io.py 44.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
T
tangwei12 已提交
20 21
import time
import shutil
22
import six
23
from functools import reduce
24

25
from paddle.fluid import layers
X
Xin Pan 已提交
26
from paddle.fluid.executor import Executor
27
from paddle.fluid.evaluator import Evaluator
28
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
K
fix bug  
Kexin Zhao 已提交
29
from . import core
30 31

__all__ = [
T
tangwei12 已提交
32
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
33
    'load_persistables', 'save_inference_model', 'load_inference_model'
34 35 36 37
]


def is_parameter(var):
F
fengjiayi 已提交
38 39
    """
    Check whether the given variable is an instance of Parameter.
40 41

    Args:
F
fengjiayi 已提交
42
        var(Variable): The variable to be checked.
43 44

    Returns:
F
fengjiayi 已提交
45 46 47 48 49 50 51 52
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
53
    """
54 55 56 57
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

71
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
72 73
            res = fluid.io.is_persistable(param)
    """
74
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
75 76
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
77
        return False
78 79 80 81 82 83 84 85
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
86
        dtype=var.dtype,
87 88 89 90 91
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


92 93 94 95 96
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
97
              filename=None):
98
    """
F
fengjiayi 已提交
99 100
    Save variables to the given directory by executor.

101 102 103 104
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
105
    are assigned, the `main_program` and the `predicate` will be ignored.
106

107 108 109
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
110
    use `filename` to specify it.
111

F
fengjiayi 已提交
112 113 114
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
115 116
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
117 118
                                    be used automatically.
                                    Default: None
119
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
120 121
                                   It has a higher priority than the `main_program`.
                                   Default: None
122 123 124 125
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
126 127
                                  `vars` is None).
                                  Default: None
128
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
151
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
152 153 154 155 156 157
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
158
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
159 160 161
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
162 163
    """
    if vars is None:
164
        if main_program is None:
Y
Yu Yang 已提交
165
            main_program = default_main_program()
166
        if not isinstance(main_program, Program):
167 168 169 170
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
171
            main_program=main_program,
172
            dirname=dirname,
173
            vars=list(filter(predicate, main_program.list_vars())),
174
            filename=filename)
175 176 177
    else:
        save_program = Program()
        save_block = save_program.global_block()
178

179 180 181 182 183
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

184
        save_var_map = {}
185
        for each_var in vars:
186 187 188
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
189
            new_var = _clone_var_in_block_(save_block, each_var)
190
            if filename is None:
191 192 193 194 195 196 197 198
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

199
        if filename is not None:
200 201 202 203
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

204
            save_block.append_op(
205 206
                type='save_combine',
                inputs={'X': save_var_list},
207
                outputs={},
208
                attrs={'file_path': os.path.join(dirname, filename)})
209

210 211 212
        executor.run(save_program)


213
def save_params(executor, dirname, main_program=None, filename=None):
214
    """
F
fengjiayi 已提交
215 216 217
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

218 219 220
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
221 222
    the file name.

223 224 225
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
F
fengjiayi 已提交
226 227 228 229 230 231 232 233 234
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
235 236
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
237 238 239 240 241 242 243 244 245 246 247 248
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
249
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
250
                                 main_program=None)
251 252 253 254
    """
    save_vars(
        executor,
        dirname=dirname,
255
        main_program=main_program,
256
        vars=None,
257
        predicate=is_parameter,
258
        filename=filename)
259 260


261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


441
def save_persistables(executor, dirname, main_program=None, filename=None):
442
    """
443 444
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
445 446
    or file `filename`.

447 448 449
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
450 451 452 453 454
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
455 456
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
457 458
                                    program will be used automatically.
                                    Default: None
459
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
460 461 462 463 464 465 466 467 468 469 470 471
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
472
            fluid.io.save_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
473
                                       main_program=None)
474
    """
475 476 477 478 479 480 481 482 483 484 485 486 487

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
488 489


490 491 492 493 494
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
495
              filename=None):
496
    """
F
fengjiayi 已提交
497 498
    Load variables from the given directory by executor.

499 500 501 502
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
503 504
    are assigned, the `main_program` and the `predicate` will be ignored.

505 506 507
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
508
    use `filename` to specify it.
509

F
fengjiayi 已提交
510 511 512
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
513 514
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
515 516
                                    be used automatically.
                                    Default: None
517
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
518 519
                                   It has a higher priority than the `main_program`.
                                   Default: None
520 521 522 523
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
524 525
                                  `vars` is None).
                                  Default: None
526
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
546

F
fengjiayi 已提交
547 548
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
549
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
550 551 552 553 554 555
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
556
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
557
                               filename="vars_file")
558
            # var_a, var_b and var_c will be loaded. And they are supposed to haven
F
fengjiayi 已提交
559
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
560 561
    """
    if vars is None:
562
        if main_program is None:
Y
Yu Yang 已提交
563
            main_program = default_main_program()
564
        if not isinstance(main_program, Program):
565 566 567 568 569
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
T
tangwei12 已提交
570
            main_program=main_program,
571
            vars=list(filter(predicate, main_program.list_vars())),
572
            filename=filename)
573 574 575
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
576

577 578 579 580 581
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

582
        load_var_map = {}
583 584
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
585 586
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
587
            new_var = _clone_var_in_block_(load_block, each_var)
588
            if filename is None:
589 590 591 592 593 594 595 596
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

597
        if filename is not None:
598 599 600 601
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

602
            load_block.append_op(
603
                type='load_combine',
604
                inputs={},
605
                outputs={"Out": load_var_list},
606
                attrs={'file_path': os.path.join(dirname, filename)})
607 608 609
        executor.run(load_prog)


610
def load_params(executor, dirname, main_program=None, filename=None):
611
    """
F
fengjiayi 已提交
612
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
613
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
614 615
    the file `filename`.

616 617 618
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
619 620
    `filename` to specify the file name.

621 622 623 624
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
F
fengjiayi 已提交
625 626 627 628 629 630 631 632

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
633
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
634 635 636 637 638 639 640 641 642 643 644 645
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
646
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
647
                                main_program=None)
648 649
    """
    load_vars(
650 651 652
        executor,
        dirname=dirname,
        main_program=main_program,
653
        predicate=is_parameter,
654
        filename=filename)
655 656


657
def load_persistables(executor, dirname, main_program=None, filename=None):
658
    """
659 660
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
661 662
    `dirname` or the file `filename`.

663 664 665
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
666 667 668 669 670
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
671 672
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
673 674
                                    program will be used automatically.
                                    Default: None
675
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
676 677 678 679 680 681 682 683 684 685 686 687
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
688
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
689
                                       main_program=None)
690
    """
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
819 820


821 822 823
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
824 825 826
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
827 828
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
829 830 831
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
832

833
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
834
        out = global_block.var(name)
W
Wu Yi 已提交
835
        global_block._prepend_op(
K
Kexin Zhao 已提交
836 837
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
838
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
839 840 841
            attrs={'col': i})


842 843 844
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
845 846
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
847 848 849
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
850

851
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
852 853 854 855 856 857 858
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


859 860 861 862
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
863
                         main_program=None,
864
                         model_filename=None,
865 866
                         params_filename=None,
                         export_for_deployment=True):
867
    """
F
fengjiayi 已提交
868 869 870 871 872
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
873
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
874
                                     during inference.
875
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
876 877
                                     results.
        executor(Executor): The executor that saves the inference model.
878 879
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
880 881
                                    the default main program will be used.
                                    Default: None.
882 883
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
884
                                  `__model__` will be used.
885 886
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
887
                                   in separate files .
X
Xin Pan 已提交
888 889 890 891 892
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
893

F
fengjiayi 已提交
894 895 896 897 898 899 900 901 902
    Returns:
        None

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
903

F
fengjiayi 已提交
904 905 906 907 908
            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

909 910 911
            # In this exsample, the function will prune the default main program
            # to make it suitable for infering the `predict_var`. The pruned
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
912
            # and parameters are going to be saved in separate files under folder
913
            # "./infer_model".
914 915

    """
M
minqiyang 已提交
916
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
917
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
918
    elif export_for_deployment:
Q
Qiao Longfei 已提交
919
        if len(feeded_var_names) > 0:
920
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
921
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
922
                    isinstance(name, six.string_types)
923
                    for name in feeded_var_names)):
M
minqiyang 已提交
924
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
925 926

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
927
        target_vars = [target_vars]
X
Xin Pan 已提交
928
    elif export_for_deployment:
929 930
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
931 932
            raise ValueError("'target_vars' should be a list of Variable.")

933
    if main_program is None:
Y
Yu Yang 已提交
934
        main_program = default_main_program()
D
dzhwinter 已提交
935
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
936 937 938 939 940 941
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
942

943 944 945 946 947 948 949 950 951 952 953
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
        for var in target_vars:
            if isinstance(var, Variable):
                var1 = layers.scale(var, 1.)
            uniq_target_vars.append(var1)
        target_vars = uniq_target_vars

954 955
    # when a pserver and a trainer running on the same machine, mkdir may conflict
    try:
956
        os.makedirs(dirname)
957 958 959 960
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
961 962 963 964 965
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
    model_basename = os.path.join(dirname, model_basename)
966

X
Xin Pan 已提交
967 968 969 970
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
971 972 973

    origin_program = main_program.clone()

X
Xin Pan 已提交
974
    if export_for_deployment:
X
Xin Pan 已提交
975 976
        main_program = main_program.clone()
        global_block = main_program.global_block()
977
        need_to_remove_op_index = []
X
Xin Pan 已提交
978 979 980
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
981 982 983 984 985
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
986
        main_program.desc.flush()
X
Xin Pan 已提交
987

X
Xin Pan 已提交
988 989
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
990 991
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
992 993 994 995 996
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
997 998 999
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1000 1001
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1002

1003 1004
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1005 1006
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1007

X
fix  
Xin Pan 已提交
1008 1009
    save_persistables(executor, dirname, main_program, params_filename)

1010

1011 1012 1013
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1014 1015
                         params_filename=None,
                         pserver_endpoints=None):
1016 1017 1018
    """
    Load inference model from a directory

F
fengjiayi 已提交
1019 1020 1021 1022
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1023
                                  If it is None, the default filename
F
fengjiayi 已提交
1024 1025 1026
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1027 1028 1029
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1030
                                   files, set it as 'None'.
1031 1032 1033 1034
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1035 1036 1037

    Returns:
        tuple: The return of this function is a tuple with three elements:
1038 1039 1040 1041 1042
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
1053
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1054
            [inference_program, feed_target_names, fetch_targets] =
F
fengjiayi 已提交
1055 1056 1057 1058 1059
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1060 1061 1062
            # if we need lookup table, we will use:
            fluid.io.load_inference_model(dirname=path, executor=exe, pserver_endpoints=endpoints)

1063 1064 1065 1066 1067
            # In this exsample, the inference program was saved in the
            # "./infer_model/__model__" and parameters were saved in
            # separate files in ""./infer_model".
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1068
            # program to get the inference result.
1069

1070 1071 1072 1073
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

1074 1075
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1076
    else:
1077 1078 1079 1080 1081
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1082

1083
    with open(model_filename, "rb") as f:
1084 1085
        program_desc_str = f.read()

1086
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1087
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1088 1089 1090
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
1091
    load_persistables(executor, dirname, program, params_filename)
1092

T
tangwei12 已提交
1093
    if pserver_endpoints:
T
tangwei12 已提交
1094
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1095

1096 1097
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1098 1099 1100 1101 1102
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1103 1104


T
tangwei12 已提交
1105 1106 1107
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1108 1109
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1110
    program._sync_with_cpp()
T
tangwei12 已提交
1111
    return program
T
tangwei12 已提交
1112 1113


X
xuwei06 已提交
1114 1115
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1127

F
fengjiayi 已提交
1128 1129
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1130

F
fengjiayi 已提交
1131 1132 1133
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1134

X
xuwei06 已提交
1135
    """
X
xuwei06 已提交
1136 1137
    assert is_parameter(para)

X
xuwei06 已提交
1138 1139 1140 1141 1142 1143 1144 1145
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1146
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1147

F
fengjiayi 已提交
1148 1149 1150 1151 1152 1153 1154
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1155

F
fengjiayi 已提交
1156 1157
    Returns:
        numpy.array: The parameter's values.
1158

F
fengjiayi 已提交
1159 1160 1161 1162 1163
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1164

F
fengjiayi 已提交
1165 1166 1167 1168 1169
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1170 1171
    """
    if program is None:
Y
Yu Yang 已提交
1172
        program = default_main_program()
X
xuwei06 已提交
1173 1174
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)