io.py 53.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

24 25 26
import paddle
import paddle.reader
from paddle.reader import *
27
from paddle.fluid import layers
X
Xin Pan 已提交
28
from paddle.fluid.executor import Executor
29
from paddle.fluid.evaluator import Evaluator
30
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
T
tangwei12 已提交
31
from paddle.fluid.compiler import CompiledProgram
32
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
33 34
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
35
from . import core
36
from .. import compat as cpt
37

38 39
batch = paddle.batch

40
__all__ = [
T
tangwei12 已提交
41
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
42 43
    'load_persistables', 'save_inference_model', 'load_inference_model', 'batch'
] + reader.__all__ + paddle.reader.__all__
44

45 46
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
47

48 49

def is_parameter(var):
F
fengjiayi 已提交
50 51
    """
    Check whether the given variable is an instance of Parameter.
52 53

    Args:
F
fengjiayi 已提交
54
        var(Variable): The variable to be checked.
55 56

    Returns:
F
fengjiayi 已提交
57 58 59 60 61 62
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

63
            import paddle.fluid as fluid
F
fengjiayi 已提交
64 65
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
66
    """
67 68 69 70
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

84
            import paddle.fluid as fluid
85
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
86 87
            res = fluid.io.is_persistable(param)
    """
88
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
89 90
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
91
        return False
92 93 94 95 96
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
112 113


C
chengduo 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
            raise TypeError("program should be as Program type or None")
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")
    return main_program


128 129 130 131 132
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
133
              filename=None):
134
    """
F
fengjiayi 已提交
135 136
    Save variables to the given directory by executor.

137 138 139 140
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
141
    are assigned, the `main_program` and the `predicate` will be ignored.
142

143 144 145
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
146
    use `filename` to specify it.
147

F
fengjiayi 已提交
148 149 150
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
151 152
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
153 154
                                    be used automatically.
                                    Default: None
155
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
156 157
                                   It has a higher priority than the `main_program`.
                                   Default: None
158 159 160 161
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
162 163
                                  `vars` is None).
                                  Default: None
164
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
165 166 167 168 169 170 171 172 173 174 175 176
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

177 178 179 180 181 182 183 184 185 186 187 188
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
189

190
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
191 192 193 194
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
195
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
196
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
197 198 199 200 201
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
202 203
            var_list = [w, b]
            path = "./my_paddle_vars"
204
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
205 206
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
207
            # saved in the same file named 'var_file' in the path "./my_paddle_vars".
208
    """
L
lujun 已提交
209
    save_dirname = os.path.normpath(dirname)
C
chengduo 已提交
210
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
211

212 213 214
    if vars is None:
        save_vars(
            executor,
215
            main_program=main_program,
L
lujun 已提交
216
            dirname=save_dirname,
217
            vars=list(filter(predicate, main_program.list_vars())),
218
            filename=filename)
219 220 221
    else:
        save_program = Program()
        save_block = save_program.global_block()
222 223

        save_var_map = {}
224
        for each_var in vars:
225 226 227
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
228
            new_var = _clone_var_in_block_(save_block, each_var)
229
            if filename is None:
230 231
                save_file_path = os.path.join(save_dirname, new_var.name)
                save_file_path = os.path.normpath(save_file_path)
232 233 234 235
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
236
                    attrs={'file_path': save_file_path})
237 238 239
            else:
                save_var_map[new_var.name] = new_var

240
        if filename is not None:
241 242 243 244
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

245
            save_block.append_op(
246 247
                type='save_combine',
                inputs={'X': save_var_list},
248
                outputs={},
L
lujun 已提交
249
                attrs={'file_path': os.path.join(save_dirname, filename)})
250

251 252 253
        executor.run(save_program)


254
def save_params(executor, dirname, main_program=None, filename=None):
255
    """
F
fengjiayi 已提交
256 257 258
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

259 260 261
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
262 263
    the file name.

264 265 266
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
267 268 269
    and `load_persistables()` instead. If you want to save your model for
    the inference, please use the `save_inference_model` API. You can refer
    to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
270 271 272 273 274 275 276 277

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
278 279
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
280 281 282 283 284 285 286 287 288
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
289 290
            import paddle.fluid as fluid

F
fengjiayi 已提交
291 292 293
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
294
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
295
                                 main_program=None)
296 297 298 299
    """
    save_vars(
        executor,
        dirname=dirname,
300
        main_program=main_program,
301
        vars=None,
302
        predicate=is_parameter,
303
        filename=filename)
304 305


306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

328
            import paddle.fluid as fluid
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
453
        raise TypeError("'main_program' should be an instance of Program.")
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


487
def save_persistables(executor, dirname, main_program=None, filename=None):
488
    """
489 490
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
491 492
    or file `filename`.

493 494 495
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
496 497 498 499 500
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
501 502
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
503 504
                                    program will be used automatically.
                                    Default: None
505
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
506 507 508 509 510 511 512 513 514
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
515 516
            import paddle.fluid as fluid

F
fengjiayi 已提交
517 518
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
519
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
520
            prog = fluid.default_main_program()
521
            fluid.io.save_persistables(executor=exe, dirname=param_path,
522
                                       main_program=prog)
523
    """
524 525 526 527 528 529 530 531 532 533 534
    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
535 536


537 538 539 540 541
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
542
              filename=None):
543
    """
F
fengjiayi 已提交
544 545
    Load variables from the given directory by executor.

546 547 548 549
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
550 551
    are assigned, the `main_program` and the `predicate` will be ignored.

552 553 554
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
555
    use `filename` to specify it.
556

F
fengjiayi 已提交
557 558 559
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
560 561
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
562 563
                                    be used automatically.
                                    Default: None
564
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
565 566
                                   It has a higher priority than the `main_program`.
                                   Default: None
567 568 569 570
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
571 572
                                  `vars` is None).
                                  Default: None
573
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
574 575 576 577 578 579 580 581 582 583 584 585
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

586 587 588 589 590 591 592 593 594 595 596 597
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
598

599
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
600 601 602 603
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
604 605 606
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
607
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
608 609 610 611
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.

            # The second usage: using `vars` to specify variables
612 613 614 615
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
616
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
617
                               filename="vars_file")
618 619
            # w and b will be loaded. And they are supposed to haven
            # been saved in the same file named 'var_file' in the path "./my_paddle_vars".
620
    """
L
lujun 已提交
621
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
622

623
    if vars is None:
624
        if main_program is None:
Y
Yu Yang 已提交
625
            main_program = default_main_program()
626
        if not isinstance(main_program, Program):
627 628 629 630
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
631
            dirname=load_dirname,
T
tangwei12 已提交
632
            main_program=main_program,
633
            vars=list(filter(predicate, main_program.list_vars())),
634
            filename=filename)
635 636 637
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
638

639 640
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
641

642 643 644
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

645
        load_var_map = {}
646 647
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
648 649
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
650
            new_var = _clone_var_in_block_(load_block, each_var)
651
            if filename is None:
652 653 654 655
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
656 657 658
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
659 660 661
            else:
                load_var_map[new_var.name] = new_var

662
        if filename is not None:
663 664 665 666
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

667
            load_block.append_op(
668
                type='load_combine',
669
                inputs={},
670
                outputs={"Out": load_var_list},
L
lujun 已提交
671
                attrs={'file_path': os.path.join(load_dirname, filename)})
672 673 674
        executor.run(load_prog)


675
def load_params(executor, dirname, main_program=None, filename=None):
676
    """
F
fengjiayi 已提交
677
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
678
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
679 680
    the file `filename`.

681 682 683
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
684 685
    `filename` to specify the file name.

686 687 688 689
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
690 691 692
    If you want to load the pre-trained model structure and parameters
    for the inference, please use the `load_inference_model` API. You can
    refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
693 694 695 696 697 698 699 700

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
701
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
702 703 704 705 706 707 708 709 710
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

711
            import paddle.fluid as fluid
F
fengjiayi 已提交
712 713 714
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
715
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
716
                                main_program=None)
717 718
    """
    load_vars(
719 720 721
        executor,
        dirname=dirname,
        main_program=main_program,
722
        predicate=is_parameter,
723
        filename=filename)
724 725


726
def load_persistables(executor, dirname, main_program=None, filename=None):
727
    """
728 729
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
730 731
    `dirname` or the file `filename`.

732 733 734
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
735 736 737 738 739
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
740 741
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
742 743
                                    program will be used automatically.
                                    Default: None
744
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
745 746 747 748 749 750 751 752 753
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

754
            import paddle.fluid as fluid
F
fengjiayi 已提交
755 756 757
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
758
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
759
                                       main_program=None)
760
    """
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

792
            import paddle.fluid as fluid
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
840 841 842 843
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
878
        raise TypeError("'main_program' should be an instance of Program.")
879 880 881 882 883 884 885 886 887 888 889 890 891 892

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
893 894


895 896 897
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
898 899 900
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
901 902
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
903 904 905
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
906

907
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
908
        out = global_block.var(name)
W
Wu Yi 已提交
909
        global_block._prepend_op(
K
Kexin Zhao 已提交
910 911
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
912
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
913 914 915
            attrs={'col': i})


916 917 918
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
919 920
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
921 922 923
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
924

925
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
926 927 928 929 930 931 932
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


933 934 935 936
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
937
                         main_program=None,
938
                         model_filename=None,
939
                         params_filename=None,
T
tangwei12 已提交
940 941
                         export_for_deployment=True,
                         program_only=False):
942
    """
F
fengjiayi 已提交
943 944
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.
945 946 947 948
    If you just want to save parameters of your trained model, please use the
    `save_params` API. You can refer to :ref:`api_guide_model_save_reader_en` for
    more details.

F
fengjiayi 已提交
949 950 951

    Args:
        dirname(str): The directory path to save the inference model.
952
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
953
                                     during inference.
954
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
955 956
                                     results.
        executor(Executor): The executor that saves the inference model.
957 958
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
959 960
                                    the default main program will be used.
                                    Default: None.
961 962
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
963
                                  `__model__` will be used.
964 965
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
966
                                   in separate files .
X
Xin Pan 已提交
967 968 969 970 971
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
T
tangwei12 已提交
972
        program_only(bool): If True, It will save inference program only, and do not save params of Program.
973

F
fengjiayi 已提交
974
    Returns:
F
flame 已提交
975
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
976 977 978 979 980 981 982

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
983

984 985
            import paddle.fluid as fluid

F
fengjiayi 已提交
986 987
            path = "./infer_model"

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
1010
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1011
            # and parameters are going to be saved in separate files under folder
1012
            # "./infer_model".
1013 1014

    """
M
minqiyang 已提交
1015
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1016
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1017
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1018
        if len(feeded_var_names) > 0:
1019
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1020
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1021
                    isinstance(name, six.string_types)
1022
                    for name in feeded_var_names)):
M
minqiyang 已提交
1023
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1024 1025

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1026
        target_vars = [target_vars]
X
Xin Pan 已提交
1027
    elif export_for_deployment:
1028 1029
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1030 1031
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1032
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1033

1034 1035 1036 1037 1038
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1039
        for i, var in enumerate(target_vars):
1040
            if isinstance(var, Variable):
F
flame 已提交
1041 1042 1043
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1044
        target_vars = uniq_target_vars
F
flame 已提交
1045
    target_var_name_list = [var.name for var in target_vars]
1046

1047
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1048
    save_dirname = dirname
1049
    try:
L
lujun 已提交
1050 1051
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1052 1053 1054 1055
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1056 1057 1058 1059
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1060
    model_basename = os.path.join(save_dirname, model_basename)
1061

X
Xin Pan 已提交
1062 1063 1064 1065
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1066 1067 1068

    origin_program = main_program.clone()

X
Xin Pan 已提交
1069
    if export_for_deployment:
X
Xin Pan 已提交
1070 1071
        main_program = main_program.clone()
        global_block = main_program.global_block()
1072
        need_to_remove_op_index = []
X
Xin Pan 已提交
1073 1074 1075
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1076 1077 1078 1079 1080
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1081
        main_program.desc.flush()
X
Xin Pan 已提交
1082

X
Xin Pan 已提交
1083 1084
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1085 1086
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1087 1088 1089 1090 1091
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1092 1093 1094
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1095 1096
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1097

T
tangwei12 已提交
1098 1099 1100 1101 1102 1103
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1104 1105
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1106 1107
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1108

L
lujun 已提交
1109
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1110
    return target_var_name_list
X
fix  
Xin Pan 已提交
1111

1112

1113 1114 1115
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1116 1117
                         params_filename=None,
                         pserver_endpoints=None):
1118
    """
1119 1120 1121 1122
    Load inference model from a directory. By this API, you can get the model
    structure(inference program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the `load_params` API.
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1123

F
fengjiayi 已提交
1124 1125 1126 1127
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1128
                                  If it is None, the default filename
F
fengjiayi 已提交
1129 1130 1131
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1132 1133 1134
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1135
                                   files, set it as 'None'.
1136 1137 1138 1139
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1140 1141 1142

    Returns:
        tuple: The return of this function is a tuple with three elements:
1143 1144 1145 1146 1147
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1148 1149 1150 1151 1152 1153 1154 1155
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
            import paddle.fluid as fluid
            import numpy as np
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
1169
            path = "./infer_model"
1170 1171 1172
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
1173 1174
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
F
fengjiayi 已提交
1175 1176 1177 1178
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1179 1180
            # endpoints is your pserver endpoints list, the above is just an example
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1181
            # if we need lookup table, we will use:
1182
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1183 1184
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1185
                                              pserver_endpoints=endpoints))
1186

1187
            # In this example, the inference program was saved in the
1188
            # "./infer_model/__model__" and parameters were saved in
1189
            # separate files in "./infer_model".
1190 1191
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1192
            # program to get the inference result.
1193
    """
L
lujun 已提交
1194 1195
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1196 1197
        raise ValueError("There is no directory named '%s'", dirname)

1198 1199
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1200
    else:
1201
        model_filename = "__model__"
L
lujun 已提交
1202
    model_filename = os.path.join(load_dirname, model_filename)
1203 1204 1205

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1206

1207
    with open(model_filename, "rb") as f:
1208 1209
        program_desc_str = f.read()

1210
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1211
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1212 1213 1214
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1215
    load_persistables(executor, load_dirname, program, params_filename)
1216

T
tangwei12 已提交
1217
    if pserver_endpoints:
T
tangwei12 已提交
1218
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1219

1220 1221
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1222 1223 1224 1225 1226
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1227 1228


T
tangwei12 已提交
1229 1230 1231
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1232 1233
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1234
    program._sync_with_cpp()
T
tangwei12 已提交
1235
    return program
T
tangwei12 已提交
1236 1237


X
xuwei06 已提交
1238 1239
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1251

F
fengjiayi 已提交
1252 1253
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1254

1255
            import paddle.fluid as fluid
F
fengjiayi 已提交
1256 1257 1258
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1259

X
xuwei06 已提交
1260
    """
X
xuwei06 已提交
1261 1262
    assert is_parameter(para)

X
xuwei06 已提交
1263 1264 1265 1266 1267 1268 1269 1270
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1271
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1272

F
fengjiayi 已提交
1273 1274 1275 1276 1277 1278 1279
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1280

F
fengjiayi 已提交
1281 1282
    Returns:
        numpy.array: The parameter's values.
1283

F
fengjiayi 已提交
1284 1285 1286 1287 1288
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1289

F
fengjiayi 已提交
1290 1291 1292
    Examples:
        .. code-block:: python

1293
            import paddle.fluid as fluid
F
fengjiayi 已提交
1294 1295
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1296 1297
    """
    if program is None:
Y
Yu Yang 已提交
1298
        program = default_main_program()
X
xuwei06 已提交
1299 1300
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)