test_layers.py 122.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib
import inspect
Q
Qiao Longfei 已提交
17 18
import unittest

19
import numpy as np
20
from decorator_helper import prog_scope
21
from test_imperative_base import new_program_scope
22 23 24

import paddle
import paddle.fluid as fluid
25
import paddle.fluid.layers as layers
26
import paddle.fluid.nets as nets
27
import paddle.nn.functional as F
28
from paddle.fluid import core
29 30 31 32 33 34 35
from paddle.fluid.dygraph import base, nn, to_variable
from paddle.fluid.framework import (
    Program,
    _test_eager_guard,
    default_main_program,
    program_guard,
)
36
from paddle.tensor import random
37 38 39 40 41 42 43 44 45 46 47


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

48 49 50 51 52 53 54 55
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
56 57 58 59

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
60
            paddle.seed(self.seed)
L
Leo Chen 已提交
61
            paddle.framework.random._manual_program_seed(self.seed)
62 63
            yield

64 65 66
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
67
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
68
        exe.run(fluid.default_startup_program())
69 70 71 72 73 74
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
75 76

    @contextlib.contextmanager
77
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
78
        with fluid.dygraph.guard(
79 80
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
81
            paddle.seed(self.seed)
L
Leo Chen 已提交
82
            paddle.framework.random._manual_program_seed(self.seed)
83 84 85 86
            yield


class TestLayer(LayerTest):
87 88
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
89
            def __init__(self, input_size, linear1_size=4):
90
                super().__init__()
91
                self.linear1 = paddle.nn.Linear(
92 93
                    input_size, linear1_size, bias_attr=False
                )
94 95 96
                self.linear2 = paddle.nn.Linear(
                    linear1_size, 1, bias_attr=False
                )
97 98 99 100 101

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
102 103 104
                return ret

        with self.dynamic_graph():
105 106 107 108 109
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
110
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
111
                ret = custom(x, do_linear2=True)
112
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
113 114
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
115 116
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
117
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
118
            ret = custom(x, do_linear2=True)
119
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
120

S
songyouwei 已提交
121 122 123
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
124 125 126 127 128 129
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
130
            linear = paddle.nn.Linear(
131 132
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
133
            ret = linear(t)
134 135 136
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
137
        with self.dynamic_graph():
138 139
            with _test_eager_guard():
                t = base.to_variable(inp)
140
                linear = paddle.nn.Linear(
141 142
                    32,
                    4,
143 144
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
145 146 147
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
148
            t = base.to_variable(inp)
149
            linear = paddle.nn.Linear(
150 151
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
152 153 154
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

155 156
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
157

158 159 160 161 162
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
163
                linear = paddle.nn.Linear(
164 165
                    32,
                    4,
166 167
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
168 169 170 171 172 173 174 175
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
176
                linear = paddle.nn.Linear(
177 178
                    32,
                    4,
179 180
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
181 182 183 184 185 186 187
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
188 189 190 191 192 193
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
194 195
            flatten = nn.Flatten()
            ret = flatten(t)
196 197 198
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
199
        with self.dynamic_graph():
200 201 202 203 204 205
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

206 207 208 209 210
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

211 212
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
213 214 215 216 217 218

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
219
                linear = paddle.nn.Linear(
220 221
                    32,
                    4,
222 223
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
224 225 226 227 228 229 230 231
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
232
                linear = paddle.nn.Linear(
233 234
                    32,
                    4,
235 236
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
237 238 239 240
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

C
ceci3 已提交
241 242 243 244
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
245
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
246 247
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
248
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
249 250
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
251 252

            with self.dynamic_graph():
253 254 255 256 257 258
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
259 260 261 262
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
263 264
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
265

266 267 268 269 270
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
271 272
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
273 274

        with self.dynamic_graph():
275 276 277 278 279
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

280 281
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
282
            dy_ret_value = dy_ret.numpy()
283

284 285
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
286

287 288 289 290
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
K
kangguangli 已提交
291
            ret = paddle.matmul(t, t2)
292 293 294 295 296 297 298
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
299 300

        with self.dynamic_graph():
301 302 303
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
K
kangguangli 已提交
304
                dy_eager_ret = paddle.matmul(
305 306
                    base.to_variable(t), base.to_variable(t2)
                )
307 308
                dy_eager_ret_value = dy_eager_ret.numpy()

309 310
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
K
kangguangli 已提交
311
            dy_ret = paddle.matmul(base.to_variable(t), base.to_variable(t2))
312
            dy_ret_value = dy_ret.numpy()
313

314 315
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
316

X
Xin Pan 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

333
            ret = paddle.add(t, t2)
334
            ret = paddle.pow(ret, t3)
335 336 337
            ret = paddle.divide(ret, t4)
            ret = paddle.subtract(ret, t5)
            ret = paddle.multiply(ret, t6)
X
Xin Pan 已提交
338

339 340 341 342
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
343 344

        with self.dynamic_graph():
345
            with _test_eager_guard():
346
                ret = paddle.add(to_variable(n), to_variable(n2))
347
                ret = paddle.pow(ret, to_variable(n3))
348 349 350
                ret = paddle.divide(ret, to_variable(n4))
                ret = paddle.subtract(ret, to_variable(n5))
                dy_eager_ret = paddle.multiply(ret, to_variable(n6))
351 352
                dy_eager_ret_value = dy_eager_ret.numpy()

353
            ret = paddle.add(to_variable(n), to_variable(n2))
354
            ret = paddle.pow(ret, to_variable(n3))
355 356 357
            ret = paddle.divide(ret, to_variable(n4))
            ret = paddle.subtract(ret, to_variable(n5))
            dy_ret = paddle.multiply(ret, to_variable(n6))
358
            dy_ret_value = dy_ret.numpy()
359

360 361
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
362 363 364 365 366 367

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
368
            with _test_eager_guard():
369
                min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
370
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
371 372 373
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

374
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
375
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
376 377
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
378

379 380 381 382
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
383

384 385 386 387
    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
388
            out = paddle.static.nn.conv2d_transpose(
389 390
                input=img,
                num_filters=10,
391
                filter_size=27,
392
                act='sigmoid',
393 394 395 396 397
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
398 399
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
400 401 402 403
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
404 405
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
406
            out = conv2d_transpose(img)
407
            out = paddle.nn.functional.sigmoid(out)
408 409 410
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
411
        with self.dynamic_graph():
412
            with _test_eager_guard():
413 414 415 416
                conv2d_transpose = paddle.nn.Conv2DTranspose(
                    3,
                    10,
                    27,
417 418
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
419
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
420
                dy_eager_rlt = paddle.nn.functional.sigmoid(dy_eager_rlt)
421 422
                dy_eager_rlt_value = dy_eager_rlt.numpy()

423 424 425 426
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
427 428
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
429
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
430
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
431
            dy_rlt_value = dy_rlt.numpy()
432 433 434
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
435

436
        with self.dynamic_graph():
437 438 439 440 441
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
442 443 444
                        custom_weight
                    )
                )
445 446 447 448 449 450
                conv2d1 = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
                conv2d2 = paddle.nn.Conv2DTranspose(
                    3,
                    3,
                    [2, 2],
                    weight_attr=weight_attr,
451
                )
452 453 454
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
455 456
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
457 458 459 460

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
461 462
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
463
                conv2d2.weight.set_value(conv2d1_weight_np)
464 465 466
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
467 468 469
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
470
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
471 472 473

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
474 475 476 477 478 479
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
480

481 482
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
483 484 485 486 487
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
488 489 490 491 492 493
            conv2d1 = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
            conv2d2 = paddle.nn.Conv2DTranspose(
                3,
                3,
                [2, 2],
                weight_attr=weight_attr,
494
            )
495 496 497 498 499 500 501
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
502 503
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
504
            conv2d2.weight.set_value(conv2d1_weight_np)
505 506 507
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
508 509 510
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
511
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
512 513 514

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
515 516 517 518 519 520
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
521

522 523 524 525 526
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
527
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
528 529 530 531 532 533 534
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
535 536 537
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
538
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
539 540 541 542
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

543 544 545 546 547
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
548 549 550 551 552 553
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
554
            out = paddle.static.nn.common.bilinear_tensor_product(
555 556 557 558
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
559 560
                act='sigmoid',
            )
561

562 563 564
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
565

566
        with self.static_graph():
567 568 569 570 571 572
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
573
            btp = paddle.nn.Bilinear(
574 575
                3,
                3,
576 577
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
578
            )
579
            out = btp(data_x, data_y)
580
            out = paddle.nn.functional.sigmoid(out)
581 582 583
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
584
        with self.dynamic_graph():
585
            with _test_eager_guard():
586
                btp = paddle.nn.Bilinear(
587 588 589 590
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
591 592 593 594
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
595
                dy_eager_rlt = paddle.nn.functional.sigmoid(dy_eager_rlt)
596 597
                dy_eager_rlt_value = dy_eager_rlt.numpy()

598
            btp = paddle.nn.Bilinear(
599 600
                3,
                3,
601 602
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
603
            )
604
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
605
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
606
            dy_rlt_value = dy_rlt.numpy()
607

608
        with self.dynamic_graph():
609
            with _test_eager_guard():
610
                btp2 = paddle.nn.Bilinear(3, 3, 6)
611 612 613
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
614
                dy_eager_rlt2 = paddle.nn.functional.sigmoid(dy_eager_rlt2)
615 616
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

617
            btp2 = paddle.nn.Bilinear(3, 3, 6)
618 619 620
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
621
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
622
            dy_rlt2_value = dy_rlt2.numpy()
623

624
        with self.static_graph():
625 626 627 628 629 630
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
631
            out2 = paddle.static.nn.common.bilinear_tensor_product(
632 633 634 635 636 637
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
638

639 640 641 642 643
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
644

645
        with self.dynamic_graph():
646 647 648 649
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
650 651 652
                        custom_weight
                    )
                )
653 654
                btp1 = paddle.nn.Bilinear(3, 3, 6)
                btp2 = paddle.nn.Bilinear(3, 3, 6, weight_attr=weight_attr)
655 656 657
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
658
                dy_rlt1 = paddle.nn.functional.sigmoid(dy_rlt1)
659 660 661
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
662
                dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
663
                self.assertFalse(
664 665
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
666 667
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
668 669 670 671 672 673
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
674
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
675 676 677

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
678 679 680 681 682 683
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
684

685
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
686 687 688 689 690
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
691 692
            btp1 = paddle.nn.Bilinear(3, 3, 6)
            btp2 = paddle.nn.Bilinear(3, 3, 6, weight_attr=weight_attr)
693 694 695
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
696
            dy_rlt1 = paddle.nn.functional.sigmoid(dy_rlt1)
697 698 699
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
700
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
701 702 703
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
704 705 706 707 708 709
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
710
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
711 712 713

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
714 715 716
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
717
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
718

719 720 721 722 723
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
724 725 726 727 728 729 730 731 732
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
733 734
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
735 736 737
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
738
            emb_rlt = emb2(data_t)
739 740 741
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
742
        with self.dynamic_graph():
743
            with _test_eager_guard():
744 745 746 747 748
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
749 750 751
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

752 753 754
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
755 756
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
757 758

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
759
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
760
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
761

762
        with self.dynamic_graph():
763 764 765 766
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
767 768 769
                        custom_weight
                    )
                )
770
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
771 772 773 774 775
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
776 777 778
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
779 780 781 782 783
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
784 785 786
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
787
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
788 789

                emb2.weight = emb1.weight
790 791 792
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
793

794
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
795 796 797 798 799
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
800
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
801 802 803
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
804 805 806
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
807
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
808 809 810
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
811
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
812 813

            emb2.weight = emb1.weight
814 815 816
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
817

S
songyouwei 已提交
818 819
    def test_one_hot(self):
        with self.dynamic_graph():
820
            with _test_eager_guard():
821 822 823
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
824 825
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
826 827 828 829 830
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
831

S
songyouwei 已提交
832 833 834
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
835 836 837 838 839
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
840 841 842

    def test_split(self):
        with self.dynamic_graph():
843 844 845
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
846 847 848 849 850
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
851 852
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
853

S
songyouwei 已提交
854 855
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
856 857 858 859 860
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
861 862
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
863 864 865

    def test_topk(self):
        with self.dynamic_graph():
866 867
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
868 869
                top5_values1, top5_indices1 = paddle.topk(input, k=5)
                top5_values2, top5_indices2 = paddle.topk(
870 871 872 873 874 875 876 877
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
878

S
songyouwei 已提交
879
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
880 881
            top5_values1, top5_indices1 = paddle.topk(input, k=5)
            top5_values2, top5_indices2 = paddle.topk(
882 883 884 885 886 887 888 889
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
890

L
lujun 已提交
891 892
    def test_conv3d(self):
        with self.static_graph():
893 894 895
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
896 897 898
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
899
            static_ret = self.get_static_graph_result(
900
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
901 902
                fetch_list=[ret],
            )[0]
L
lujun 已提交
903 904

        with self.static_graph():
905 906 907
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
908 909 910
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
911 912
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
913
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
914 915
                fetch_list=[ret],
            )[0]
L
lujun 已提交
916 917

        with self.dynamic_graph():
918 919
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
920 921 922
                conv3d = paddle.nn.Conv3D(
                    in_channels=3, out_channels=3, kernel_size=2
                )
923 924 925
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
926
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
927 928 929
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
930
            dy_ret = conv3d(base.to_variable(images))
931
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
932

933 934 935
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
936

937
        with self.dynamic_graph():
938 939 940 941 942
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
943 944 945
                        custom_weight
                    )
                )
946 947
                conv3d1 = paddle.nn.Conv3D(
                    in_channels=3, out_channels=3, kernel_size=2
948
                )
949 950 951 952 953
                conv3d2 = paddle.nn.Conv3D(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
                    weight_attr=weight_attr,
954
                )
955 956 957
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
958 959
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
960 961 962 963

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
964 965
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
966
                conv3d2.weight.set_value(conv3d1_weight_np)
967 968 969
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
970 971 972
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
973
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
974 975 976

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
977 978 979 980 981 982
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
983

984 985
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
986 987 988 989 990
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
991 992 993 994 995 996 997 998
            conv3d1 = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
            conv3d2 = paddle.nn.Conv3D(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
999
            )
1000 1001 1002 1003 1004 1005 1006
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1007 1008
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1009
            conv3d2.weight.set_value(conv3d1_weight_np)
1010 1011 1012
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1013 1014 1015
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1016
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1017 1018 1019

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1020 1021 1022 1023 1024 1025
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1026

1027
    def func_group_norm(self):
L
lujun 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1038 1039 1040 1041 1042 1043 1044
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1045
            ret = paddle.static.nn.group_norm(
1046 1047
                input=X,
                groups=2,
1048
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1060 1061

        with self.static_graph():
1062 1063 1064 1065 1066 1067 1068
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1069 1070 1071
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1072
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1073 1074
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1075
            ret = groupNorm(X)
1076 1077 1078 1079 1080 1081 1082 1083 1084
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1085 1086

        with self.dynamic_graph():
1087 1088 1089
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1090
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1091 1092
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1093
            dy_ret = groupNorm(base.to_variable(input))
1094
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1095

1096 1097
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1098

1099 1100 1101 1102 1103
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1115 1116 1117
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1118
            ret = paddle.static.nn.instance_norm(input=X)
1119 1120 1121
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1122 1123

        with self.static_graph():
1124 1125 1126
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1127
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1128
            ret = instanceNorm(X)
1129 1130 1131
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1132 1133

        with self.dynamic_graph():
1134
            with _test_eager_guard():
1135
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1136 1137 1138
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1139
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1140 1141 1142 1143
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1144
            with _test_eager_guard():
1145
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1146 1147 1148
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1149
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1150 1151 1152
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1153 1154 1155 1156 1157
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1158 1159 1160 1161

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
1162
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1163 1164 1165 1166 1167 1168 1169
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
1170
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1171 1172 1173 1174
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1186 1187 1188 1189 1190 1191 1192
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1193
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
1194 1195 1196 1197 1198 1199 1200 1201 1202
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1203 1204

        with self.static_graph():
1205 1206 1207 1208 1209 1210 1211
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1212
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1213
            ret = spectralNorm(Weight)
1214 1215 1216 1217 1218 1219 1220 1221 1222
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1223 1224

        with self.dynamic_graph():
1225 1226 1227 1228 1229
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1230
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1231
            dy_ret = spectralNorm(base.to_variable(input))
1232
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1233

1234 1235 1236
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
1281 1282

        with self.static_graph():
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
1300
            ret = treeConv(NodesVector, EdgeSet)
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
1313 1314

        with self.dynamic_graph():
1315
            with _test_eager_guard():
1316 1317 1318 1319 1320 1321
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
1322 1323
                dy_eager_rlt_value = dy_eager_ret.numpy()

1324 1325 1326
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
1327
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
1328
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1329

1330 1331 1332
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
1333

1334
        with self.dynamic_graph():
1335 1336 1337 1338
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
1363
                self.assertFalse(
1364 1365
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1366 1367
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
1368 1369 1370 1371 1372 1373
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
1374
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1375 1376 1377

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
1378 1379 1380 1381 1382 1383
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
1384

1385
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
1412 1413 1414
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
1415 1416 1417 1418 1419 1420
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
1421
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1422 1423 1424

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
1425 1426 1427 1428 1429 1430
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
1431

L
lujun 已提交
1432
    def test_conv3d_transpose(self):
1433 1434 1435
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
1436 1437 1438

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
1439
            out = paddle.static.nn.conv3d_transpose(
1440
                input=img, num_filters=12, filter_size=12, use_cudnn=True
1441
            )
L
lujun 已提交
1442
            static_rlt = self.get_static_graph_result(
1443 1444
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
1445 1446
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
1447 1448
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
1449
            )
L
lujun 已提交
1450 1451
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
1452 1453
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
1454
        with self.dynamic_graph():
1455
            with _test_eager_guard():
1456 1457 1458 1459
                conv3d_transpose = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=12,
                    kernel_size=12,
1460
                )
1461 1462 1463
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1464 1465
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
1466
            )
L
lujun 已提交
1467
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
1468
            dy_rlt_value = dy_rlt.numpy()
1469 1470 1471
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
1472

1473
        with self.dynamic_graph():
1474 1475 1476 1477 1478
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1479 1480 1481
                        custom_weight
                    )
                )
1482 1483 1484 1485
                conv3d1 = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
1486 1487
                    bias_attr='eager_conv3d1_b',
                )
1488 1489 1490 1491 1492
                conv3d2 = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
                    weight_attr=weight_attr,
1493 1494
                    bias_attr='eager_conv3d2_b',
                )
1495 1496 1497
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1498 1499
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1500 1501 1502 1503

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1504 1505
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1506
                conv3d2.weight.set_value(conv3d1_weight_np)
1507 1508 1509
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1510 1511 1512
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1513
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1514 1515 1516

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1517 1518 1519 1520 1521 1522
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1523

1524 1525
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1526 1527 1528 1529 1530
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1531 1532 1533 1534
            conv3d1 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
1535 1536
                bias_attr='conv3d1_b',
            )
1537 1538 1539 1540 1541
            conv3d2 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
1542 1543
                bias_attr='conv3d2_b',
            )
1544 1545 1546 1547 1548 1549 1550
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1551 1552
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1553
            conv3d2.weight.set_value(conv3d1_weight_np)
1554 1555 1556
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1557 1558 1559
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1560
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1561 1562 1563

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1564 1565 1566 1567 1568 1569
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1570

1571
    def func_while_loop(self):
1572 1573 1574 1575 1576
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
L
LiYuRio 已提交
1577
                return paddle.less_than(i, ten)
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

1589
            def cond1(i):
L
LiYuRio 已提交
1590
                return paddle.less_than(i, ten)
1591

1592
            def body1(i):
1593 1594
                return i + 1

1595
            dy_ret = layers.while_loop(cond1, body1, [i])
1596 1597 1598 1599 1600 1601
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

1602
                layers.while_loop(cond1, body2, [j])
1603

1604
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
1605

1606 1607 1608 1609 1610
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

1611 1612 1613 1614 1615 1616 1617
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
L
LiYuRio 已提交
1618
            cond = paddle.less_than(x=a, y=b)
1619 1620 1621
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
1622
        with self.dynamic_graph():
1623 1624 1625
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
L
LiYuRio 已提交
1626
                dcond = paddle.less_than(x=da, y=db)
1627 1628 1629 1630

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

1631 1632
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
L
LiYuRio 已提交
1633
            dcond = paddle.less_than(x=da, y=db)
1634

1635 1636
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
1637 1638 1639 1640 1641

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
1642
            cond1 = paddle.less_equal(x=a1, y=b1)
1643 1644 1645
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
1646
        with self.dynamic_graph():
1647 1648 1649
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
1650
                dcond1 = paddle.less_equal(x=da1, y=db1)
1651 1652 1653 1654

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

1655 1656
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
1657
            dcond1 = paddle.less_equal(x=da1, y=db1)
1658 1659 1660 1661

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

1662
        # greater than
1663 1664 1665
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
1666
            cond2 = paddle.greater_than(x=a2, y=b2)
1667 1668 1669
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
1670
        with self.dynamic_graph():
1671 1672 1673
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
1674
                dcond2 = paddle.greater_than(x=da2, y=db2)
1675 1676 1677 1678

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

1679 1680
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
1681
            dcond2 = paddle.greater_than(x=da2, y=db2)
1682 1683 1684 1685

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

1686
        # greater equal
1687 1688 1689
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
1690
            cond3 = paddle.greater_equal(x=a3, y=b3)
1691 1692 1693
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
1694
        with self.dynamic_graph():
1695 1696 1697
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
1698
                dcond3 = paddle.greater_equal(x=da3, y=db3)
1699 1700 1701 1702

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

1703 1704
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
1705
            dcond3 = paddle.greater_equal(x=da3, y=db3)
1706 1707 1708 1709 1710 1711 1712 1713

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
1714
            cond4 = paddle.equal(x=a4, y=b4)
1715 1716 1717
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
1718
        with self.dynamic_graph():
1719 1720 1721
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
1722
                dcond4 = paddle.equal(x=da4, y=db4)
1723 1724 1725 1726

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

1727 1728
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
1729
            dcond4 = paddle.equal(x=da4, y=db4)
1730 1731 1732 1733 1734 1735 1736 1737

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
1738
            cond5 = paddle.equal(x=a5, y=b5)
1739 1740 1741
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
1742
        with self.dynamic_graph():
1743 1744 1745
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
1746
                dcond5 = paddle.equal(x=da5, y=db5)
1747 1748 1749 1750

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1751 1752
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
1753
            dcond5 = paddle.equal(x=da5, y=db5)
1754 1755 1756 1757

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1758 1759
    def test_cond(self):
        def less_than_branch(a, b):
1760
            return paddle.add(a, b)
1761 1762

        def greater_equal_branch(a, b):
1763
            return paddle.subtract(a, b)
1764 1765

        with self.static_graph():
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1782 1783 1784 1785 1786
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
1787 1788 1789
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
1802 1803
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
1804 1805 1806
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
1807 1808 1809 1810 1811
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

1812 1813
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
1824 1825
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
1826
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
1827 1828 1829 1830 1831
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

1832 1833
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1850 1851
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1852
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1853

1854 1855 1856
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1857 1858
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

1859 1860 1861 1862 1863
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1864 1865 1866 1867
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
1868 1869 1870 1871 1872
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1873 1874
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1875
                pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1876

1877 1878 1879 1880 1881 1882
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
1883 1884 1885
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

1886 1887 1888 1889
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1890 1891
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1892
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1893

1894 1895 1896
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1897 1898 1899 1900
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

1901 1902 1903 1904
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1940 1941
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
1942 1943
                fetch_list=[out_1, out_2, out_3]
            )
1944 1945

        with self.dynamic_graph():
1946
            with _test_eager_guard():
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
1968 1969 1970 1971 1972

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

1973 1974 1975
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
1990 1991 1992 1993 1994

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

1995 1996 1997 1998 1999 2000
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2001

2002 2003 2004 2005
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2006 2007 2008 2009 2010 2011
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2012
            crop_shape1 = (1, 2, 4, 4)
2013 2014 2015
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2016 2017
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2018 2019 2020
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2021 2022
            crop_offsets3 = [0, dim1, dim2, 0]

2023 2024 2025
            out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3)
2026 2027 2028 2029 2030

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2031 2032 2033
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2034 2035 2036
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2037 2038 2039

        self.assertIsNotNone(shard_label)

2040 2041 2042 2043 2044 2045 2046
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
2047
            predict = paddle.nn.functional.softmax(fc_out)
2048
            result = paddle.static.accuracy(input=predict, label=label, k=5)
2049 2050 2051 2052
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2053 2054
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2055 2056 2057
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2058

L
Leo Chen 已提交
2059
        with self.dynamic_graph(force_to_use_cpu=True):
2060 2061 2062
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
2063
            predict = paddle.nn.functional.softmax(fc_out)
2064 2065 2066
            dynamic_out = paddle.static.accuracy(
                input=predict, label=label, k=5
            )
2067

2068
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2069

Y
Yu Yang 已提交
2070

2071
class TestBook(LayerTest):
H
hong 已提交
2072 2073
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2074 2075 2076 2077 2078 2079 2080
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_kldiv_loss",
                "make_uniform_random_batch_size_like",
            }
        )
2081
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2082

2083
    def func_all_layers(self):
2084 2085 2086 2087 2088
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2089 2090 2091
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
2104 2105
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
2106

2107 2108
                else:
                    continue
H
hong 已提交
2109 2110
            if method.__name__ in self.only_static_set:
                continue
2111 2112 2113 2114 2115

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2116
                dy_result_value = dy_result.numpy()
2117

2118
            if method.__name__ in self.all_close_compare:
2119 2120 2121 2122 2123 2124
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
2125 2126 2127
                        method.__name__
                    ),
                )
2128 2129
                continue

H
hong 已提交
2130
            if method.__name__ not in self.not_compare_static_dygraph_set:
2131 2132 2133 2134
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
2135 2136 2137
                        method.__name__
                    ),
                )
2138

2139 2140 2141 2142 2143
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2144 2145 2146
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2147
            shape = [self._batch_size] + shape
2148 2149 2150 2151 2152
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
2153 2154 2155
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
2156
        elif dtype == 'int64':
2157 2158 2159 2160 2161 2162 2163
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
2164
        if base.enabled():
2165 2166 2167 2168 2169
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
2170 2171
        else:
            if set_feed_dict:
2172
                self._feed_dict[name] = self._get_np_data(
2173 2174 2175 2176 2177 2178 2179 2180
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
2181 2182

    def make_fit_a_line(self):
2183 2184 2185 2186
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
2187
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
2188
            y_predict = layers.fc(input=x, size=1, act=None)
2189
            y = self._get_data(name='y', shape=[1], dtype='float32')
2190 2191 2192
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
2193
            avg_cost = paddle.mean(cost)
2194
            return avg_cost
Y
Yu Yang 已提交
2195

2196
    def make_recognize_digits_mlp(self):
2197 2198 2199
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
2200
            # Change g_program, so the rest layers use `g_program`
2201 2202
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2203 2204
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
2205 2206 2207 2208 2209 2210
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
2211
            cost = layers.cross_entropy(input=predict, label=label)
2212
            avg_cost = paddle.mean(cost)
2213
            return avg_cost
Y
Yu Yang 已提交
2214

2215
    def make_conv2d_transpose(self):
2216 2217 2218
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2219
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
2220
            return paddle.static.nn.conv2d_transpose(
2221 2222
                input=img, num_filters=10, output_size=28
            )
2223

2224
    def make_recognize_digits_conv(self):
2225 2226 2227 2228 2229 2230
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
2231
            label = self._get_data(name='label', shape=[1], dtype='int64')
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
2248 2249 2250

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
2251
            avg_cost = paddle.mean(cost)
2252
            return avg_cost
Y
Yu Yang 已提交
2253

2254
    def make_word_embedding(self):
2255 2256 2257
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
2258 2259
            dict_size = 10000
            embed_size = 32
2260
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
2261 2262 2263
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
2264 2265 2266
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2267

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
2293 2294 2295

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
2296 2297
                axis=1,
            )
Y
Yu Yang 已提交
2298 2299

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
2300 2301 2302
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
2303
            cost = layers.cross_entropy(input=predict_word, label=next_word)
2304
            avg_cost = paddle.mean(cost)
2305
            return avg_cost
Y
Yu Yang 已提交
2306

2307
    def make_pool2d(self):
2308 2309 2310
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2311
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
2312 2313 2314
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
2315

K
Kaipeng Deng 已提交
2316
    def make_pool2d_infershape(self):
2317 2318 2319
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
2320
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
2321 2322 2323
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
2324 2325 2326
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
2327

2328
    def make_lstm_unit(self):
2329 2330 2331 2332 2333 2334
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
2335
            x_t = layers.fc(input=x_t_data, size=10)
2336 2337 2338
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
2339
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
2340 2341 2342
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
2343
            prev_cell = layers.fc(input=prev_cell_data, size=30)
2344 2345 2346
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
2347

2348
    def make_softmax(self):
2349 2350 2351
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2352
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
2353
            hid = layers.fc(input=data, size=20)
2354
            return paddle.nn.functional.softmax(hid, axis=1)
D
dangqingqing 已提交
2355

2356
    @prog_scope()
2357
    def make_nce(self):
Y
Yang Yu 已提交
2358 2359
        window_size = 5
        words = []
2360
        for i in range(window_size):
Y
Yang Yu 已提交
2361
            words.append(
2362 2363 2364 2365
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
2366 2367

        dict_size = 10000
M
minqiyang 已提交
2368
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
2369 2370

        embs = []
2371
        for i in range(window_size):
Y
Yang Yu 已提交
2372 2373 2374
            if i == label_word:
                continue

2375 2376 2377 2378 2379 2380
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
2381 2382 2383 2384

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
2385
        loss = paddle.static.nn.nce(
2386 2387 2388 2389 2390 2391
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
2392
        avg_loss = paddle.mean(loss)
2393
        return avg_loss
Y
Yang Yu 已提交
2394

2395
    def make_multiplex(self):
2396 2397 2398
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2399 2400 2401
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
2402
            out = paddle.multiplex(inputs=[x1, x2], index=index)
2403
            return out
2404 2405

    def make_softmax_with_cross_entropy(self):
2406 2407 2408
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2409 2410
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
2411
            loss, softmax = paddle.nn.functional.softmax_with_cross_entropy(
2412 2413
                x, y, return_softmax=True
            )
2414 2415 2416
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

2417
            loss = paddle.nn.functional.softmax_with_cross_entropy(x, y)
2418 2419 2420 2421 2422 2423
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
            loss1 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y1, axis=1
            )
            loss2 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y2, axis=2
            )
            loss3 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=3
            )
            loss4 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=-1
            )
2436 2437 2438 2439
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
2440
            return loss4
2441 2442

    def make_scatter(self):
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
2458
            out = paddle.scatter(x, index=idx, updates=updates)
2459
            return out
Y
yangyaming 已提交
2460

2461 2462 2463 2464
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
2465
            return one_hot_label
2466

2467 2468 2469 2470 2471
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
2472
            one_hot_label = layers.one_hot(input=label, depth=10)
2473
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
2474
            return smooth_label
2475

2476
    def make_topk(self):
2477 2478 2479
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2480
            data = self._get_data(name="label", shape=[200], dtype="float32")
2481
            values, indices = paddle.topk(data, k=5)
2482 2483
            return values
            return indices
J
jerrywgz 已提交
2484

2485
    def make_polygon_box_transform(self):
2486 2487 2488
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2489
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
2490
            output = layers.polygon_box_transform(input=x)
2491
            return output
2492

2493
    def make_l2_normalize(self):
2494 2495 2496
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2497
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
2498
            output = layers.l2_normalize(x, axis=1)
2499
            return output
2500

2501
    def make_shape(self):
2502 2503 2504 2505 2506 2507
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
2
201716010711 已提交
2508
            out = paddle.shape(input)
2509
            return out
B
Bai Yifan 已提交
2510

2511
    def make_pad2d(self):
2512 2513 2514 2515 2516 2517
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
2518 2519 2520

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
2521 2522 2523 2524
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
2525
            out = tmp_pad(input)
2526
            return out
W
whs 已提交
2527

K
Kaipeng Deng 已提交
2528
    def make_mish(self):
2529 2530 2531
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
2532 2533
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
2534
            return out
K
Kaipeng Deng 已提交
2535

2536
    def make_cross_entropy(self):
2537 2538 2539
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2540 2541
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
2542 2543
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
2544
            return out
2545

2546
    def make_uniform_random_batch_size_like(self):
2547 2548 2549 2550 2551 2552
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
2553
            out = random.uniform_random_batch_size_like(input, [-1, 11])
2554
            return out
G
fix  
gongweibao 已提交
2555

2556
    def make_gaussian_random(self):
2557 2558 2559
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
2560
            out = layers.gaussian_random(shape=[20, 30])
2561
            return out
G
fix  
gongweibao 已提交
2562

2563
    def make_sum(self):
2564 2565 2566 2567 2568 2569
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
2570

2571
            out = paddle.add_n(input)
2572
            return out
G
fix  
gongweibao 已提交
2573

2574
    def make_slice(self):
G
fix  
gongweibao 已提交
2575 2576 2577 2578
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

2579 2580 2581 2582 2583 2584
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
2585

2
201716010711 已提交
2586
            out = paddle.slice(input, axes=axes, starts=starts, ends=ends)
2587
            return out
G
merge  
gongweibao 已提交
2588

2589
    def make_scale_variable(self):
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2
201716010711 已提交
2602
            out = paddle.scale(input, scale=scale_var)
2603 2604
            return out

M
minqiyang 已提交
2605
    def make_iou_similarity(self):
2606 2607 2608
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
2609 2610
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
2611
            out = layers.iou_similarity(x, y, name='iou_similarity')
2612
            return out
2613 2614

    def make_bilinear_tensor_product_layer(self):
2615 2616 2617
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2618 2619 2620
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
2621 2622 2623
            out = paddle.static.nn.common.bilinear_tensor_product(
                data, theta, 6
            )
2624
            return out
2625 2626

    def make_batch_norm(self):
2627 2628 2629 2630 2631 2632
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
2633
            out = paddle.static.nn.batch_norm(data)
2634
            return out
2635

2636
    def make_batch_norm_momentum_variable(self):
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2649
            out = paddle.static.nn.batch_norm(data, momentum=momentum)
2650
            return out
2651

2652
    def make_range(self):
2653 2654 2655
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
2656 2657 2658
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
2659 2660 2661
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
2662
            y = paddle.arange(start, end, step, 'float64')
2663 2664 2665
            return y

    def make_spectral_norm(self):
2666 2667 2668 2669 2670 2671 2672 2673 2674
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
2675
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
2676
            return out
2677 2678

    def make_kldiv_loss(self):
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
2694 2695 2696
            loss = paddle.nn.functional.kl_div(
                input=x, label=target, reduction='batchmean'
            )
2697
            return loss
2698

M
minqiyang 已提交
2699
    def make_pixel_shuffle(self):
2700 2701 2702
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
2703
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
2704
            out = paddle.nn.functional.pixel_shuffle(x, upscale_factor=3)
2705
            return out
M
minqiyang 已提交
2706

R
ruri 已提交
2707
    def make_mse_loss(self):
2708 2709 2710
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
2711 2712
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2713
            out = paddle.nn.functional.mse_loss(input=x, label=y)
2714
            return out
R
ruri 已提交
2715

2716
    def make_square_error_cost(self):
2717 2718 2719
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2720 2721
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2722
            out = paddle.nn.functional.square_error_cost(input=x, label=y)
2723
            return out
2724

2725 2726 2727 2728
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
2729 2730 2731
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
2732 2733
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
2734 2735 2736 2737
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
2738 2739 2740 2741

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2742
            # case 1
2743
            x = layers.data(name='x', shape=[10], dtype='float32')
2744 2745 2746
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
2747 2748 2749
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
2750
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
2751 2752 2753 2754 2755 2756
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
2757

W
whs 已提交
2758
    def test_affine_grid(self):
2759
        with self.static_graph():
W
whs 已提交
2760
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
2761
            out = paddle.argsort(x=data, axis=1)
W
whs 已提交
2762 2763

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
2764
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
2765 2766
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
2767 2768 2769

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
2770

W
wangchaochaohu 已提交
2771 2772 2773 2774 2775 2776 2777
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
2
201716010711 已提交
2778
            out = paddle.strided_slice(
2779 2780
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
2781 2782
            return out

2783 2784
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
2785 2786 2787 2788 2789 2790
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
2791 2792
            return out

2793 2794 2795 2796
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
2797 2798 2799 2800
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
2801

2802 2803 2804 2805 2806
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
2807
            return out
2808

2809 2810 2811 2812
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
2813
            length = layers.data(name='length', shape=[], dtype='int64')
2814
            return layers.sequence_unpad(x=x, length=length)
2815

2816 2817 2818
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2819 2820 2821
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
2822
            seq = layers.fc(input=seq_data, size=20)
2823
            return layers.sequence_softmax(seq)
2824

2825 2826 2827 2828 2829
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
2830
            return out
2831

2832 2833 2834
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
2852
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
2853
            return out
W
whs 已提交
2854

2855 2856 2857 2858
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
2859 2860 2861 2862

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
2863 2864
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
2865 2866 2867 2868
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
2869

Z
zhoushiyu 已提交
2870 2871 2872
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2873 2874 2875
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
2876 2877 2878 2879 2880
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
2881
            return out1
Z
zhoushiyu 已提交
2882

2883 2884 2885 2886
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
2887 2888 2889 2890
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
2891

S
ShenLiang 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
2901 2902
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
2903 2904 2905 2906
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
2907 2908 2909 2910 2911
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
2912

S
ShenLiang 已提交
2913 2914 2915
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
2916 2917 2918
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
2919 2920 2921 2922 2923 2924 2925
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
2926 2927 2928 2929 2930
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
2931

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
2942 2943 2944
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
2945
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
2946
            return output
2947 2948 2949 2950 2951 2952

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
2953
            return out
2954 2955 2956 2957

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
2958 2959 2960 2961 2962 2963
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
2964 2965 2966 2967 2968

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
2969
            out = paddle.squeeze(x, axis=[2])
2970
            return out
2971 2972 2973 2974

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
2975 2976 2977 2978 2979 2980
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
2981
            out = paddle.flatten(x, 1, -1, name="flatten")
2982
            return out
2983

Z
zhoukunsheng 已提交
2984 2985 2986
    def test_linspace(self):
        program = Program()
        with program_guard(program):
2987
            out = paddle.linspace(20, 10, 5, 'float64')
Z
zhoukunsheng 已提交
2988 2989 2990
            self.assertIsNotNone(out)
        print(str(program))

2991 2992 2993 2994
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
2995
            return out
2996

2997 2998 2999 3000
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
3001 3002 3003 3004 3005 3006
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
3007 3008
            return concat1, concat2

C
cjt222 已提交
3009
    def test_deform_roi_pooling(self):
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
3042

3043
    def test_addmm(self):
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
3059 3060

            out = paddle.addmm(input=input, x=x, y=y)
3061
            return out
3062

3063
    def test_retinanet_detection_output(self):
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
3091 3092 3093 3094 3095 3096 3097 3098 3099
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
3100 3101 3102
                nms_eta=1.0,
            )
            return nmsed_outs
3103

3104 3105 3106
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3107
            input_length = paddle.static.data(
3108 3109
                name='logits_length', shape=[11], dtype='int64'
            )
3110
            label_length = paddle.static.data(
3111 3112
                name='labels_length', shape=[12], dtype='int64'
            )
3113 3114 3115 3116
            label = paddle.static.data(
                name='label', shape=[12, 1], dtype='int32'
            )
            predict = paddle.static.data(
3117 3118
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
3119 3120 3121 3122 3123 3124
            output = paddle.nn.functional.ctc_loss(
                log_probs=predict,
                labels=label,
                input_lengths=input_length,
                label_lengths=label_length,
                reduction='none',
3125 3126
            )
            return output
3127

3128 3129 3130 3131
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
3132 3133 3134 3135 3136 3137 3138 3139 3140
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
3152 3153
                        batch_first=batch_first,
                    )
3154

Y
Yu Yang 已提交
3155

3156 3157 3158 3159
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
3181 3182 3183 3184 3185 3186
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


3187 3188
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
3189
        super().__init__()
3190
        self.weight = self.create_parameter(
3191 3192
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
3223 3224
class MyLayer(paddle.nn.Layer):
    def __init__(self):
3225
        super().__init__()
J
Jiabin Yang 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
3237
        super().__init__()
J
Jiabin Yang 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
3253
if __name__ == '__main__':
3254
    paddle.enable_static()
Y
Yu Yang 已提交
3255
    unittest.main()