with self.static_graph():
1682 1683 1684
            images = layers.data(name='pixel',
                                 shape=[3, 6, 6, 6],
                                 dtype='float32')
1685
            ret = layers.conv3d(input=images, num_filters=3, filter_size=2)
L
lujun 已提交
1686
            static_ret = self.get_static_graph_result(
1687
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
L
lujun 已提交
1688 1689 1690
                fetch_list=[ret])[0]

        with self.static_graph():
1691 1692 1693
            images = layers.data(name='pixel',
                                 shape=[3, 6, 6, 6],
                                 dtype='float32')
1694
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1695 1696
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1697
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
L
lujun 已提交
1698 1699 1700
                fetch_list=[ret])[0]

        with self.dynamic_graph():
1701 1702 1703 1704 1705 1706
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1707
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1708
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1709
            dy_ret = conv3d(base.to_variable(images))
1710
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1711

1712
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
1713
        self.assertTrue(np.allclose(static_ret, dy_eager_rlt_value))
L
lujun 已提交
1714 1715
        self.assertTrue(np.allclose(static_ret, static_ret2))

1716
        with self.dynamic_graph():
1717 1718 1719 1720 1721 1722
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
1723 1724 1725 1726 1727 1728 1729
                conv3d1 = nn.Conv3D(num_channels=3,
                                    num_filters=3,
                                    filter_size=2)
                conv3d2 = nn.Conv3D(num_channels=3,
                                    num_filters=3,
                                    filter_size=2,
                                    param_attr=weight_attr)
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
                conv3d2.weight.set_value(conv3d1_weight_np)
                self.assertTrue(
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1745 1746
                self.assertTrue(np.array_equal(dy_ret1.numpy(),
                                               dy_ret2.numpy()))
1747 1748 1749 1750 1751 1752 1753 1754 1755

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
                self.assertTrue(
                    np.array_equal(conv3d1.weight.numpy(),
                                   conv3d2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

1756 1757
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1758 1759
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
1760
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1761 1762 1763 1764
            conv3d2 = nn.Conv3D(num_channels=3,
                                num_filters=3,
                                filter_size=2,
                                param_attr=weight_attr)
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
            self.assertTrue(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
            self.assertTrue(
                np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

L
lujun 已提交
1788 1789 1790 1791 1792 1793 1794 1795
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1796 1797 1798 1799 1800
            x = layers.data(name='X',
                            shape=[3, 5],
                            dtype='float32',
                            lod_level=1,
                            append_batch_size=False)
L
lujun 已提交
1801
            ret = layers.row_conv(input=x, future_context_size=2)
1802 1803 1804 1805 1806 1807 1808 1809
            static_ret = self.get_static_graph_result(feed={
                'X':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1, 1]],
                                        place=place)
            },
                                                      fetch_list=[ret],
                                                      with_lod=True)[0]
L
lujun 已提交
1810 1811

        with self.static_graph():
1812 1813 1814 1815 1816
            x = layers.data(name='X',
                            shape=[3, 5],
                            dtype='float32',
                            lod_level=1,
                            append_batch_size=False)
L
lujun 已提交
1817 1818
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1819 1820 1821 1822 1823 1824 1825 1826
            static_ret2 = self.get_static_graph_result(feed={
                'X':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1, 1]],
                                        place=place)
            },
                                                       fetch_list=[ret],
                                                       with_lod=True)[0]
L
lujun 已提交
1827

1828
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1829 1830 1831

        self.assertTrue(np.allclose(static_ret, static_ret2))

1832
    def func_group_norm(self):
L
lujun 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1843 1844 1845 1846 1847
            X = fluid.layers.data(name='X',
                                  shape=shape,
                                  dtype='float32',
                                  lod_level=1,
                                  append_batch_size=False)
1848 1849 1850
            ret = layers.group_norm(
                input=X,
                groups=2,
1851
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1852
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
1853 1854 1855 1856 1857 1858 1859 1860
            static_ret = self.get_static_graph_result(feed={
                'X':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1]],
                                        place=place)
            },
                                                      fetch_list=[ret],
                                                      with_lod=True)[0]
L
lujun 已提交
1861 1862

        with self.static_graph():
1863 1864 1865 1866 1867
            X = fluid.layers.data(name='X',
                                  shape=shape,
                                  dtype='float32',
                                  lod_level=1,
                                  append_batch_size=False)
1868 1869 1870
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1871
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1872
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
L
lujun 已提交
1873
            ret = groupNorm(X)
1874 1875 1876 1877 1878 1879 1880 1881
            static_ret2 = self.get_static_graph_result(feed={
                'X':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1]],
                                        place=place)
            },
                                                       fetch_list=[ret],
                                                       with_lod=True)[0]
L
lujun 已提交
1882 1883

        with self.dynamic_graph():
1884 1885 1886
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1887
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1888
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
L
lujun 已提交
1889
            dy_ret = groupNorm(base.to_variable(input))
1890
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1891

1892
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1893 1894
        self.assertTrue(np.allclose(static_ret, static_ret2))

1895 1896 1897 1898 1899
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1911 1912 1913 1914
            X = fluid.layers.data(name='X',
                                  shape=shape,
                                  dtype='float32',
                                  append_batch_size=False)
1915
            ret = layers.instance_norm(input=X)
1916 1917
            static_ret = self.get_static_graph_result(feed={'X': input},
                                                      fetch_list=[ret])[0]
1918 1919

        with self.static_graph():
1920 1921 1922 1923
            X = fluid.layers.data(name='X',
                                  shape=shape,
                                  dtype='float32',
                                  append_batch_size=False)
1924 1925
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            ret = instanceNorm(X)
1926 1927
            static_ret2 = self.get_static_graph_result(feed={'X': input},
                                                       fetch_list=[ret])[0]
1928 1929

        with self.dynamic_graph():
1930 1931 1932 1933 1934
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1935 1936 1937 1938 1939
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1940 1941 1942 1943 1944
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1945
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1946 1947 1948 1949 1950
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
        self.assertTrue(np.allclose(static_ret, dy_rlt_value2))
1951 1952
        self.assertTrue(np.allclose(static_ret, dy_eager_rlt_value))
        self.assertTrue(np.allclose(static_ret, dy_eager_rlt_value2))
1953 1954 1955 1956 1957
        self.assertTrue(np.allclose(static_ret, static_ret2))

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
1958
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1959 1960 1961 1962 1963 1964 1965
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
1966
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1967 1968 1969 1970
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1982 1983 1984 1985 1986
            Weight = fluid.layers.data(name='Weight',
                                       shape=shape,
                                       dtype='float32',
                                       lod_level=1,
                                       append_batch_size=False)
L
lujun 已提交
1987
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
1988 1989 1990 1991 1992 1993 1994 1995
            static_ret = self.get_static_graph_result(feed={
                'Weight':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1]],
                                        place=place),
            },
                                                      fetch_list=[ret],
                                                      with_lod=True)[0]
L
lujun 已提交
1996 1997

        with self.static_graph():
1998 1999 2000 2001 2002
            Weight = fluid.layers.data(name='Weight',
                                       shape=shape,
                                       dtype='float32',
                                       lod_level=1,
                                       append_batch_size=False)
2003
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2004
            ret = spectralNorm(Weight)
2005 2006 2007 2008 2009 2010 2011 2012
            static_ret2 = self.get_static_graph_result(feed={
                'Weight':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1]],
                                        place=place)
            },
                                                       fetch_list=[ret],
                                                       with_lod=True)[0]
L
lujun 已提交
2013 2014

        with self.dynamic_graph():
2015 2016 2017 2018 2019
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2020
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2021
            dy_ret = spectralNorm(base.to_variable(input))
2022
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2023

2024
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
2025
        self.assertTrue(np.allclose(static_ret, dy_eager_rlt_value))
L
lujun 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
            NodesVector = fluid.layers.data(name='NodesVector',
                                            shape=(1, 10, 5),
                                            dtype='float32',
                                            lod_level=1,
                                            append_batch_size=False)
            EdgeSet = fluid.layers.data(name='EdgeSet',
                                        shape=(1, 9, 2),
                                        dtype='int32',
                                        lod_level=1,
                                        append_batch_size=False)
            ret = fluid.contrib.layers.tree_conv(nodes_vector=NodesVector,
                                                 edge_set=EdgeSet,
                                                 output_size=6,
                                                 num_filters=1,
                                                 max_depth=2)
            static_ret = self.get_static_graph_result(feed={
                'NodesVector':
                fluid.create_lod_tensor(data=vectors,
                                        recursive_seq_lens=[[1]],
                                        place=place),
                'EdgeSet':
                fluid.create_lod_tensor(data=adj,
                                        recursive_seq_lens=[[1]],
                                        place=place)
            },
                                                      fetch_list=[ret],
                                                      with_lod=False)[0]
L
lujun 已提交
2065 2066

        with self.static_graph():
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
            NodesVector = fluid.layers.data(name='NodesVector',
                                            shape=(1, 10, 5),
                                            dtype='float32',
                                            lod_level=1,
                                            append_batch_size=False)
            EdgeSet = fluid.layers.data(name='EdgeSet',
                                        shape=(1, 9, 2),
                                        dtype='int32',
                                        lod_level=1,
                                        append_batch_size=False)
            treeConv = nn.TreeConv(feature_size=5,
                                   output_size=6,
                                   num_filters=1,
                                   max_depth=2)
L
lujun 已提交
2081
            ret = treeConv(NodesVector, EdgeSet)
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
            static_ret2 = self.get_static_graph_result(feed={
                'NodesVector':
                fluid.create_lod_tensor(data=vectors,
                                        recursive_seq_lens=[[1]],
                                        place=place),
                'EdgeSet':
                fluid.create_lod_tensor(data=adj,
                                        recursive_seq_lens=[[1]],
                                        place=place)
            },
                                                       fetch_list=[ret],
                                                       with_lod=False)[0]
L
lujun 已提交
2094 2095

        with self.dynamic_graph():
2096
            with _test_eager_guard():
2097 2098 2099 2100 2101 2102
                treeConv = nn.TreeConv(feature_size=5,
                                       output_size=6,
                                       num_filters=1,
                                       max_depth=2)
                dy_eager_ret = treeConv(base.to_variable(vectors),
                                        base.to_variable(adj))
2103 2104
                dy_eager_rlt_value = dy_eager_ret.numpy()

2105 2106 2107 2108
            treeConv = nn.TreeConv(feature_size=5,
                                   output_size=6,
                                   num_filters=1,
                                   max_depth=2)
L
lujun 已提交
2109
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2110
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2111 2112

        self.assertTrue(np.allclose(static_ret, static_ret2))
2113
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
2114
        self.assertTrue(np.allclose(static_ret, dy_eager_rlt_value))
L
lujun 已提交
2115

2116
        with self.dynamic_graph():
2117 2118 2119 2120 2121
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
                treeConv1 = nn.TreeConv(feature_size=5,
                                        output_size=6,
                                        num_filters=1,
                                        max_depth=2,
                                        bias_attr='eager_tc1_b')
                treeConv2 = nn.TreeConv(feature_size=5,
                                        output_size=6,
                                        num_filters=1,
                                        max_depth=2,
                                        param_attr=weight_attr,
                                        bias_attr='eager_tc2_b')
                dy_ret1 = treeConv1(base.to_variable(vectors),
                                    base.to_variable(adj))
                dy_ret2 = treeConv2(base.to_variable(vectors),
                                    base.to_variable(adj))
2137 2138 2139 2140
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2141 2142 2143 2144 2145 2146
                dy_ret1 = treeConv1(base.to_variable(vectors),
                                    base.to_variable(adj))
                dy_ret2 = treeConv2(base.to_variable(vectors),
                                    base.to_variable(adj))
                self.assertTrue(np.array_equal(dy_ret1.numpy(),
                                               dy_ret2.numpy()))
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
                self.assertTrue(
                    np.array_equal(treeConv1.weight.numpy(),
                                   treeConv2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(treeConv1.bias.numpy(),
                                   treeConv2.bias.numpy()))

2157
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
            treeConv1 = nn.TreeConv(feature_size=5,
                                    output_size=6,
                                    num_filters=1,
                                    max_depth=2,
                                    bias_attr='tc1_b')
            treeConv2 = nn.TreeConv(feature_size=5,
                                    output_size=6,
                                    num_filters=1,
                                    max_depth=2,
                                    param_attr=weight_attr,
                                    bias_attr='tc2_b')
            dy_ret1 = treeConv1(base.to_variable(vectors),
                                base.to_variable(adj))
            dy_ret2 = treeConv2(base.to_variable(vectors),
                                base.to_variable(adj))
2175 2176 2177
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2178 2179 2180 2181
            dy_ret1 = treeConv1(base.to_variable(vectors),
                                base.to_variable(adj))
            dy_ret2 = treeConv2(base.to_variable(vectors),
                                base.to_variable(adj))
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
            self.assertTrue(
                np.array_equal(treeConv1.weight.numpy(),
                               treeConv2.weight.numpy()))
            self.assertTrue(
                np.array_equal(treeConv1.bias.numpy(), treeConv2.bias.numpy()))

L
lujun 已提交
2192
    def test_conv3d_transpose(self):
2193 2194
        input_array = np.arange(0, 48).reshape([2, 3, 2, 2,
                                                2]).astype('float32')
L
lujun 已提交
2195 2196 2197

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2198 2199 2200 2201
            out = layers.conv3d_transpose(input=img,
                                          num_filters=12,
                                          filter_size=12,
                                          use_cudnn=False)
L
lujun 已提交
2202 2203 2204 2205
            static_rlt = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2206 2207 2208 2209
            conv3d_transpose = nn.Conv3DTranspose(num_channels=3,
                                                  num_filters=12,
                                                  filter_size=12,
                                                  use_cudnn=False)
L
lujun 已提交
2210 2211 2212 2213
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.dynamic_graph():
2214
            with _test_eager_guard():
2215 2216 2217 2218
                conv3d_transpose = nn.Conv3DTranspose(num_channels=3,
                                                      num_filters=12,
                                                      filter_size=12,
                                                      use_cudnn=False)
2219 2220 2221
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2222 2223 2224 2225
            conv3d_transpose = nn.Conv3DTranspose(num_channels=3,
                                                  num_filters=12,
                                                  filter_size=12,
                                                  use_cudnn=False)
L
lujun 已提交
2226
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2227
            dy_rlt_value = dy_rlt.numpy()
L
lujun 已提交
2228
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
2229
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
2230
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
L
lujun 已提交
2231

2232
        with self.dynamic_graph():
2233 2234 2235 2236 2237 2238
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
                conv3d1 = nn.Conv3DTranspose(num_channels=3,
                                             num_filters=3,
                                             filter_size=2,
                                             bias_attr='eager_conv3d1_b',
                                             use_cudnn=False)
                conv3d2 = nn.Conv3DTranspose(num_channels=3,
                                             num_filters=3,
                                             filter_size=2,
                                             param_attr=weight_attr,
                                             bias_attr='eager_conv3d2_b',
                                             use_cudnn=False)
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
                conv3d2.weight.set_value(conv3d1_weight_np)
                self.assertTrue(
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2265 2266
                self.assertTrue(np.array_equal(dy_ret1.numpy(),
                                               dy_ret2.numpy()))
2267 2268 2269 2270 2271 2272 2273 2274 2275

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
                self.assertTrue(
                    np.array_equal(conv3d1.weight.numpy(),
                                   conv3d2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

2276 2277
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
            conv3d1 = nn.Conv3DTranspose(num_channels=3,
                                         num_filters=3,
                                         filter_size=2,
                                         bias_attr='conv3d1_b',
                                         use_cudnn=False)
            conv3d2 = nn.Conv3DTranspose(num_channels=3,
                                         num_filters=3,
                                         filter_size=2,
                                         param_attr=weight_attr,
                                         bias_attr='conv3d2_b',
                                         use_cudnn=False)
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
            self.assertTrue(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
            self.assertTrue(
                np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

2314 2315 2316 2317 2318 2319 2320 2321
    def test_eye_op(self):
        np_eye = np.eye(3, 2)
        array_rlt1 = [np_eye for _ in range(3)]
        stack_rlt1 = np.stack(array_rlt1, axis=0)
        array_rlt2 = [stack_rlt1 for _ in range(4)]
        stack_rlt2 = np.stack(array_rlt2, axis=0)

        with self.dynamic_graph():
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
            with _test_eager_guard():
                eager_eye_tensor = layers.eye(num_rows=3, num_columns=2)
                eager_eye_tensor_rlt1 = layers.eye(num_rows=3,
                                                   num_columns=2,
                                                   batch_shape=[3])
                eager_eye_tensor_rlt2 = layers.eye(num_rows=3,
                                                   num_columns=2,
                                                   batch_shape=[4, 3])
                eager_diag_tensor = layers.eye(20)
                eager_eye_tensor_value = eager_eye_tensor.numpy()
                eager_eye_tensor_rlt1_value = eager_eye_tensor_rlt1.numpy()
                eager_eye_tensor_rlt2_value = eager_eye_tensor_rlt2.numpy()
                eager_diag_tensor_value = eager_diag_tensor.numpy()

2336 2337 2338 2339 2340 2341 2342 2343
            eye_tensor = layers.eye(num_rows=3, num_columns=2)
            eye_tensor_rlt1 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[3])
            eye_tensor_rlt2 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[4, 3])
            diag_tensor = layers.eye(20)
2344 2345 2346 2347
            eye_tensor_value = eye_tensor.numpy()
            eye_tensor_rlt1_value = eye_tensor_rlt1.numpy()
            eye_tensor_rlt2_value = eye_tensor_rlt2.numpy()
            diag_tensor_value = diag_tensor.numpy()
2348 2349 2350 2351 2352 2353

        self.assertTrue(np.allclose(eager_eye_tensor_value, np_eye))
        self.assertTrue(np.allclose(eager_eye_tensor_rlt1_value, stack_rlt1))
        self.assertTrue(np.allclose(eager_eye_tensor_rlt2_value, stack_rlt2))
        self.assertTrue(np.allclose(eager_diag_tensor_value, np.eye(20)))

2354 2355 2356 2357
        self.assertTrue(np.allclose(eye_tensor_value, np_eye))
        self.assertTrue(np.allclose(eye_tensor_rlt1_value, stack_rlt1))
        self.assertTrue(np.allclose(eye_tensor_rlt2_value, stack_rlt2))
        self.assertTrue(np.allclose(diag_tensor_value, np.eye(20)))
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

        with self.assertRaises(TypeError):
            layers.eye(num_rows=3.1)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, num_columns=2.2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=[-1])

2368
    def func_while_loop(self):
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2386
            def cond1(i):
2387 2388
                return layers.less_than(i, ten)

2389
            def body1(i):
2390 2391
                return i + 1

2392
            dy_ret = layers.while_loop(cond1, body1, [i])
2393 2394 2395 2396 2397 2398
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2399
                layers.while_loop(cond1, body2, [j])
2400 2401 2402

        self.assertTrue(np.array_equal(static_ret[0], dy_ret[0].numpy()))

2403 2404 2405 2406 2407
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2408 2409 2410 2411 2412 2413 2414 2415
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2416 2417 2418 2419 2420
            static_ret = self.get_static_graph_result(feed={
                "a": value_a,
                "b": value_b
            },
                                                      fetch_list=[cond])[0]
2421
        with self.dynamic_graph():
2422 2423 2424 2425 2426 2427 2428 2429
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2430 2431 2432 2433
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2434 2435
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2436 2437 2438 2439 2440 2441

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
2442 2443 2444 2445 2446
            static_ret1 = self.get_static_graph_result(feed={
                "a1": value_a,
                "b1": value_b
            },
                                                       fetch_list=[cond1])[0]
2447
        with self.dynamic_graph():
2448 2449 2450 2451 2452 2453 2454 2455
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
                dcond1 = layers.less_equal(x=da1, y=db1)

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

        #greater than
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
2468 2469 2470 2471 2472
            static_ret2 = self.get_static_graph_result(feed={
                "a2": value_a,
                "b2": value_b
            },
                                                       fetch_list=[cond2])[0]
2473
        with self.dynamic_graph():
2474 2475 2476 2477 2478 2479 2480 2481
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
                dcond2 = layers.greater_than(x=da2, y=db2)

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

        #greater equal
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
2494 2495 2496 2497 2498
            static_ret3 = self.get_static_graph_result(feed={
                "a3": value_a,
                "b3": value_b
            },
                                                       fetch_list=[cond3])[0]
2499
        with self.dynamic_graph():
2500 2501 2502 2503 2504 2505 2506 2507
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
                dcond3 = layers.greater_equal(x=da3, y=db3)

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
2520 2521 2522 2523 2524
            static_ret4 = self.get_static_graph_result(feed={
                "a4": value_a,
                "b4": value_b
            },
                                                       fetch_list=[cond4])[0]
2525
        with self.dynamic_graph():
2526 2527 2528 2529 2530 2531 2532 2533
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
                dcond4 = layers.equal(x=da4, y=db4)

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
2546 2547 2548 2549 2550
            static_ret5 = self.get_static_graph_result(feed={
                "a5": value_a,
                "b5": value_b
            },
                                                       fetch_list=[cond5])[0]
2551
        with self.dynamic_graph():
2552 2553 2554 2555 2556 2557 2558 2559
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
                dcond5 = layers.equal(x=da5, y=db5)

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2560 2561 2562 2563 2564 2565 2566
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2567
    def test_cond(self):
2568

2569 2570 2571 2572 2573 2574 2575
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
2576 2577 2578 2579 2580 2581
            a = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=0.1)
            b = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=0.23)
2582 2583
            out = fluid.layers.cond(a >= b, lambda: greater_equal_branch(a, b),
                                    lambda: less_than_branch(a, b))
2584 2585
            place = fluid.CUDAPlace(
                0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
2586 2587 2588 2589 2590
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
                    np.array([0.23]).astype('float32'))
                out = layers.cond(a < b, lambda: less_than_branch(a, b),
                                  lambda: greater_equal_branch(a, b))
                out2 = layers.cond(a >= b, lambda: greater_equal_branch(a, b),
                                   lambda: less_than_branch(a, b))
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
                self.assertTrue(
                    np.array_equal(eager_dynamic_res, eager_dynamic_res2))
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
            out = layers.cond(a < b, lambda: less_than_branch(a, b),
                              lambda: greater_equal_branch(a, b))
            out2 = layers.cond(a >= b, lambda: greater_equal_branch(a, b),
                               lambda: less_than_branch(a, b))
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
            self.assertTrue(np.array_equal(dynamic_res, dynamic_res2))
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

        self.assertTrue(np.array_equal(static_res, dynamic_res))
2623
        self.assertTrue(np.array_equal(static_res, eager_dynamic_res))
2624

2625
    def test_case(self):
2626

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2645 2646
            out_1 = layers.case(pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)],
                                default=fn_3)
2647 2648
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2649 2650
            place = fluid.CUDAPlace(
                0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
2651 2652 2653 2654
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2655 2656 2657 2658 2659 2660 2661 2662 2663
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2664 2665 2666 2667 2668
                out_1 = layers.case(pred_fn_pairs=[(pred_1, fn_1),
                                                   (pred_2, fn_2)],
                                    default=fn_3)
                out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3,
                                                                    fn_3)])
2669 2670 2671
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2672 2673 2674 2675 2676 2677 2678 2679
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2680 2681
            out_1 = layers.case(pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)],
                                default=fn_3)
2682 2683 2684 2685 2686 2687
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

        self.assertTrue(np.array_equal(static_res1, dynamic_res1))
        self.assertTrue(np.array_equal(static_res2, dynamic_res2))
2688 2689
        self.assertTrue(np.array_equal(static_res1, eager_dynamic_res1))
        self.assertTrue(np.array_equal(static_res2, eager_dynamic_res2))
2690 2691

    def test_switch_case(self):
2692

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
            out_1 = layers.switch_case(branch_index=index_1,
                                       branch_fns={
                                           1: fn_1,
                                           2: fn_2
                                       },
                                       default=fn_3)
            out_2 = layers.switch_case(branch_index=index_2,
                                       branch_fns=[(1, fn_1), (2, fn_2)],
                                       default=fn_3)
            out_3 = layers.switch_case(branch_index=index_2,
                                       branch_fns=[(0, fn_1), (4, fn_2),
                                                   (7, fn_3)])

            place = fluid.CUDAPlace(
                0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
2721 2722 2723 2724 2725
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
                fetch_list=[out_1, out_2, out_3])

        with self.dynamic_graph():
2726
            with _test_eager_guard():
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
                index_1 = layers.fill_constant(shape=[1],
                                               dtype='int32',
                                               value=1)
                index_2 = layers.fill_constant(shape=[1],
                                               dtype='int32',
                                               value=2)

                out_1 = layers.switch_case(branch_index=index_1,
                                           branch_fns={
                                               1: fn_1,
                                               2: fn_2
                                           },
                                           default=fn_3)
                out_2 = layers.switch_case(branch_index=index_2,
                                           branch_fns=[(1, fn_1), (2, fn_2)],
                                           default=fn_3)
                out_3 = layers.switch_case(branch_index=index_2,
                                           branch_fns=[(0, fn_1), (4, fn_2),
                                                       (7, fn_3)])
2746 2747 2748 2749 2750

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2751 2752 2753
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
            out_1 = layers.switch_case(branch_index=index_1,
                                       branch_fns={
                                           1: fn_1,
                                           2: fn_2
                                       },
                                       default=fn_3)
            out_2 = layers.switch_case(branch_index=index_2,
                                       branch_fns=[(1, fn_1), (2, fn_2)],
                                       default=fn_3)
            out_3 = layers.switch_case(branch_index=index_2,
                                       branch_fns=[(0, fn_1), (4, fn_2),
                                                   (7, fn_3)])
2766 2767 2768 2769 2770 2771 2772 2773

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

        self.assertTrue(np.array_equal(static_res1, dynamic_res1))
        self.assertTrue(np.array_equal(static_res2, dynamic_res2))
        self.assertTrue(np.array_equal(static_res3, dynamic_res3))
2774 2775 2776
        self.assertTrue(np.array_equal(static_res1, eager_dynamic_res1))
        self.assertTrue(np.array_equal(static_res2, eager_dynamic_res2))
        self.assertTrue(np.array_equal(static_res3, eager_dynamic_res3))
2777

2778 2779 2780 2781
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2782 2783 2784 2785 2786 2787
            dim1 = fluid.layers.data(name="dim1",
                                     shape=[1],
                                     append_batch_size=False)
            dim2 = fluid.layers.data(name="dim2",
                                     shape=[1],
                                     append_batch_size=False)
2788
            crop_shape1 = (1, 2, 4, 4)
2789 2790 2791
            crop_shape2 = fluid.layers.data(name="crop_shape",
                                            shape=[4],
                                            append_batch_size=False)
2792 2793
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2794 2795 2796
            crop_offsets2 = fluid.layers.data(name="crop_offset",
                                              shape=[4],
                                              append_batch_size=False)
2797 2798
            crop_offsets3 = [0, dim1, dim2, 0]

2799 2800 2801 2802 2803 2804 2805 2806 2807
            out1 = fluid.layers.crop_tensor(x,
                                            shape=crop_shape1,
                                            offsets=crop_offsets1)
            out2 = fluid.layers.crop_tensor(x,
                                            shape=crop_shape2,
                                            offsets=crop_offsets2)
            out3 = fluid.layers.crop_tensor(x,
                                            shape=crop_shape3,
                                            offsets=crop_offsets3)
2808 2809 2810 2811 2812

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2813 2814 2815
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2816 2817 2818 2819
            shard_label = fluid.layers.shard_index(input=x,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
2820 2821 2822

        self.assertIsNotNone(shard_label)

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2836 2837
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2838 2839 2840 2841
            static_out = exe.run(feed={
                "input": x,
                "label": y
            },
2842 2843
                                 fetch_list=result[0])

L
Leo Chen 已提交
2844
        with self.dynamic_graph(force_to_use_cpu=True):
2845 2846 2847 2848 2849 2850 2851 2852
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

        self.assertTrue(np.array_equal(static_out[0], dynamic_out.numpy()))

Y
Yu Yang 已提交
2853

2854
class TestBook(LayerTest):
2855

H
hong 已提交
2856 2857 2858 2859 2860 2861 2862 2863
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
        self.not_compare_static_dygraph_set = set({
            "make_gaussian_random", "make_gaussian_random_batch_size_like",
            "make_kldiv_loss", "make_prelu",
            "make_sampled_softmax_with_cross_entropy", "make_sampling_id",
            "make_uniform_random_batch_size_like"
        })
2864
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2865

2866
    def func_all_layers(self):
2867 2868 2869 2870 2871
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2872 2873 2874
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
                        force_to_use_cpu=self._force_to_use_cpu)
H
hong 已提交
2888

2889 2890 2891
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
2892 2893
            if method.__name__ in self.only_static_set:
                continue
2894 2895 2896 2897 2898

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2899
                dy_result_value = dy_result.numpy()
2900

2901 2902
            if method.__name__ in self.all_close_compare:
                self.assertTrue(
2903 2904 2905 2906
                    np.allclose(static_result[0],
                                dy_result_value,
                                atol=0,
                                rtol=1e-05),
2907 2908 2909 2910
                    "Result of function [{}] compare failed".format(
                        method.__name__))
                continue

H
hong 已提交
2911 2912
            if method.__name__ not in self.not_compare_static_dygraph_set:
                self.assertTrue(
2913 2914
                    np.array_equal(static_result[0], dy_result_value),
                    "Result of function [{}] not equal".format(method.__name__))
2915

2916 2917 2918 2919 2920
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2921 2922 2923
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2924
            shape = [self._batch_size] + shape
2925 2926 2927 2928 2929
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
M
minqiyang 已提交
2930 2931
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
2932
        elif dtype == 'int64':
M
minqiyang 已提交
2933 2934
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
2935 2936 2937 2938 2939 2940 2941 2942

    def _get_data(self,
                  name,
                  shape,
                  dtype,
                  set_feed_dict=True,
                  append_batch_size=True):
        if base.enabled():
2943 2944 2945 2946
            return base.to_variable(value=self._get_np_data(
                shape, dtype, append_batch_size),
                                    name=name,
                                    zero_copy=False)
2947 2948
        else:
            if set_feed_dict:
2949 2950 2951 2952 2953 2954
                self._feed_dict[name] = self._get_np_data(
                    shape, dtype, append_batch_size)
            return layers.data(name=name,
                               shape=shape,
                               dtype=dtype,
                               append_batch_size=append_batch_size)
2955 2956 2957 2958

    def make_sampled_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
2959
            logits = self._get_data(name='Logits', shape=[256], dtype='float32')
M
minqiyang 已提交
2960
            label = self._get_data(name='Label', shape=[1], dtype='int64')
2961
            num_samples = 25
2962 2963
            output = layers.sampled_softmax_with_cross_entropy(
                logits, label, num_samples)
2964 2965 2966
            return (output)

    def make_fit_a_line(self):
2967 2968
        with program_guard(fluid.default_main_program(),
                           startup_program=fluid.default_startup_program()):
2969
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
2970
            y_predict = layers.fc(input=x, size=1, act=None)
2971
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
2972
            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
2973
            avg_cost = layers.mean(cost)
2974
            return (avg_cost)
Y
Yu Yang 已提交
2975

2976 2977 2978
    def make_recognize_digits_mlp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
2979
            # Change g_program, so the rest layers use `g_program`
2980 2981
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2982 2983
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
2984 2985 2986 2987
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
2988
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
2989
            avg_cost = layers.mean(cost)
2990
            return (avg_cost)
Y
Yu Yang 已提交
2991

2992 2993 2994 2995
    def make_conv2d_transpose(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
2996 2997 2998
            return layers.conv2d_transpose(input=img,
                                           num_filters=10,
                                           output_size=28)
2999

3000 3001 3002
    def make_recognize_digits_conv(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3003 3004 3005
            images = self._get_data(name='pixel',
                                    shape=[1, 28, 28],
                                    dtype='float32')
3006
            label = self._get_data(name='label', shape=[1], dtype='int64')
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
            conv_pool_1 = nets.simple_img_conv_pool(input=images,
                                                    filter_size=5,
                                                    num_filters=2,
                                                    pool_size=2,
                                                    pool_stride=2,
                                                    act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(input=conv_pool_1,
                                                    filter_size=5,
                                                    num_filters=4,
                                                    pool_size=2,
                                                    pool_stride=2,
                                                    act="relu")
Y
Yu Yang 已提交
3019 3020 3021

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
3022
            avg_cost = layers.mean(cost)
3023
            return avg_cost
Y
Yu Yang 已提交
3024

3025 3026 3027
    def make_word_embedding(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
3028 3029
            dict_size = 10000
            embed_size = 32
3030
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3031 3032 3033
            second_word = self._get_data(name='secondw',
                                         shape=[1],
                                         dtype='int64')
3034 3035 3036
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3037

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
            embed_first = layers.embedding(input=first_word,
                                           size=[dict_size, embed_size],
                                           dtype='float32',
                                           param_attr='shared_w')
            embed_second = layers.embedding(input=second_word,
                                            size=[dict_size, embed_size],
                                            dtype='float32',
                                            param_attr='shared_w')

            embed_third = layers.embedding(input=third_word,
                                           size=[dict_size, embed_size],
                                           dtype='float32',
                                           param_attr='shared_w')
            embed_forth = layers.embedding(input=forth_word,
                                           size=[dict_size, embed_size],
                                           dtype='float32',
                                           param_attr='shared_w')
Y
Yu Yang 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
Y
Yu Yang 已提交
3065
            avg_cost = layers.mean(cost)
3066
            return (avg_cost)
Y
Yu Yang 已提交
3067

3068 3069 3070 3071 3072
    def make_sigmoid_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
3073
            ignore_index = -1
3074 3075 3076 3077 3078 3079 3080 3081 3082
            return (layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index))

    def make_hsigmoid(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[2], dtype='float32')
            y = self._get_data(name='y', shape=[2], dtype='int64')
            return (layers.hsigmoid(input=x, label=y, num_classes=2))
W
weixing02 已提交
3083

J
JiabinYang 已提交
3084
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
3085 3086
        program2 = Program()
        with program_guard(program2):
3087 3088
            x2 = self._get_data(name='x2', shape=[4, 8], dtype='float32')
            y2 = self._get_data(name='y2', shape=[4], dtype='int64')
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
            path_table = self._get_data(name='path_table',
                                        shape=[4, 6],
                                        dtype='int64')
            path_code = self._get_data(name='path_code',
                                       shape=[4, 6],
                                       dtype='int64')
            return (layers.hsigmoid(input=x2,
                                    label=y2,
                                    num_classes=6,
                                    path_table=path_table,
                                    path_code=path_code,
                                    is_custom=True))
J
JiabinYang 已提交
3101

3102 3103 3104 3105
    def make_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3106 3107 3108 3109
            return (layers.pool2d(x,
                                  pool_size=[5, 3],
                                  pool_stride=[1, 2],
                                  pool_padding=(2, 1)))
3110

K
Kaipeng Deng 已提交
3111 3112 3113 3114 3115
    def make_pool2d_infershape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
            x = fluid.layers.affine_grid(theta, out_shape=[2, 3, 244, 244])
3116 3117 3118 3119
            return (layers.pool2d(x,
                                  pool_size=[5, 3],
                                  pool_stride=[1, 2],
                                  pool_padding=(2, 1)))
K
Kaipeng Deng 已提交
3120 3121 3122 3123

    def make_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3124 3125 3126 3127 3128 3129 3130
            x = self._get_data(name='x',
                               shape=[3, 244, 244, 244],
                               dtype='float32')
            return (layers.pool3d(x,
                                  pool_size=[5, 3, 2],
                                  pool_stride=[1, 2, 3],
                                  pool_padding=(2, 1, 1)))
K
Kaipeng Deng 已提交
3131

3132 3133 3134 3135 3136
    def make_adaptive_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
            return (layers.adaptive_pool2d(x, [3, 3], pool_type='avg'))
D
dengkaipeng 已提交
3137
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
3138 3139 3140
            return (pool)
            return (mask)
            return (layers.adaptive_pool2d(x, 3, pool_type='avg'))
3141
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
3142 3143 3144 3145 3146 3147
            return (pool)
            return (mask)

    def make_adaptive_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3148 3149 3150
            x = self._get_data(name='x',
                               shape=[3, 244, 224, 224],
                               dtype='float32')
3151
            return (layers.adaptive_pool3d(x, [3, 3, 3], pool_type='avg'))
3152 3153
            pool, mask = layers.adaptive_pool3d(x, [3, 3, 3],
                                                require_index=True)
3154 3155 3156
            return (pool)
            return (mask)
            return (layers.adaptive_pool3d(x, 3, pool_type='avg'))
3157
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
3158 3159
            return (pool)
            return (mask)
3160

3161 3162 3163
    def make_lstm_unit(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3164 3165 3166
            x_t_data = self._get_data(name='x_t_data',
                                      shape=[10, 10],
                                      dtype='float32')
Y
yangyaming 已提交
3167
            x_t = layers.fc(input=x_t_data, size=10)
3168 3169 3170
            prev_hidden_data = self._get_data(name='prev_hidden_data',
                                              shape=[10, 30],
                                              dtype='float32')
Y
yangyaming 已提交
3171
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3172 3173 3174
            prev_cell_data = self._get_data(name='prev_cell',
                                            shape=[10, 30],
                                            dtype='float32')
Y
yangyaming 已提交
3175
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3176 3177 3178
            return (layers.lstm_unit(x_t=x_t,
                                     hidden_t_prev=prev_hidden,
                                     cell_t_prev=prev_cell))
3179

3180 3181 3182 3183
    def make_softmax(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3184
            hid = layers.fc(input=data, size=20)
3185
            return (layers.softmax(hid, axis=1))
D
dangqingqing 已提交
3186

3187 3188 3189
    def make_space_to_depth(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3190 3191 3192 3193
            data = self._get_data(name='data',
                                  shape=[32, 9, 6, 6],
                                  append_batch_size=False,
                                  dtype='float32')
3194
            return (layers.space_to_depth(data, 3))
J
JiabinYang 已提交
3195

3196 3197 3198 3199 3200
    def make_lrn(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[6, 2, 2], dtype='float32')
            return (layers.lrn(data))
3201

3202 3203 3204 3205
    def make_get_places(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            get_places(device_count=1)
X
xuezhong 已提交
3206

3207
    @prog_scope()
3208
    def make_nce(self):
Y
Yang Yu 已提交
3209 3210
        window_size = 5
        words = []
3211
        for i in range(window_size):
Y
Yang Yu 已提交
3212
            words.append(
3213 3214 3215
                self._get_data(name='word_{0}'.format(i),
                               shape=[1],
                               dtype='int64'))
Y
Yang Yu 已提交
3216 3217

        dict_size = 10000
M
minqiyang 已提交
3218
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3219 3220

        embs = []
3221
        for i in range(window_size):
Y
Yang Yu 已提交
3222 3223 3224
            if i == label_word:
                continue

3225 3226 3227 3228
            emb = layers.embedding(input=words[i],
                                   size=[dict_size, 32],
                                   param_attr='emb.w',
                                   is_sparse=True)
Y
Yang Yu 已提交
3229 3230 3231 3232 3233 3234 3235 3236 3237

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
        loss = layers.nce(input=embs,
                          label=words[label_word],
                          num_total_classes=dict_size,
                          param_attr='nce.w',
                          bias_attr='nce.b')
Y
Yu Yang 已提交
3238
        avg_loss = layers.mean(loss)
3239
        return (avg_loss)
Y
Yang Yu 已提交
3240

3241 3242 3243 3244 3245 3246
    def make_multiplex(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3247
            out = layers.multiplex(inputs=[x1, x2], index=index)
3248 3249 3250 3251 3252 3253 3254
            return (out)

    def make_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3255 3256
            loss, softmax = layers.softmax_with_cross_entropy(
                x, y, return_softmax=True)
3257 3258 3259
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3260
            loss = layers.softmax_with_cross_entropy(x, y)
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
            return (loss4)
3276 3277 3278 3279 3280 3281

    def make_smooth_l1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3282
            loss = layers.smooth_l1(x, y)
3283
            return (loss)
3284

3285 3286 3287
    def make_scatter(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
            x = self._get_data(name='x',
                               shape=[3, 3],
                               append_batch_size=False,
                               dtype='float32')
            idx = self._get_data(name='idx',
                                 shape=[2],
                                 append_batch_size=False,
                                 dtype='int32')
            updates = self._get_data(name='updates',
                                     shape=[2, 3],
                                     append_batch_size=False,
                                     dtype='float32')
3300
            out = layers.scatter(input=x, index=idx, updates=updates)
3301
            return (out)
Y
yangyaming 已提交
3302

3303 3304 3305 3306 3307 3308
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            return (one_hot_label)

3309 3310 3311 3312 3313
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3314
            one_hot_label = layers.one_hot(input=label, depth=10)
3315 3316 3317
            smooth_label = layers.label_smooth(label=one_hot_label,
                                               epsilon=0.1,
                                               dtype="int32")
3318
            return (smooth_label)
3319

3320 3321 3322 3323 3324 3325 3326
    def make_topk(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
            return (values)
            return (indices)
J
jerrywgz 已提交
3327

3328 3329 3330 3331
    def make_resize_bilinear(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3332
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3333
            return (output)
K
Kaipeng Deng 已提交
3334 3335 3336 3337 3338 3339

    def make_resize_bilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3340
            return (output)
3341

3342
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
3354 3355 3356
                x = self._get_data(name='x2',
                                   shape=[3, 9, 6, 7],
                                   dtype="float32")
K
Kaipeng Deng 已提交
3357 3358 3359 3360
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3361 3362 3363
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3364
            output = layers.resize_nearest(x, out_shape=[12, 12])
3365
            return (output)
K
Kaipeng Deng 已提交
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385

    def make_resize_nearest_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
            return (output)

    def make_resize_trilinear(self):
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
3386 3387 3388
                x = self._get_data(name='x',
                                   shape=[3, 9, 6, 7],
                                   dtype="float32")
K
Kaipeng Deng 已提交
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
            return (output)

    def make_resize_trilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3404
            return (output)
3405

3406 3407 3408 3409
    def make_polygon_box_transform(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3410
            output = layers.polygon_box_transform(input=x)
3411
            return (output)
3412

3413 3414 3415 3416
    def make_l2_normalize(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3417
            output = layers.l2_normalize(x, axis=1)
3418
            return output
3419

3420 3421 3422 3423 3424
    def make_crop(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5], dtype="float32")
            y = self._get_data(name='y', shape=[2, 3], dtype="float32")
3425
            output = layers.crop(x, shape=y)
3426 3427 3428 3429 3430
            return (output)

    def make_mean_iou(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[16], dtype='int32')
M
minqiyang 已提交
3431 3432
            y = self._get_data(name='label', shape=[16], dtype='int32')
            iou = layers.mean_iou(x, y, self._high_data_bound)
3433
            return (iou)
W
whs 已提交
3434

3435 3436 3437 3438
    def make_argsort(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3439
            out, ids = layers.argsort(input=data, axis=1)
3440 3441 3442 3443 3444 3445
            return (out)
            return (ids)

    def make_rank_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
            label = self._get_data(name='label',
                                   append_batch_size=False,
                                   shape=[16, 1],
                                   dtype="float32")
            left = self._get_data(name='left',
                                  append_batch_size=False,
                                  shape=[16, 1],
                                  dtype="float32")
            right = self._get_data(name='right',
                                   append_batch_size=False,
                                   shape=[16, 1],
                                   dtype="float32")
3458
            out = layers.rank_loss(label, left, right, name="rank_loss")
3459
            return (out)
3460

3461 3462 3463
    def make_shape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3464 3465 3466
            input = self._get_data(name="input",
                                   shape=[3, 100, 100],
                                   dtype="float32")
G
fix  
gongweibao 已提交
3467
            out = layers.shape(input)
3468
            return (out)
B
Bai Yifan 已提交
3469

3470 3471 3472
    def make_pad2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3473 3474 3475
            input = self._get_data(name="input",
                                   shape=[3, 100, 100],
                                   dtype="float32")
3476
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
            out = layers.pad2d(input,
                               paddings=[1, 2, 3, 4],
                               mode='reflect',
                               data_format='NCHW',
                               name="shape")
            out_1 = layers.pad2d(input,
                                 paddings=paddings,
                                 mode='reflect',
                                 data_format='NCHW',
                                 name="shape")
3487 3488
            return (out)
            return (out_1)
W
whs 已提交
3489

3490 3491 3492
    def make_prelu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3493 3494 3495
            input = self._get_data(name="input",
                                   shape=[5, 200, 100, 100],
                                   dtype="float32")
J
jerrywgz 已提交
3496
            mode = 'channel'
3497 3498 3499 3500
            out = layers.prelu(input,
                               mode,
                               param_attr=ParamAttr(initializer=Constant(1.0)),
                               name='prelu')
3501
            return (out)
J
jerrywgz 已提交
3502

3503 3504 3505 3506
    def make_soft_relu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3507
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
3508
            return (out)
T
tensor-tang 已提交
3509

3510 3511 3512 3513
    def make_sigmoid(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3514
            out = layers.sigmoid(input, name='sigmoid')
3515
            return (out)
T
tensor-tang 已提交
3516

3517 3518 3519 3520
    def make_exp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3521
            out = layers.exp(input, name='exp')
3522
            return (out)
T
tensor-tang 已提交
3523

3524 3525 3526 3527
    def make_tanh(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3528
            out = layers.tanh(input, name='tanh')
3529
            return (out)
T
tensor-tang 已提交
3530

3531 3532 3533 3534
    def make_tanh_shrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3535
            out = layers.tanh_shrink(input, name='tanh_shrink')
3536
            return (out)
T
tensor-tang 已提交
3537

3538 3539 3540 3541
    def make_sqrt(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3542
            out = layers.sqrt(input, name='sqrt')
3543
            return (out)
T
tensor-tang 已提交
3544

3545 3546 3547 3548
    def make_abs(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3549
            out = layers.abs(input, name='abs')
3550
            return (out)
T
tensor-tang 已提交
3551

3552 3553 3554 3555
    def make_ceil(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3556
            out = layers.ceil(input, name='ceil')
3557
            return (out)
T
tensor-tang 已提交
3558

3559 3560 3561 3562
    def make_floor(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3563
            out = layers.floor(input, name='floor')
3564
            return (out)
T
tensor-tang 已提交
3565

3566 3567 3568 3569
    def make_cos(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3570
            out = layers.cos(input, name='cos')
3571
            return (out)
T
tensor-tang 已提交
3572

3573 3574 3575 3576
    def make_sin(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3577
            out = layers.sin(input, name='sin')
3578
            return (out)
T
tensor-tang 已提交
3579

3580 3581 3582 3583
    def make_round(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3584
            out = layers.round(input, name='round')
3585
            return (out)
T
tensor-tang 已提交
3586

3587 3588 3589 3590
    def make_reciprocal(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3591
            out = layers.reciprocal(input, name='reciprocal')
3592
            return (out)
T
tensor-tang 已提交
3593

3594 3595 3596 3597
    def make_square(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3598
            out = layers.square(input, name='square')
3599
            return (out)
T
tensor-tang 已提交
3600

3601 3602 3603 3604
    def make_softplus(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3605
            out = layers.softplus(input, name='softplus')
3606
            return (out)
T
tensor-tang 已提交
3607

3608 3609 3610 3611
    def make_softsign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3612
            out = layers.softsign(input, name='softsign')
3613
            return (out)
T
tensor-tang 已提交
3614

K
Kaipeng Deng 已提交
3615 3616 3617 3618 3619 3620 3621
    def make_mish(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
            return (out)

3622 3623 3624 3625 3626
    def make_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3627 3628
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3629
            return (out)
3630

3631 3632 3633 3634 3635
    def make_bpr_loss(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3636
            out = layers.bpr_loss(x, label)
3637
            return (out)
3638

3639 3640 3641 3642
    def make_expand(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="input", shape=[10], dtype='int32')
W
whs 已提交
3643
            out = layers.expand(x, [1, 2])
3644
            return out
W
whs 已提交
3645

3646 3647 3648
    def make_uniform_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3649 3650 3651
            input = self._get_data(name="input",
                                   shape=[13, 11],
                                   dtype='float32')
G
fix  
gongweibao 已提交
3652
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
3653
            return (out)
G
fix  
gongweibao 已提交
3654

3655 3656 3657
    def make_gaussian_random(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
G
fix  
gongweibao 已提交
3658
            out = layers.gaussian_random(shape=[20, 30])
3659
            return (out)
G
fix  
gongweibao 已提交
3660

3661 3662 3663
    def make_sampling_id(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3664 3665 3666 3667
            x = self._get_data(name="X",
                               shape=[13, 11],
                               dtype='float32',
                               append_batch_size=False)
G
fix  
gongweibao 已提交
3668 3669

            out = layers.sampling_id(x)
3670
            return (out)
G
fix  
gongweibao 已提交
3671

3672 3673 3674
    def make_gaussian_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3675 3676 3677 3678 3679 3680 3681 3682
            input = self._get_data(name="input",
                                   shape=[13, 11],
                                   dtype='float32')

            out = layers.gaussian_random_batch_size_like(input,
                                                         shape=[-1, 11],
                                                         mean=1.0,
                                                         std=2.0)
3683
            return (out)
G
fix  
gongweibao 已提交
3684

3685 3686 3687
    def make_sum(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3688 3689 3690
            input = self._get_data(name="input",
                                   shape=[13, 11],
                                   dtype='float32')
G
fix  
gongweibao 已提交
3691 3692

            out = layers.sum(input)
3693
            return (out)
G
fix  
gongweibao 已提交
3694

3695
    def make_slice(self):
G
fix  
gongweibao 已提交
3696 3697 3698 3699
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3700 3701
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3702 3703 3704
            input = self._get_data(name="input",
                                   shape=[3, 4, 5, 6],
                                   dtype='float32')
G
fix  
gongweibao 已提交
3705 3706

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
3707
            return out
G
merge  
gongweibao 已提交
3708

3709 3710 3711
    def make_scale_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3712 3713 3714 3715 3716 3717 3718
            input = self._get_data(name="input",
                                   shape=[3, 4, 5, 6],
                                   dtype='float32')
            scale_var = self._get_data(name="scale",
                                       shape=[1],
                                       dtype='float32',
                                       append_batch_size=False)
3719
            out = layers.scale(input, scale=scale_var)
3720 3721
            return out

3722 3723 3724 3725
    def make_softshrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
3726
            out = layers.softshrink(input, alpha=0.3)
3727
            return (out)
G
fix  
gongweibao 已提交
3728

M
minqiyang 已提交
3729
    def make_iou_similarity(self):
3730 3731
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
3732 3733
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3734
            out = layers.iou_similarity(x, y, name='iou_similarity')
3735 3736 3737 3738 3739 3740 3741
            return (out)

    def make_grid_sampler(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3742
            out = layers.grid_sampler(x, grid)
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
            return (out)

    def make_bilinear_tensor_product_layer(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
            return (out)

    def make_batch_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3757 3758 3759
            data = self._get_data(name='data',
                                  shape=[32, 128, 128],
                                  dtype="float32")
3760 3761 3762
            out = layers.batch_norm(data)
            return (out)

3763 3764 3765
    def make_batch_norm_momentum_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3766 3767 3768 3769 3770 3771 3772
            data = self._get_data(name='data',
                                  shape=[32, 128, 128],
                                  dtype="float32")
            momentum = self._get_data(name='momentum',
                                      shape=[1],
                                      dtype='float32',
                                      append_batch_size=False)
3773 3774 3775
            out = layers.batch_norm(data, momentum=momentum)
            return (out)

K
Kaipeng Deng 已提交
3776 3777 3778
    def make_inplace_abn(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3779 3780 3781
            data = self._get_data(name='data',
                                  shape=[32, 128, 128],
                                  dtype="float32")
K
Kaipeng Deng 已提交
3782 3783 3784 3785 3786 3787
            out = layers.inplace_abn(data, act='leaky_relu', act_alpha=0.2)
            return (out)

    def make_inplace_abn_momentum_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
            data = self._get_data(name='data',
                                  shape=[32, 128, 128],
                                  dtype="float32")
            momentum = self._get_data(name='momentum',
                                      shape=[1],
                                      dtype='float32',
                                      append_batch_size=False)
            out = layers.inplace_abn(data,
                                     momentum=momentum,
                                     act='elu',
                                     act_alpha=2.0)
K
Kaipeng Deng 已提交
3799 3800
            return (out)

3801 3802 3803 3804
    def make_range(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            layers.range(0, 10, 2, 'int32')
3805 3806 3807 3808 3809 3810
            layers.range(0.1, 10.0, 0.2, 'float32')
            layers.range(0.1, 10.0, 0.2, 'float64')
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
            y = layers.range(start, end, step, 'float64')
3811 3812 3813 3814 3815
            return y

    def make_spectral_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3816 3817 3818 3819
            weight = self._get_data(name='weight',
                                    shape=[2, 3, 32, 32],
                                    dtype="float32",
                                    append_batch_size=False)
3820 3821 3822 3823 3824 3825
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
            return (out)

    def make_kldiv_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3826 3827 3828 3829 3830 3831 3832 3833
            x = self._get_data(name='x',
                               shape=[32, 128, 128],
                               dtype="float32",
                               append_batch_size=False)
            target = self._get_data(name='target',
                                    shape=[32, 128, 128],
                                    dtype="float32",
                                    append_batch_size=False)
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
            return (loss)

    def make_temporal_shift(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
            return (out)

    def make_shuffle_channel(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
            return (out)

M
minqiyang 已提交
3851
    def make_fsp_matrix(self):
3852 3853 3854 3855 3856 3857 3858
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
            return (out)

M
minqiyang 已提交
3859 3860 3861 3862 3863 3864 3865
    def make_pixel_shuffle(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
            return (out)

R
ruri 已提交
3866 3867 3868 3869 3870 3871 3872 3873
    def make_mse_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
            return (out)

3874 3875 3876 3877 3878 3879 3880 3881
    def make_square_error_cost(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
            return (out)

3882 3883 3884 3885
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
3886 3887 3888 3889
            seq_data = layers.data(name='seq_data',
                                   shape=[10, 10],
                                   dtype='float32',
                                   lod_level=1)
3890 3891
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
3892 3893 3894
                layers.dynamic_lstmp(input=fc_out,
                                     size=4 * hidden_dim,
                                     proj_size=proj_dim))
3895 3896 3897 3898

    def test_linear_chain_crf(self):
        with self.static_graph():
            label_dict_len = 10
3899 3900 3901
            feature = layers.data(name='feature', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10)
3902 3903 3904 3905 3906
            crf = layers.linear_chain_crf(input=emission,
                                          label=label,
                                          param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(input=emission,
                                             param_attr=ParamAttr(name="crfw"))
3907 3908
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
3909 3910 3911 3912
            return layers.chunk_eval(input=crf_decode,
                                     label=label,
                                     chunk_scheme="IOB",
                                     num_chunk_types=(label_dict_len - 1) // 2)
3913 3914 3915 3916

    def test_linear_chain_crf_padding(self):
        with self.static_graph():
            label_dict_len, max_len = 10, 20
3917 3918 3919
            feature = layers.data(name='feature',
                                  shape=[max_len, 784],
                                  dtype='float32')
3920 3921 3922
            label = layers.data(name='label', shape=[max_len], dtype='int64')
            length = layers.data(name='length', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10, num_flatten_dims=2)
3923 3924 3925 3926 3927 3928 3929
            crf = layers.linear_chain_crf(input=emission,
                                          label=label,
                                          length=length,
                                          param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(input=emission,
                                             length=length,
                                             param_attr=ParamAttr(name="crfw"))
3930 3931
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
3932 3933 3934 3935 3936
            return layers.chunk_eval(input=crf_decode,
                                     label=label,
                                     seq_length=length,
                                     chunk_scheme="IOB",
                                     num_chunk_types=(label_dict_len - 1) // 2)
3937 3938 3939 3940 3941 3942

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
3943 3944 3945 3946 3947
            output = layers.im2sequence(input=x,
                                        input_image_size=y,
                                        stride=[1, 1],
                                        filter_size=[2, 2],
                                        out_stride=[1, 1])
3948 3949 3950 3951 3952
            return (output)

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3953
            # case 1
3954
            x = layers.data(name='x', shape=[10], dtype='float32')
3955 3956 3957 3958
            y = layers.data(name='y',
                            shape=[10, 20],
                            dtype='float32',
                            lod_level=2)
3959 3960 3961
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
3962
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
3963 3964 3965 3966 3967 3968
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
3969

W
whs 已提交
3970
    def test_affine_grid(self):
3971
        with self.static_graph():
W
whs 已提交
3972 3973 3974 3975
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
3976
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
W
whs 已提交
3977 3978 3979 3980 3981
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3982

W
wangchaochaohu 已提交
3983 3984 3985 3986 3987 3988 3989
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
3990 3991 3992 3993 3994
            out = layers.strided_slice(x,
                                       axes=axes,
                                       starts=starts,
                                       ends=ends,
                                       strides=strides)
W
wangchaochaohu 已提交
3995 3996
            return out

3997 3998
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
3999 4000 4001 4002 4003 4004 4005
            like = fluid.layers.fill_constant(shape=[1, 200],
                                              value=10,
                                              dtype='int64')
            out = layers.fill_constant_batch_size_like(input=like,
                                                       shape=[2, 3300],
                                                       value=1315454564656,
                                                       dtype='int64')
4006 4007
            return out

4008 4009 4010 4011
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
4012 4013 4014 4015
            rois = layers.data(name="rois",
                               shape=[4],
                               dtype="float32",
                               lod_level=1)
4016 4017
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
            return (output)
4018

4019 4020 4021 4022
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
4023 4024 4025 4026
            y = layers.data(name='y',
                            shape=[10, 20],
                            dtype='float32',
                            lod_level=2)
4027
            return (layers.sequence_expand(x=x, y=y, ref_level=1))
4028

4029 4030 4031 4032 4033 4034
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            return (out)
4035

4036 4037 4038 4039
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
4040
            length = layers.data(name='length', shape=[], dtype='int64')
4041
            return (layers.sequence_unpad(x=x, length=length))
4042

4043 4044 4045
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4046 4047 4048 4049
            seq_data = layers.data(name='seq_data',
                                   shape=[10, 10],
                                   dtype='float32',
                                   lod_level=1)
4050 4051
            seq = layers.fc(input=seq_data, size=20)
            return (layers.sequence_softmax(seq))
4052

4053 4054 4055 4056 4057 4058
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
            return (out)
4059

4060 4061 4062
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
            x = layers.data(name='x',
                            shape=[3, 6],
                            append_batch_size=False,
                            dtype='float32')
            idx = layers.data(name='idx',
                              shape=[12, 1],
                              append_batch_size=False,
                              dtype='int32',
                              lod_level=1)
            updates = layers.data(name='updates',
                                  shape=[12, 1],
                                  append_batch_size=False,
                                  dtype='float32',
                                  lod_level=1)
4077 4078
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
            return (out)
W
whs 已提交
4079

4080 4081 4082 4083
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
4084 4085 4086 4087
            seqs = layers.data(name='x',
                               shape=[10, 5],
                               dtype='float32',
                               lod_level=1)
4088 4089
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
4090 4091 4092
            out = layers.sequence_slice(input=seqs,
                                        offset=offset,
                                        length=length)
4093
            return (out)
W
whs 已提交
4094

J
Jiawei Wang 已提交
4095 4096 4097
    def test_filter_by_instag(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
            x1 = layers.data(name='Ins',
                             shape=[32, 1],
                             dtype='float32',
                             lod_level=0)
            x2 = layers.data(name='Ins_tag',
                             shape=[32, 1],
                             dtype='int64',
                             lod_level=0,
                             stop_gradient=True)
            x3 = layers.create_global_var(shape=[1, 1],
                                          value=20,
                                          dtype='int64',
                                          persistable=True,
                                          force_cpu=True,
                                          name='Filter_tag')
J
Jiawei Wang 已提交
4113 4114
            out1, out2 = layers.filter_by_instag(x1, x2, x3, is_lod=True)

Z
zhoushiyu 已提交
4115 4116 4117
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4118 4119 4120 4121
            x = layers.data(name='X',
                            shape=[4, 50],
                            dtype='float32',
                            lod_level=0)
Z
zhoushiyu 已提交
4122 4123 4124 4125 4126 4127 4128
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            return (out1)

4129 4130 4131 4132
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4133 4134 4135
            sum = fluid.contrib.layers.partial_sum([x, y],
                                                   start_index=0,
                                                   length=2)
4136 4137
            return (sum)

S
ShenLiang 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                act="relu")
        return (out)

S
ShenLiang 已提交
4156 4157 4158
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
4159 4160 4161
            rank_offset = fluid.data(name="rank_offset",
                                     shape=[None, 7],
                                     dtype="int32")
S
ShenLiang 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                max_rank=3)
            return (out)

4173
    def test_roi_pool(self):
4174 4175 4176 4177
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4178
        with self.static_graph():
4179 4180 4181 4182
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_pool(x, rois, 4, 4, 0.5, rois_num=rois_num)
4183 4184 4185 4186 4187 4188
            static_res = self.get_static_graph_result(feed={
                'x': x_np,
                'rois': rois_np,
                'rois_num': rois_num_np
            },
                                                      fetch_list=[output])[0]
4189 4190

        with self.dynamic_graph():
4191 4192 4193 4194
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4195 4196 4197 4198 4199 4200
                dy_eager_res = layers.roi_pool(x_dy,
                                               rois_dy,
                                               4,
                                               4,
                                               0.5,
                                               rois_num=rois_num_dy)
4201 4202
                dy_eager_res_value = dy_eager_res[0].numpy()

4203 4204 4205
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4206 4207 4208 4209 4210 4211
            dy_res = layers.roi_pool(x_dy,
                                     rois_dy,
                                     4,
                                     4,
                                     0.5,
                                     rois_num=rois_num_dy)
4212 4213
            dy_res_value = dy_res[0].numpy()
        self.assertTrue(np.array_equal(static_res, dy_res_value))
4214
        self.assertTrue(np.array_equal(static_res, dy_eager_res_value))
4215 4216 4217 4218 4219 4220 4221 4222

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
4223 4224 4225 4226
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4227
        with self.static_graph():
4228 4229 4230 4231
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_align(x, rois, 4, 4, 0.5, 2, rois_num=rois_num)
4232 4233 4234 4235 4236 4237
            static_res = self.get_static_graph_result(feed={
                'x': x_np,
                'rois': rois_np,
                'rois_num': rois_num_np
            },
                                                      fetch_list=[output])[0]
4238 4239

        with self.dynamic_graph():
4240 4241 4242 4243
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4244 4245 4246 4247 4248 4249 4250
                dy_eager_res = layers.roi_align(x_dy,
                                                rois_dy,
                                                4,
                                                4,
                                                0.5,
                                                2,
                                                rois_num=rois_num_dy)
4251 4252
                dy_eager_res_value = dy_eager_res.numpy()

4253 4254 4255
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4256 4257 4258 4259 4260 4261 4262
            dy_res = layers.roi_align(x_dy,
                                      rois_dy,
                                      4,
                                      4,
                                      0.5,
                                      2,
                                      rois_num=rois_num_dy)
4263
            dy_res_value = dy_res.numpy()
4264
        self.assertTrue(np.array_equal(static_res, dy_eager_res_value))
4265
        self.assertTrue(np.array_equal(static_res, dy_res_value))
4266

4267 4268 4269 4270 4271 4272 4273
    def test_dice_loss(self):
        num_classes = 4
        eps = 1e-6
        input_np = np.random.rand(2, 3, num_classes).astype('float32')
        label_np = np.random.randint(0, num_classes, [2, 3, 1], dtype=np.int64)

        with self.static_graph():
4274 4275 4276 4277 4278 4279
            input_ = layers.data(name="input",
                                 shape=[None, 3, num_classes],
                                 dtype="float32")
            label_ = layers.data(name="label",
                                 shape=[None, 3, 1],
                                 dtype="int64")
4280
            output = layers.dice_loss(input_, label_, eps)
4281 4282 4283 4284 4285
            static_res = self.get_static_graph_result(feed={
                'input': input_np,
                'label': label_np
            },
                                                      fetch_list=[output])[0]
4286 4287

        with self.dynamic_graph():
4288 4289 4290 4291 4292 4293
            with _test_eager_guard():
                input_ = base.to_variable(input_np)
                label_ = base.to_variable(label_np)
                dy_eager_res = layers.dice_loss(input_, label_, eps)
                dy_eager_res_value = dy_eager_res.numpy()

4294 4295 4296 4297 4298
            input_ = base.to_variable(input_np)
            label_ = base.to_variable(label_np)
            dy_res = layers.dice_loss(input_, label_, eps)
            dy_res_value = dy_res.numpy()
        self.assertTrue(np.array_equal(static_res, dy_res_value))
4299
        self.assertTrue(np.array_equal(static_res, dy_eager_res_value))
4300

4301 4302 4303 4304
    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
4305 4306 4307 4308
            rois = layers.data(name="rois",
                               shape=[8],
                               dtype="float32",
                               lod_level=1)
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
            return (output)

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
            return (out)

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
4322 4323 4324 4325 4326 4327
            images = layers.data(name='pixel',
                                 shape=[3, 48, 48],
                                 dtype='float32')
            return layers.conv2d(input=images,
                                 num_filters=3,
                                 filter_size=[4, 4])
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
            return (out)

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
4339 4340 4341 4342
            x = layers.data(name='x',
                            append_batch_size=False,
                            shape=[4, 4, 3],
                            dtype="float32")
4343 4344
            out = layers.flatten(x, axis=1, name="flatten")
            return (out)
4345

Z
zhoukunsheng 已提交
4346 4347 4348 4349 4350 4351 4352
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

4353
    def test_deformable_conv(self):
4354
        with self.static_graph():
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
            input = layers.data(name='input',
                                append_batch_size=False,
                                shape=[2, 3, 32, 32],
                                dtype="float32")
            offset = layers.data(name='offset',
                                 append_batch_size=False,
                                 shape=[2, 18, 32, 32],
                                 dtype="float32")
            mask = layers.data(name='mask',
                               append_batch_size=False,
                               shape=[2, 9, 32, 32],
                               dtype="float32")
            out = layers.deformable_conv(input=input,
                                         offset=offset,
                                         mask=mask,
                                         num_filters=2,
                                         filter_size=3,
                                         padding=1)
4373 4374 4375 4376
            return (out)

    def test_deformable_conv2(self):
        with self.static_graph():
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
            input = fluid.data(name='input',
                               shape=[None, 3, None, None],
                               dtype="float32")
            offset = fluid.data(name='offset',
                                shape=[None, 18, None, None],
                                dtype="float32")
            mask = fluid.data(name='mask',
                              shape=[None, 9, None, None],
                              dtype="float32")
            out = layers.deformable_conv(input=input,
                                         offset=offset,
                                         mask=mask,
                                         num_filters=2,
                                         filter_size=3,
                                         padding=1)
4392
            return (out)
4393

4394 4395 4396 4397 4398 4399
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
            return (out)

4400 4401 4402 4403
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4404 4405 4406 4407 4408 4409
            concat1 = fluid.contrib.layers.partial_concat([x, y],
                                                          start_index=0,
                                                          length=2)
            concat2 = fluid.contrib.layers.partial_concat(x,
                                                          start_index=0,
                                                          length=-1)
4410 4411
            return concat1, concat2

C
cjt222 已提交
4412 4413 4414
    def test_deform_roi_pooling(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
            input = layers.data(name='input',
                                shape=[2, 3, 32, 32],
                                dtype='float32',
                                append_batch_size=False)
            rois = layers.data(name="rois",
                               shape=[4],
                               dtype='float32',
                               lod_level=1)
            trans = layers.data(name="trans",
                                shape=[2, 3, 32, 32],
                                dtype='float32',
                                append_batch_size=False)
            out = layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
                                                no_trans=False,
                                                spatial_scale=1.0,
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4,
                                                trans_std=0.1)
C
cjt222 已提交
4438 4439
        return (out)

4440 4441 4442
    def test_deformable_conv_v1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
            input = layers.data(name='input',
                                append_batch_size=False,
                                shape=[2, 3, 32, 32],
                                dtype="float32")
            offset = layers.data(name='offset',
                                 append_batch_size=False,
                                 shape=[2, 18, 32, 32],
                                 dtype="float32")
            out = layers.deformable_conv(input=input,
                                         offset=offset,
                                         mask=None,
                                         num_filters=2,
                                         filter_size=3,
                                         padding=1,
                                         modulated=False)
4458 4459
            return (out)

4460 4461 4462
    def test_retinanet_target_assign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
            bbox_pred = layers.data(name='bbox_pred',
                                    shape=[1, 100, 4],
                                    append_batch_size=False,
                                    dtype='float32')
            cls_logits = layers.data(name='cls_logits',
                                     shape=[1, 100, 10],
                                     append_batch_size=False,
                                     dtype='float32')
            anchor_box = layers.data(name='anchor_box',
                                     shape=[100, 4],
                                     append_batch_size=False,
                                     dtype='float32')
            anchor_var = layers.data(name='anchor_var',
                                     shape=[100, 4],
                                     append_batch_size=False,
                                     dtype='float32')
            gt_boxes = layers.data(name='gt_boxes',
                                   shape=[10, 4],
                                   append_batch_size=False,
                                   dtype='float32')
            gt_labels = layers.data(name='gt_labels',
                                    shape=[10, 1],
                                    append_batch_size=False,
                                    dtype='int32')
            is_crowd = layers.data(name='is_crowd',
                                   shape=[1],
                                   append_batch_size=False,
                                   dtype='int32')
            im_info = layers.data(name='im_info',
                                  shape=[1, 3],
                                  append_batch_size=False,
                                  dtype='float32')
            return (layers.retinanet_target_assign(bbox_pred, cls_logits,
                                                   anchor_box, anchor_var,
                                                   gt_boxes, gt_labels,
                                                   is_crowd, im_info, 10))
4499

4500 4501 4502
    def test_sigmoid_focal_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
            input = layers.data(name='data',
                                shape=[10, 80],
                                append_batch_size=False,
                                dtype='float32')
            label = layers.data(name='label',
                                shape=[10, 1],
                                append_batch_size=False,
                                dtype='int32')
            fg_num = layers.data(name='fg_num',
                                 shape=[1],
                                 append_batch_size=False,
                                 dtype='int32')
            out = fluid.layers.sigmoid_focal_loss(x=input,
                                                  label=label,
                                                  fg_num=fg_num,
                                                  gamma=2.,
                                                  alpha=0.25)
4520 4521
            return (out)

4522 4523 4524
    def test_addmm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
            input = layers.data(name='input_data',
                                shape=[3, 3],
                                append_batch_size=False,
                                dtype='float32')
            x = layers.data(name='x',
                            shape=[3, 2],
                            append_batch_size=False,
                            dtype='float32')
            y = layers.data(name='y',
                            shape=[2, 3],
                            append_batch_size=False,
                            dtype='float32')
4537 4538 4539 4540

            out = paddle.addmm(input=input, x=x, y=y)
            return (out)

4541 4542 4543
    def test_retinanet_detection_output(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
            bboxes = layers.data(name='bboxes',
                                 shape=[1, 21, 4],
                                 append_batch_size=False,
                                 dtype='float32')
            scores = layers.data(name='scores',
                                 shape=[1, 21, 10],
                                 append_batch_size=False,
                                 dtype='float32')
            anchors = layers.data(name='anchors',
                                  shape=[21, 4],
                                  append_batch_size=False,
                                  dtype='float32')
            im_info = layers.data(name="im_info",
                                  shape=[1, 3],
                                  append_batch_size=False,
                                  dtype='float32')
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
                nms_eta=1.)
            return (nmsed_outs)

4572 4573 4574
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4575 4576 4577 4578 4579 4580
            input_length = layers.data(name='logits_length',
                                       shape=[11],
                                       dtype='int64')
            label_length = layers.data(name='labels_length',
                                       shape=[12],
                                       dtype='int64')
4581
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
4582 4583 4584 4585 4586 4587 4588
            predict = layers.data(name='predict',
                                  shape=[4, 4, 8],
                                  dtype='float32')
            output = layers.warpctc(input=predict,
                                    label=label,
                                    input_length=input_length,
                                    label_length=label_length)
4589 4590
            return (output)

4591 4592
    def test_edit_distance(self):
        with self.static_graph():
4593 4594 4595 4596 4597 4598 4599 4600
            predict = layers.data(name='predict',
                                  shape=[-1, 1],
                                  dtype='int64',
                                  lod_level=1)
            label = layers.data(name='label',
                                shape=[-1, 1],
                                dtype='int64',
                                lod_level=1)
4601 4602 4603
            evaluator = fluid.evaluator.EditDistance(predict, label)
            return evaluator.metrics

4604 4605 4606 4607
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4608 4609 4610 4611 4612 4613 4614 4615 4616
            input = fluid.data(name="input",
                               shape=[None, None, input_size],
                               dtype='float32')
            pre_hidden = fluid.data(name="pre_hidden",
                                    shape=[None, hidden_size],
                                    dtype='float32')
            sequence_length = fluid.data(name="sequence_length",
                                         shape=[None],
                                         dtype='int32')
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
                        batch_first=batch_first)

Y
Yu Yang 已提交
4630

4631
class TestMetricsDetectionMap(unittest.TestCase):
4632

4633 4634 4635
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
            detect_res = fluid.layers.data(name='detect_res',
                                           shape=[10, 6],
                                           append_batch_size=False,
                                           dtype='float32')
            label = fluid.layers.data(name='label',
                                      shape=[10, 1],
                                      append_batch_size=False,
                                      dtype='float32')
            box = fluid.layers.data(name='bbox',
                                    shape=[10, 4],
                                    append_batch_size=False,
                                    dtype='float32')
            map_eval = fluid.metrics.DetectionMAP(detect_res,
                                                  label,
                                                  box,
                                                  class_num=21)
4652 4653 4654 4655 4656 4657
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4658
class ExampleNet(paddle.nn.Layer):
4659

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
    def __init__(self):
        super(ExampleNet, self).__init__()
        self.weight = self.create_parameter(
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False))

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
4671

4672 4673 4674 4675 4676 4677
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4678
class TestLayerTrainingAttribute(unittest.TestCase):
4679

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4696
class MyLayer(paddle.nn.Layer):
4697

J
Jiabin Yang 已提交
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
    def __init__(self):
        super(MyLayer, self).__init__()
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
4710

J
Jiabin Yang 已提交
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
    def __init__(self):
        super(MySuperLayer, self).__init__()
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
4721

J
Jiabin Yang 已提交
4722 4723 4724 4725 4726 4727 4728
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4729
if __name__ == '__main__':
4730
    paddle.enable_static()
Y
Yu Yang 已提交
4731
    unittest.main()