test_activation_op.py 115.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20

21
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
28
from paddle.fluid.framework import _test_eager_guard
Q
qijun 已提交
29

30 31
paddle.enable_static()

Q
qijun 已提交
32

33
class TestSqrtOpError(unittest.TestCase):
34

Z
Zhaolong Xing 已提交
35 36 37 38 39 40
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
41 42 43
            in2 = fluid.layers.data(name='input2',
                                    shape=[12, 10],
                                    dtype="int32")
Z
Zhaolong Xing 已提交
44 45
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

46 47 48
            in3 = fluid.layers.data(name='input3',
                                    shape=[12, 10],
                                    dtype="float16")
Z
Zhaolong Xing 已提交
49 50 51
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
52
class TestActivation(OpTest):
53

Q
qijun 已提交
54 55
    def setUp(self):
        self.op_type = "exp"
56
        self.init_dtype()
57
        self.init_kernel_type()
C
chentianyu03 已提交
58 59
        self.check_eager = True
        self.python_api = paddle.exp
60

61
        np.random.seed(2049)
62 63 64 65 66
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
67 68

    def test_check_output(self):
69 70 71 72
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_output(check_eager=check_eager)
Q
qijun 已提交
73 74

    def test_check_grad(self):
75 76
        if self.dtype == np.float16:
            return
77 78 79 80
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_grad(['X'], 'Out', check_eager=check_eager)
Q
qijun 已提交
81

82
    def init_dtype(self):
83
        self.dtype = np.float64
84

85 86 87
    def init_kernel_type(self):
        pass

Q
qijun 已提交
88

R
ronnywang 已提交
89
class TestExpm1(TestActivation):
90

R
ronnywang 已提交
91 92
    def setUp(self):
        self.op_type = "expm1"
93
        self.python_api = paddle.expm1
R
ronnywang 已提交
94 95 96 97 98 99 100 101 102 103
        self.init_dtype()

        np.random.seed(2049)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.expm1(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
104 105 106 107
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
R
ronnywang 已提交
108 109 110


class TestExpm1API(unittest.TestCase):
111

R
ronnywang 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [11, 17]

    def setUp(self):
        self.init_dtype()
        self.x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        self.out_ref = np.expm1(self.x)

        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                X = paddle.fluid.data('X', self.shape, dtype=self.dtype)
                out = paddle.expm1(X)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X': self.x})
            for r in res:
                self.assertEqual(np.allclose(self.out_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
141

R
ronnywang 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        def run(place):
            paddle.disable_static(place)
            X = paddle.to_tensor(self.x)
            out = paddle.expm1(X)
            self.assertEqual(np.allclose(self.out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            X = paddle.fluid.data('X', self.shape, dtype='int32')
            self.assertRaises(TypeError, paddle.expm1, X)
        # The input dtype must be float16, float32, float64.


160
class TestParameter(object):
161

162 163
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
164
            np_x = np.array([0.1])
165
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
166
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
167 168
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
169 170
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
S
Shang Zhizhou 已提交
171
            self.assertTrue(np.allclose(result, expected))
172 173 174 175 176 177 178

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
S
Shang Zhizhou 已提交
179
            self.assertTrue(np.allclose(z, z_expected))
180 181


C
chengduo 已提交
182
class TestSigmoid(TestActivation):
183

Q
qijun 已提交
184 185
    def setUp(self):
        self.op_type = "sigmoid"
186 187
        self.init_dtype()

188
        np.random.seed(1024)
189 190 191 192 193
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
194

195 196 197
    def init_dtype(self):
        self.dtype = np.float32

198
    def test_check_grad(self):
199 200 201 202
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

203

204 205 206
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSigmoidBF16(OpTest):
207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    def setUp(self):
        self.op_type = "sigmoid"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out')


M
minghaoBD 已提交
233
class TestSilu(TestActivation):
234

M
minghaoBD 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
291 292 293
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[11, 17],
                                        dtype='int32')
M
minghaoBD 已提交
294 295
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
296 297 298
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[11, 17],
                                       dtype='float16')
M
minghaoBD 已提交
299 300 301
            F.silu(x_fp16)


C
chengduo 已提交
302
class TestLogSigmoid(TestActivation):
303

304 305
    def setUp(self):
        self.op_type = "logsigmoid"
306 307
        self.init_dtype()

308
        np.random.seed(2048)
309 310 311
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

312
        self.inputs = {'X': x}
313
        self.outputs = {'Out': out}
314 315

    def test_check_grad(self):
316 317
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
318
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
319 320


321
class TestLogSigmoidAPI(unittest.TestCase):
322
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
323
    def setUp(self):
324
        np.random.seed(1024)
325
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
326
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
327 328 329
            else paddle.CPUPlace()

    def test_static_api(self):
330
        paddle.enable_static()
331
        with paddle.static.program_guard(paddle.static.Program()):
332
            x = paddle.fluid.data('X', [11, 17])
333
            out1 = F.log_sigmoid(x)
334 335 336 337 338 339
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
340
            self.assertTrue(np.allclose(out_ref, r))
341 342 343 344

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
345
        out1 = F.log_sigmoid(x)
346 347 348 349
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
350
            self.assertTrue(np.allclose(out_ref, r.numpy()))
351 352
        paddle.enable_static()

353
    def test_fluid_api(self):
354
        paddle.enable_static()
355
        with paddle.static.program_guard(paddle.static.Program()):
356
            x = paddle.fluid.data('X', [11, 17])
357 358 359 360 361 362
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

363
    def test_errors(self):
364
        paddle.enable_static()
365 366
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
367
            self.assertRaises(TypeError, F.log_sigmoid, 1)
368
            # The input dtype must be float16, float32, float64.
369 370 371
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[11, 17],
                                        dtype='int32')
372
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
373
            # support the input dtype is float16
374 375 376
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[11, 17],
                                       dtype='float16')
377
            F.log_sigmoid(x_fp16)
378 379


380
class TestTanh(TestActivation, TestParameter):
381

382 383
    def setUp(self):
        self.op_type = "tanh"
384
        self.init_dtype()
385
        np.random.seed(1024)
386 387 388 389 390
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
391 392

    def test_check_grad(self):
393 394
        if self.dtype == np.float16:
            return
395
        self.check_grad(['X'], 'Out')
396

397 398 399 400 401 402
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

403

W
WangXi 已提交
404 405 406 407
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
408
        np.random.seed(1024)
W
WangXi 已提交
409
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
410
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
411
            else paddle.CPUPlace()
412 413 414 415
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
416 417

    def test_static_api(self):
418
        paddle.enable_static()
W
WangXi 已提交
419
        with paddle.static.program_guard(paddle.static.Program()):
420
            x = paddle.fluid.data('X', [10, 12], self.dtype)
421
            out1 = self.tanh(x)
W
WangXi 已提交
422 423 424 425 426 427 428 429 430 431
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
432
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
433 434 435 436 437 438 439 440 441 442
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
443
        paddle.enable_static()
W
WangXi 已提交
444 445 446 447 448 449 450 451 452
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
453
        paddle.enable_static()
W
WangXi 已提交
454 455
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
456
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
457
            # The input dtype must be float16, float32.
458 459 460
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
461
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
462
            # support the input dtype is float16
463 464 465
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
466 467 468 469 470 471 472
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
473 474


475
class TestAtan(TestActivation, TestParameter):
476

477 478 479 480
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

481
        np.random.seed(1024)
482 483 484 485 486 487 488 489 490
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
491
        self.check_grad(['X'], 'Out')
492

W
WuHaobo 已提交
493 494 495 496 497 498 499 500 501 502 503
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

504 505 506 507 508 509 510 511
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

512

513
class TestSinh(TestActivation):
514

515 516 517 518
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

519
        np.random.seed(1024)
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
544 545 546 547
            data_x = fluid.layers.data(name="data_x",
                                       shape=test_data_shape,
                                       append_batch_size=False,
                                       dtype="float32")
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
573

574 575 576 577 578 579 580 581 582 583 584 585 586
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
587

588 589 590 591
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

592
        np.random.seed(1024)
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
617 618 619 620
            data_x = fluid.layers.data(name="data_x",
                                       shape=test_data_shape,
                                       append_batch_size=False,
                                       dtype="float32")
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
646

647 648 649 650 651 652 653 654 655 656 657 658
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


659 660 661 662 663 664
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
665

K
Kavya Srinet 已提交
666 667
    def setUp(self):
        self.op_type = "tanh_shrink"
668 669
        self.init_dtype()

670
        np.random.seed(1024)
671 672
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
673

674
        self.inputs = {'X': x}
675
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
676 677

    def test_check_grad(self):
678 679
        if self.dtype == np.float16:
            return
680
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
681

682

683 684 685
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
686
        np.random.seed(1024)
687
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
688
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
689 690 691
            else paddle.CPUPlace()

    def test_static_api(self):
692
        paddle.enable_static()
693
        with paddle.static.program_guard(paddle.static.Program()):
694
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
716
        paddle.enable_static()
717 718 719 720 721 722 723 724 725
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
726
        paddle.enable_static()
727 728 729 730
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
731 732 733
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
734 735
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
736 737 738
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
739 740 741
            F.tanhshrink(x_fp16)


742 743 744 745 746 747
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
748
class TestHardShrink(TestActivation):
749

750 751
    def setUp(self):
        self.op_type = "hard_shrink"
752 753
        self.init_dtype()

754 755
        self.threshold = 0.5
        self.set_attrs()
756
        np.random.seed(1024)
Z
zhupengyang 已提交
757
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
758
        out = ref_hardshrink(x, self.threshold)
759

760
        self.attrs = {'threshold': self.threshold}
761
        self.inputs = {'X': x}
762
        self.outputs = {'Out': out}
763

764 765 766
    def set_attrs(self):
        pass

767
    def test_check_grad(self):
768 769
        if self.dtype == np.float16:
            return
770
        self.check_grad(['X'], 'Out')
771 772


773
class TestHardShrink_threshold_negative(TestHardShrink):
774

775 776 777 778
    def set_attrs(self):
        self.threshold = -0.1


779 780 781
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
782
        np.random.seed(1024)
783
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
784
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
785 786 787
            else paddle.CPUPlace()

    def test_static_api(self):
788
        paddle.enable_static()
789
        with paddle.static.program_guard(paddle.static.Program()):
790
            x = paddle.fluid.data('X', [10, 12])
791 792 793 794 795 796 797 798 799 800 801
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
802
        x = paddle.to_tensor(self.x_np)
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
819
        paddle.enable_static()
820 821 822 823 824 825 826 827
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

828
    def test_errors(self):
829
        paddle.enable_static()
830
        with paddle.static.program_guard(paddle.static.Program()):
831
            # The input type must be Variable.
832
            self.assertRaises(TypeError, F.hardshrink, 1)
833
            # The input dtype must be float16, float32, float64.
834 835 836
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
837
            self.assertRaises(TypeError, F.hardshrink, x_int32)
838
            # support the input dtype is float16
839 840 841
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
842
            F.hardshrink(x_fp16)
843 844


845 846 847 848 849 850 851 852 853 854 855
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
856
        np.random.seed(1024)
857
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
858
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
859 860 861
            else paddle.CPUPlace()

    def test_static_api(self):
862
        paddle.enable_static()
863
        with paddle.static.program_guard(paddle.static.Program()):
864
            x = paddle.fluid.data('X', [10, 12])
865 866 867 868 869 870 871 872 873 874 875
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
876
        x = paddle.to_tensor(self.x_np)
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
893
        paddle.enable_static()
894 895 896 897
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
898 899 900
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
901 902
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
903 904 905
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
906 907 908
            F.hardtanh(x_fp16)


909 910 911 912 913 914 915 916
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
917

918 919
    def setUp(self):
        self.op_type = "softshrink"
920 921
        self.check_eager = True
        self.python_api = paddle.nn.functional.softshrink
922 923
        self.init_dtype()

924
        threshold = 0.8
925

926
        np.random.seed(1023)
927 928 929 930
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
931
        self.outputs = {'Out': out}
932 933

    def test_check_grad(self):
934 935
        if self.dtype == np.float16:
            return
936
        self.check_grad(['X'], 'Out', check_eager=True)
937

938

939 940 941 942
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
943
        np.random.seed(1024)
944
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
945
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
946 947 948
            else paddle.CPUPlace()

    def test_static_api(self):
949
        paddle.enable_static()
950
        with paddle.static.program_guard(paddle.static.Program()):
951
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
973
        paddle.enable_static()
974 975 976 977 978 979 980 981
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

982
    def test_errors(self):
983
        paddle.enable_static()
984
        with paddle.static.program_guard(paddle.static.Program()):
985
            # The input type must be Variable.
986
            self.assertRaises(TypeError, F.softshrink, 1)
987
            # The input dtype must be float16, float32, float64.
988 989 990
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
991
            self.assertRaises(TypeError, F.softshrink, x_int32)
992
            # The threshold must be no less than zero
993 994 995
            x_fp32 = paddle.fluid.data(name='x_fp32',
                                       shape=[12, 10],
                                       dtype='float32')
996
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
997
            # support the input dtype is float16
998 999 1000
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
1001
            F.softshrink(x_fp16)
1002 1003


1004
class TestSqrt(TestActivation, TestParameter):
1005

1006 1007
    def setUp(self):
        self.op_type = "sqrt"
1008
        self.python_api = paddle.sqrt
1009 1010
        self.init_dtype()

1011
        np.random.seed(1023)
1012 1013 1014 1015 1016
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1017 1018

    def test_check_grad(self):
1019 1020
        if self.dtype == np.float16:
            return
1021 1022 1023 1024
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
1025

1026

1027 1028 1029
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSqrtBF16(OpTest):
1030

1031 1032
    def setUp(self):
        self.op_type = "sqrt"
1033
        self.python_api = paddle.sqrt
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        self.init_dtype()

        np.random.seed(1023)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.sqrt(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
1050
        self.check_output_with_place(place, check_eager=True)
1051 1052 1053

    def test_check_grad(self):
        place = core.CUDAPlace(0)
1054
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
1055 1056


Z
zhoukunsheng 已提交
1057
class TestRsqrt(TestActivation):
1058

Z
zhoukunsheng 已提交
1059 1060
    def setUp(self):
        self.op_type = "rsqrt"
Z
zyfncg 已提交
1061
        self.python_api = paddle.rsqrt
Z
zhoukunsheng 已提交
1062 1063
        self.init_dtype()

1064
        np.random.seed(1024)
Z
zhupengyang 已提交
1065
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
1066 1067 1068 1069 1070 1071 1072 1073
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1074 1075 1076 1077
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.0005,
                        check_eager=True)
Z
zhoukunsheng 已提交
1078 1079


C
chengduo 已提交
1080
class TestAbs(TestActivation):
1081

1082 1083
    def setUp(self):
        self.op_type = "abs"
1084 1085
        self.init_dtype()

1086
        np.random.seed(1024)
1087
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
1088
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
1089
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
1090
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
1091 1092
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
1093 1094 1095 1096
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1097 1098

    def test_check_grad(self):
1099 1100
        if self.dtype == np.float16:
            return
1101
        self.check_grad(['X'], 'Out', check_eager=False)
1102

1103

C
chengduo 已提交
1104
class TestCeil(TestActivation):
1105

D
dzhwinter 已提交
1106 1107
    def setUp(self):
        self.op_type = "ceil"
1108 1109
        self.check_eager = True
        self.python_api = paddle.ceil
1110 1111
        self.init_dtype()

1112
        np.random.seed(1024)
Z
zhupengyang 已提交
1113
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1114 1115 1116 1117
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1118

D
dzhwinter 已提交
1119
    # The same reason with TestFloor
C
chengduo 已提交
1120
    def test_check_grad(self):
1121 1122 1123
        pass


C
chengduo 已提交
1124
class TestFloor(TestActivation):
1125

D
dzhwinter 已提交
1126 1127
    def setUp(self):
        self.op_type = "floor"
1128 1129
        self.check_eager = True
        self.python_api = paddle.floor
1130 1131
        self.init_dtype()

1132
        np.random.seed(1024)
Z
zhupengyang 已提交
1133
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1134 1135 1136 1137
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1138

D
dzhwinter 已提交
1139
    # the gradient on floor, ceil, round is undefined.
1140
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
1141 1142
    # The same reason with TestFloor
    def test_check_grad(self):
1143 1144 1145
        pass


C
chengduo 已提交
1146
class TestCos(TestActivation):
1147

C
add cos  
chengduoZH 已提交
1148 1149
    def setUp(self):
        self.op_type = "cos"
1150 1151
        self.init_dtype()

1152
        np.random.seed(1024)
Z
zhupengyang 已提交
1153
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1154 1155 1156 1157
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
1158 1159

    def test_check_grad(self):
1160 1161
        if self.dtype == np.float16:
            return
1162
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
1163

1164

J
joejiong 已提交
1165
class TestTan(TestActivation):
1166

J
joejiong 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1217
class TestAcos(TestActivation):
1218

1219 1220 1221 1222
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

1223
        np.random.seed(1024)
Z
zhupengyang 已提交
1224
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1225 1226 1227 1228 1229 1230 1231 1232
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1233
        self.check_grad(['X'], 'Out')
1234 1235


1236
class TestSin(TestActivation, TestParameter):
1237

C
add sin  
chengduoZH 已提交
1238 1239
    def setUp(self):
        self.op_type = "sin"
1240 1241
        self.init_dtype()

1242
        np.random.seed(1024)
Z
zhupengyang 已提交
1243
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1244 1245 1246 1247
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1248 1249

    def test_check_grad(self):
1250 1251
        if self.dtype == np.float16:
            return
1252
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
1253 1254


1255
class TestAsin(TestActivation):
1256

1257 1258 1259 1260
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1261
        np.random.seed(2048)
Z
zhupengyang 已提交
1262
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1263 1264 1265 1266 1267 1268 1269 1270
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1271
        self.check_grad(['X'], 'Out')
1272 1273


X
xiaoting 已提交
1274
class TestAcosh(TestActivation):
1275

X
xiaoting 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
    def setUp(self):
        self.op_type = "acosh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(2, 3, [10, 12]).astype(self.dtype)
        out = np.arccosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAsinh(TestActivation):
1294

X
xiaoting 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    def setUp(self):
        self.op_type = "asinh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(1, 2, [10, 12]).astype(self.dtype)
        out = np.arcsinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAtanh(TestActivation):
1313

X
xiaoting 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    def setUp(self):
        self.op_type = "atanh"
        self.init_dtype()

        np.random.seed(400)
        x = np.random.uniform(-0.9, 0.9, [10, 12]).astype(self.dtype)
        out = np.arctanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


C
chengduo 已提交
1331
class TestRound(TestActivation):
1332

D
dzhwinter 已提交
1333 1334
    def setUp(self):
        self.op_type = "round"
1335 1336
        self.check_eager = True
        self.python_api = paddle.round
1337 1338
        self.init_dtype()

1339
        np.random.seed(1024)
Z
zhupengyang 已提交
1340
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1341 1342 1343 1344
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1345

C
chengduo 已提交
1346
    def test_check_grad(self):
1347 1348 1349
        pass


C
chengduo 已提交
1350
class TestRelu(TestActivation):
1351

1352
    def setUp(self):
Q
qijun 已提交
1353
        self.op_type = "relu"
K
Kexin Zhao 已提交
1354 1355
        self.init_dtype()

1356
        np.random.seed(1024)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        if self.dtype == np.uint16:
            x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = convert_float_to_uint16(np.maximum(x, 0))
            self.inputs = {'X': convert_float_to_uint16(x)}
        else:
            x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = np.maximum(x, 0)
            self.inputs = {'X': x}
K
Kexin Zhao 已提交
1369 1370

        self.outputs = {'Out': out}
1371 1372

    def test_check_grad(self):
K
Kexin Zhao 已提交
1373 1374
        if self.dtype == np.float16:
            return
1375
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1376 1377


1378 1379 1380
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1381
        np.random.seed(1024)
1382
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1383
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1384
            else paddle.CPUPlace()
1385 1386 1387 1388
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1389 1390

    def test_static_api(self):
1391
        paddle.enable_static()
1392
        with paddle.static.program_guard(paddle.static.Program()):
1393
            x = paddle.fluid.data('X', [10, 12])
1394
            out1 = self.relu(x)
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1407 1408
        out1 = m(x)
        out2 = self.relu(x)
1409 1410 1411 1412 1413
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1414
    def test_errors(self):
1415
        paddle.enable_static()
1416
        with paddle.static.program_guard(paddle.static.Program()):
1417
            # The input type must be Variable.
1418
            self.assertRaises(TypeError, self.relu, 1)
1419
            # The input dtype must be float16, float32, float64.
1420 1421 1422
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[10, 12],
                                        dtype='int32')
1423
            self.assertRaises(TypeError, self.relu, x_int32)
1424
            # support the input dtype is float16
1425 1426 1427
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[10, 12],
                                       dtype='float16')
1428 1429 1430 1431 1432 1433 1434
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1435 1436


1437 1438 1439 1440 1441 1442
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1443
class TestLeakyRelu(TestActivation):
1444

1445 1446 1447
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1448 1449 1450
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1451
        alpha = self.get_alpha()
A
Adam 已提交
1452

1453
        np.random.seed(1024)
A
Adam 已提交
1454 1455
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1456 1457
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1458

1459
        self.inputs = {'X': x}
A
Adam 已提交
1460
        self.outputs = {'Out': out}
1461
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1462 1463 1464 1465

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1466
        self.check_grad(['X'], 'Out')
1467 1468


1469
class TestLeakyReluAlpha1(TestLeakyRelu):
1470

1471 1472 1473 1474 1475
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
1476

1477 1478 1479 1480 1481
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
1482

1483 1484 1485 1486 1487 1488 1489 1490
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1491
        np.random.seed(1024)
1492
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1493
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1494 1495 1496
            else paddle.CPUPlace()

    def test_static_api(self):
1497
        paddle.enable_static()
1498
        with paddle.static.program_guard(paddle.static.Program()):
1499
            x = paddle.fluid.data('X', [10, 12])
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1511
        x = paddle.to_tensor(self.x_np)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1528
        paddle.enable_static()
1529 1530 1531 1532 1533 1534 1535 1536
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1537
    def test_errors(self):
1538
        paddle.enable_static()
1539
        with paddle.static.program_guard(paddle.static.Program()):
1540
            # The input type must be Variable.
1541
            self.assertRaises(TypeError, F.leaky_relu, 1)
1542
            # The input dtype must be float16, float32, float64.
1543 1544 1545
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
1546 1547
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
1548 1549 1550
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
1551
            F.leaky_relu(x_fp16)
1552 1553


1554 1555
def gelu(x, approximate):
    if approximate:
1556 1557
        y_ref = 0.5 * x * (
            1.0 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
1558 1559 1560 1561 1562 1563
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
1564

C
Clementine 已提交
1565 1566 1567
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1568
        approximate = True
1569
        np.random.seed(1024)
1570 1571
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1572

1573
        self.inputs = {'X': x}
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
1584

1585 1586 1587 1588
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1589
        np.random.seed(2048)
C
Clementine 已提交
1590
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1591
        out = gelu(x, approximate)
C
Clementine 已提交
1592

1593
        self.inputs = {'X': x}
C
Clementine 已提交
1594
        self.outputs = {'Out': out}
1595
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1596 1597 1598 1599

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1600
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1601 1602


1603 1604 1605
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1606
        np.random.seed(1024)
1607
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1608
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1609 1610 1611
            else paddle.CPUPlace()

    def test_static_api(self):
1612
        paddle.enable_static()
1613
        with paddle.static.program_guard(paddle.static.Program()):
1614
            x = paddle.fluid.data('X', [11, 17])
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1643
        paddle.enable_static()
1644 1645 1646 1647
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
1648 1649 1650
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[11, 17],
                                        dtype='int32')
1651 1652
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
1653 1654 1655
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[11, 17],
                                       dtype='float16')
1656 1657 1658
            F.gelu(x_fp16)


C
chengduo 已提交
1659
class TestBRelu(TestActivation):
1660

1661 1662
    def setUp(self):
        self.op_type = "brelu"
1663 1664
        self.init_dtype()

1665
        np.random.seed(1024)
Z
zhupengyang 已提交
1666
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1667 1668
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1669 1670
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1671
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1672 1673 1674
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1675 1676 1677

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1678
        self.outputs = {'Out': t}
1679 1680

    def test_check_grad(self):
1681 1682
        if self.dtype == np.float16:
            return
1683
        self.check_grad(['X'], 'Out')
1684

1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1697
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1714 1715 1716 1717 1718 1719 1720 1721
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
1722 1723 1724
            x_fp16 = fluid.layers.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
1725 1726 1727
            fluid.layers.brelu(x_fp16)


1728 1729 1730 1731 1732 1733 1734
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1735
class TestRelu6(TestActivation):
1736

K
Kavya Srinet 已提交
1737
    def setUp(self):
1738
        self.op_type = "relu6"
1739 1740
        self.init_dtype()

1741
        np.random.seed(1024)
Z
zhupengyang 已提交
1742
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1743
        x[np.abs(x) < 0.005] = 0.02
1744
        out = ref_relu6(x)
1745

1746 1747
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1748
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1749

1750 1751 1752
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1753
        self.check_grad(['X'], 'Out')
1754 1755


1756 1757 1758
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1759
        np.random.seed(1024)
1760 1761
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1762
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1763 1764 1765
            else paddle.CPUPlace()

    def test_static_api(self):
1766
        paddle.enable_static()
1767
        with paddle.static.program_guard(paddle.static.Program()):
1768
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1790
        paddle.enable_static()
1791 1792 1793 1794 1795 1796 1797 1798
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1799
    def test_errors(self):
1800
        paddle.enable_static()
1801
        with paddle.static.program_guard(paddle.static.Program()):
1802
            # The input type must be Variable.
1803
            self.assertRaises(TypeError, F.relu6, 1)
1804
            # The input dtype must be float16, float32, float64.
1805 1806 1807
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
1808
            self.assertRaises(TypeError, F.relu6, x_int32)
1809
            # support the input dtype is float16
1810 1811 1812
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
1813
            F.relu6(x_fp16)
1814 1815


1816 1817 1818 1819 1820
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1821
class TestHardSwish(TestActivation):
1822

H
huangjun12 已提交
1823 1824 1825
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()
1826
        self.python_api = paddle.nn.functional.hardswish
J
jakpiase 已提交
1827 1828
        skip_check_grad_ci(reason="not implemented yet")

1829
        np.random.seed(1024)
Z
zhupengyang 已提交
1830
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1831 1832 1833 1834 1835 1836
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1837
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1838

1839
        self.inputs = {'X': x}
H
huangjun12 已提交
1840 1841 1842 1843 1844 1845
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1846 1847

        return  # not implemented yet
1848 1849 1850 1851
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
H
huangjun12 已提交
1852 1853


1854 1855 1856 1857
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1858
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1859 1860 1861 1862
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1863
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1882
        paddle.enable_static()
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1901
            # The input type must be Variable.
1902
            self.assertRaises(TypeError, F.hardswish, 1)
1903
            # The input dtype must be float16, float32, float64.
1904 1905 1906
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
1907
            self.assertRaises(TypeError, F.hardswish, x_int32)
1908
            # support the input dtype is float16
1909 1910 1911
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
1912
            F.hardswish(x_fp16)
1913

1914 1915 1916 1917 1918
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_dygraph_api()
            self.test_errors()

1919

C
chengduo 已提交
1920
class TestSoftRelu(TestActivation):
1921

1922 1923
    def setUp(self):
        self.op_type = "soft_relu"
1924 1925
        self.init_dtype()

1926
        np.random.seed(4096)
1927
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1928
        threshold = 2.0
Q
qijun 已提交
1929 1930
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1931
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1932 1933 1934
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1935 1936 1937 1938 1939
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1940 1941

    def test_check_grad(self):
1942 1943
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1944
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1945

1946

1947
class TestSoftReluOpError(unittest.TestCase):
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1961
def elu(x, alpha):
Z
zhupengyang 已提交
1962
    out_ref = np.where(x > 0, x, alpha * (np.exp(x) - 1))
1963 1964 1965
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1966
class TestELU(TestActivation):
1967

1968 1969
    def setUp(self):
        self.op_type = "elu"
1970 1971
        self.init_dtype()

1972
        np.random.seed(1024)
Z
zhupengyang 已提交
1973
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
Z
zhupengyang 已提交
1974
        alpha = self.get_alpha()
1975
        out = elu(x, alpha)
1976 1977 1978 1979
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1980
        self.outputs = {'Out': out}
1981 1982

    def test_check_grad(self):
1983 1984
        if self.dtype == np.float16:
            return
1985
        self.check_grad(['X'], 'Out')
1986

Z
zhupengyang 已提交
1987 1988 1989 1990 1991
    def get_alpha(self):
        return 1.


class TestELUAlpha(TestELU):
1992

Z
zhupengyang 已提交
1993 1994 1995
    def get_alpha(self):
        return -0.2

1996

1997 1998 1999
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
2000
        np.random.seed(1024)
2001
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
2002
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2003
            else paddle.CPUPlace()
2004 2005 2006 2007
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
2008 2009

    def test_static_api(self):
2010
        paddle.enable_static()
2011
        with paddle.static.program_guard(paddle.static.Program()):
2012
            x = paddle.fluid.data('X', [10, 12])
2013
            out1 = self.elu(x)
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
2025 2026
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
2027 2028 2029 2030 2031 2032
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

2033 2034
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
2035 2036 2037 2038 2039 2040 2041
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

2042
    def test_errors(self):
2043
        paddle.enable_static()
2044 2045
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
2046
            self.assertRaises(TypeError, self.elu, 1)
2047
            # The input dtype must be float16, float32, float64.
2048 2049 2050
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[10, 12],
                                        dtype='int32')
2051
            self.assertRaises(TypeError, self.elu, x_int32)
2052
            # support the input dtype is float16
2053 2054 2055
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[10, 12],
                                       dtype='float16')
2056 2057 2058
            self.elu(x_fp16)


Z
zhupengyang 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_

    def test_alpha_error(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        self.assertRaises(Exception, F.elu_, x, -0.2)
        paddle.enable_static()


2071 2072 2073 2074 2075 2076
def celu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x / alpha) - 1))
    return out_ref.astype(x.dtype)


class TestCELU(TestActivation):
2077

2078 2079 2080 2081
    def setUp(self):
        self.op_type = "celu"
        self.init_dtype()

2082
        self.python_api = paddle.nn.functional.celu
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
        np.random.seed(1024)
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
        alpha = 1.5
        out = celu(x, alpha)
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2094
        self.check_grad(['X'], 'Out', check_eager=True)
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147


class TestCELUAPI(unittest.TestCase):
    # test paddle.nn.CELU, paddle.nn.functional.celu
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        self.executed_api()

    def executed_api(self):
        self.celu = F.celu

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out1 = self.celu(x, 1.5)
            m = paddle.nn.CELU(1.5)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = celu(self.x_np, 1.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = self.celu(x, 1.5)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(1.5)
        out2 = m(x)
        out_ref = celu(self.x_np, 1.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = self.celu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(0.2)
        out2 = m(x)
        out_ref = celu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, self.celu, 1)
            # The input dtype must be float16, float32, float64.
2148 2149 2150
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[10, 12],
                                        dtype='int32')
2151 2152
            self.assertRaises(TypeError, self.celu, x_int32)
            # The alpha must be not equal 0
2153 2154 2155
            x_fp32 = paddle.fluid.data(name='x_fp32',
                                       shape=[10, 12],
                                       dtype='float32')
2156 2157
            self.assertRaises(ZeroDivisionError, F.celu, x_fp32, 0)
            # support the input dtype is float16
2158 2159 2160
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[10, 12],
                                       dtype='float16')
2161 2162
            self.celu(x_fp16)

2163 2164 2165 2166 2167
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_dygraph_api()
            self.test_errors()

2168

C
chengduo 已提交
2169
class TestReciprocal(TestActivation):
2170

Q
qijun 已提交
2171 2172
    def setUp(self):
        self.op_type = "reciprocal"
2173
        self.python_api = paddle.reciprocal
2174 2175
        self.init_dtype()

2176
        np.random.seed(1024)
2177 2178 2179 2180 2181
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2182 2183

    def test_check_grad(self):
2184 2185
        if self.dtype == np.float16:
            return
2186 2187 2188 2189
        self.check_grad(['X'], 'Out', max_relative_error=0.01, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2190 2191


C
chengduo 已提交
2192
class TestLog(TestActivation):
2193

Q
qijun 已提交
2194 2195
    def setUp(self):
        self.op_type = "log"
2196 2197
        self.check_eager = True
        self.python_api = paddle.log
2198 2199
        self.init_dtype()

2200
        np.random.seed(1024)
2201 2202 2203 2204 2205
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2206 2207

    def test_check_grad(self):
2208 2209
        if self.dtype == np.float16:
            return
2210
        self.check_grad(['X'], 'Out', check_eager=True)
Q
qijun 已提交
2211

2212
    def test_error(self):
2213 2214 2215 2216 2217 2218 2219 2220
        in1 = fluid.layers.data(name="in1",
                                shape=[11, 17],
                                append_batch_size=False,
                                dtype="int32")
        in2 = fluid.layers.data(name="in2",
                                shape=[11, 17],
                                append_batch_size=False,
                                dtype="int64")
2221 2222 2223 2224

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

2225

J
joejiong 已提交
2226
class TestLog2(TestActivation):
2227

J
joejiong 已提交
2228 2229
    def setUp(self):
        self.op_type = "log2"
2230 2231
        self.check_eager = True
        self.python_api = paddle.log2
J
joejiong 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2243
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
2256 2257 2258
            data_x = paddle.static.data(name="data_x",
                                        shape=[11, 17],
                                        dtype="float64")
J
joejiong 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
2279
class TestLog10(TestActivation):
2280

J
joejiong 已提交
2281 2282
    def setUp(self):
        self.op_type = "log10"
2283 2284
        self.check_eager = True
        self.python_api = paddle.log10
J
joejiong 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2296
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
2309 2310 2311
            data_x = paddle.static.data(name="data_x",
                                        shape=[11, 17],
                                        dtype="float64")
J
joejiong 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


2332
class TestLog1p(TestActivation):
2333

2334 2335
    def setUp(self):
        self.op_type = "log1p"
2336 2337
        self.check_eager = True
        self.python_api = paddle.log1p
2338 2339
        self.init_dtype()

2340
        np.random.seed(1024)
2341 2342 2343 2344 2345 2346 2347 2348 2349
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2350
        self.check_grad(['X'], 'Out', check_eager=True)
2351 2352 2353 2354

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
2355 2356 2357 2358
            data_x = fluid.layers.data(name="data_x",
                                       shape=[11, 17],
                                       append_batch_size=False,
                                       dtype="float64")
2359 2360 2361 2362

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
2363 2364 2365
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
2366
        expected_res = np.log1p(input_x)
2367
        self.assertTrue(np.allclose(res1, expected_res))
2368 2369 2370 2371 2372 2373 2374 2375

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
2376
        self.assertTrue(np.allclose(np_z, z_expected))
2377 2378


C
chengduo 已提交
2379
class TestSquare(TestActivation):
2380

Q
qijun 已提交
2381 2382
    def setUp(self):
        self.op_type = "square"
2383
        self.python_api = paddle.square
2384 2385
        self.init_dtype()

2386
        np.random.seed(1024)
2387 2388 2389 2390 2391
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2392 2393

    def test_check_grad(self):
2394 2395
        if self.dtype == np.float16:
            return
2396 2397 2398 2399
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.007,
                        check_eager=True)
2400 2401 2402

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2403

2404

2405 2406 2407
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSquareBF16(OpTest):
2408

2409 2410
    def setUp(self):
        self.op_type = "square"
2411
        self.python_api = paddle.square
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.square(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
2428
        self.check_output_with_place(place, check_eager=True)
2429 2430 2431

    def test_check_grad(self):
        place = core.CUDAPlace(0)
2432 2433 2434 2435
        self.check_grad_with_place(place, ['X'],
                                   'Out',
                                   numeric_grad_delta=0.5,
                                   check_eager=True)
2436 2437


C
chengduo 已提交
2438
class TestPow(TestActivation):
2439

2440 2441
    def setUp(self):
        self.op_type = "pow"
2442
        self.python_api = paddle.pow
2443
        self.check_eager = True
2444 2445
        self.init_dtype()

2446
        np.random.seed(1024)
2447 2448 2449 2450
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
2451
        self.attrs = {'factor': 3.0}
2452
        self.outputs = {'Out': out}
2453

2454 2455 2456
    def test_check_output(self):
        self.check_output(check_eager=self.check_eager)

2457
    def test_check_grad(self):
2458 2459
        if self.dtype == np.float16:
            return
2460
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2461

2462

2463
class TestPow_factor_tensor(TestActivation):
2464

2465 2466
    def setUp(self):
        self.op_type = "pow"
2467 2468
        self.check_eager = False
        self.python_api = paddle.pow
2469 2470
        self.init_dtype()

2471
        np.random.seed(1024)
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
2484
        self.check_output(check_eager=self.check_eager)
2485 2486 2487 2488

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2489
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2490 2491 2492

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
2493 2494 2495 2496 2497 2498 2499 2500
        x = fluid.layers.data(name="x",
                              shape=[11, 17],
                              append_batch_size=False,
                              dtype="float32")
        res = fluid.layers.data(name="res",
                                shape=[11, 17],
                                append_batch_size=False,
                                dtype="float32")
2501 2502 2503 2504 2505

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2506 2507 2508
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2509 2510

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2511
        res_1, res_2, res, res_6 = exe.run(
2512 2513
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2514
            fetch_list=[out_1, out_2, res, out_6])
2515

2516 2517 2518
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2519

2520
    def test_error(self):
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
        in1 = fluid.layers.data(name="in1",
                                shape=[11, 17],
                                append_batch_size=False,
                                dtype="int32")
        in2 = fluid.layers.data(name="in2",
                                shape=[11, 17],
                                append_batch_size=False,
                                dtype="int64")
        in3 = fluid.layers.data(name="in3",
                                shape=[11, 17],
                                append_batch_size=False,
                                dtype="float32")
        in4 = fluid.layers.data(name="in4",
                                shape=[11, 17],
                                append_batch_size=False,
                                dtype="float64")
2537 2538 2539 2540 2541 2542 2543 2544

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2545

2546 2547 2548 2549 2550
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2551
class TestSTanh(TestActivation):
2552

2553 2554 2555 2556 2557 2558
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2559 2560
    def setUp(self):
        self.op_type = "stanh"
2561
        self.init_dtype()
2562 2563
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2564

2565
        np.random.seed(1024)
2566
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2567 2568
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2569

2570
        self.inputs = {'X': x}
2571
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2572
        self.outputs = {'Out': out}
2573

Q
qijun 已提交
2574
    def test_check_grad(self):
2575 2576
        if self.dtype == np.float16:
            return
2577
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2578

2579

2580
class TestSTanhScaleA(TestSTanh):
2581

2582 2583 2584 2585 2586
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
2587

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2638
    def test_errors(self):
2639 2640
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2641
            # The input type must be Variable.
2642
            self.assertRaises(TypeError, paddle.stanh, 1)
2643
            # The input dtype must be float16, float32, float64.
2644 2645 2646
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
2647
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2648
            # support the input dtype is float16
2649 2650 2651
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
2652 2653 2654 2655
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
2656

2657 2658 2659 2660 2661
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
2662

2663 2664
    def get_scale_b(self):
        return 0.5
2665 2666


2667 2668 2669 2670 2671 2672 2673
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2674
class TestSoftplus(TestActivation):
2675

K
kexinzhao 已提交
2676 2677
    def setUp(self):
        self.op_type = "softplus"
2678 2679
        self.init_dtype()

2680 2681
        beta = 2
        threshold = 15
2682

2683
        np.random.seed(1024)
2684 2685 2686 2687
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2688
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2689 2690

    def test_check_grad(self):
2691 2692
        if self.dtype == np.float16:
            return
2693
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2694

2695

2696 2697 2698
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftplusBF16(OpTest):
2699

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
    def setUp(self):
        self.op_type = "softplus"
        self.init_dtype()

        beta = 2
        threshold = 15

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(np.float32)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'beta': beta, "threshold": threshold}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', numeric_grad_delta=0.05)


2726 2727 2728 2729 2730
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2731
        np.random.seed(1024)
2732
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2733
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2734 2735 2736
            else paddle.CPUPlace()

    def test_static_api(self):
2737
        paddle.enable_static()
2738
        with paddle.static.program_guard(paddle.static.Program()):
2739
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2761
        paddle.enable_static()
2762 2763 2764 2765 2766 2767 2768 2769 2770
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2771
        paddle.enable_static()
2772 2773 2774 2775
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
2776 2777 2778
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
2779 2780
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
2781 2782 2783
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
2784 2785 2786 2787 2788 2789 2790 2791
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2792
class TestSoftsign(TestActivation):
2793

2794 2795
    def setUp(self):
        self.op_type = "softsign"
2796 2797
        self.init_dtype()

2798
        np.random.seed(1024)
2799 2800 2801
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2802
        self.outputs = {'Out': out}
2803 2804

    def test_check_grad(self):
2805 2806
        if self.dtype == np.float16:
            return
2807
        self.check_grad(['X'], 'Out')
2808 2809


2810 2811 2812
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2813
        np.random.seed(1024)
2814
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2815
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2816 2817 2818
            else paddle.CPUPlace()

    def test_static_api(self):
2819
        paddle.enable_static()
2820
        with paddle.static.program_guard(paddle.static.Program()):
2821
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2843
        paddle.enable_static()
2844 2845 2846 2847 2848 2849 2850 2851 2852
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2853
        paddle.enable_static()
2854 2855 2856 2857
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
2858 2859 2860
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
2861 2862
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
2863 2864 2865
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
2866 2867 2868
            F.softsign(x_fp16)


2869 2870 2871 2872 2873
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2874
class TestThresholdedRelu(TestActivation):
2875

2876 2877
    def setUp(self):
        self.op_type = "thresholded_relu"
2878 2879
        self.init_dtype()

2880
        threshold = 15
2881

2882 2883 2884 2885 2886 2887
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2888
        self.outputs = {'Out': out}
2889 2890

    def test_check_grad(self):
2891 2892
        if self.dtype == np.float16:
            return
2893
        self.check_grad(['X'], 'Out')
2894 2895


2896 2897 2898 2899 2900 2901 2902
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2903
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2904 2905 2906 2907 2908
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2909
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2940
    def test_errors(self):
2941 2942
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2943
            # The input type must be Variable.
2944
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2945
            # The input dtype must be float16, float32, float64.
2946 2947 2948
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
2949
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2950
            # support the input dtype is float16
2951 2952 2953
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
2954
            F.thresholded_relu(x_fp16)
2955 2956


2957 2958 2959 2960
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2961
class TestHardSigmoid(TestActivation):
2962

2963 2964
    def setUp(self):
        self.op_type = "hard_sigmoid"
2965 2966 2967 2968
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2969

2970 2971 2972
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2973

2974
        # Same reason as TestAbs
2975 2976 2977
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2978

2979
        out = ref_hardsigmoid(x, self.slope, self.offset)
2980

2981 2982
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2983
        self.outputs = {'Out': out}
2984

2985 2986
    def set_attrs(self):
        pass
2987

2988

2989
class TestHardSigmoidFP32(TestHardSigmoid):
2990

2991 2992 2993 2994 2995
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
2996

2997 2998 2999 3000 3001 3002 3003 3004 3005
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
3006
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
3007 3008 3009 3010
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
3011
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
3030
        paddle.enable_static()
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
3049
            # The input type must be Variable.
3050
            self.assertRaises(TypeError, F.hardsigmoid, 1)
3051
            # The input dtype must be float16, float32, float64.
3052 3053 3054
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
3055
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
3056
            # support the input dtype is float16
3057 3058 3059
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
3060
            F.hardsigmoid(x_fp16)
3061 3062


3063 3064 3065 3066 3067
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
3068
class TestSwish(TestActivation):
3069

A
Abhinav Arora 已提交
3070 3071
    def setUp(self):
        self.op_type = "swish"
3072
        self.python_api = paddle.nn.functional.swish
3073
        self.init_dtype()
3074
        self.check_eager = True
3075

3076
        np.random.seed(1024)
3077 3078 3079
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
3080
        self.attrs = {'beta': 1.0}
3081
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
3082 3083

    def test_check_grad(self):
3084 3085
        if self.dtype == np.float16:
            return
3086 3087 3088 3089
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_grad(['X'], 'Out', check_eager=check_eager)
3090

A
Abhinav Arora 已提交
3091

3092 3093 3094 3095 3096
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
3097
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
3098 3099 3100 3101 3102
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
3103
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

3124 3125 3126 3127
    def test_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_dygraph_api()

3128 3129 3130 3131 3132 3133 3134 3135 3136
    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
3137

3138
    def test_errors(self):
3139 3140
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
3141
            # The input type must be Variable.
3142
            self.assertRaises(TypeError, F.swish, 1)
3143
            # The input dtype must be float16, float32, float64.
3144 3145 3146
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
3147
            self.assertRaises(TypeError, F.swish, x_int32)
3148
            # support the input dtype is float16
3149 3150 3151
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
3152
            F.swish(x_fp16)
3153 3154


3155 3156 3157 3158 3159 3160 3161
def ref_mish(x, threshold=20.):
    softplus = np.select([x <= threshold, x > threshold],
                         [np.log(1 + np.exp(x)), x])
    return x * np.tanh(softplus)


class TestMish(TestActivation):
3162

3163 3164
    def setUp(self):
        self.op_type = "mish"
3165
        self.python_api = paddle.fluid.layers.nn.mish
3166 3167 3168 3169 3170 3171 3172 3173
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_mish(x)
        self.inputs = {'X': x}
        self.outputs = {'Out': out}

3174 3175 3176
    def test_check_output(self):
        self.check_output(check_eager=True)

3177 3178 3179
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
3180
        self.check_grad(['X'], 'Out', check_eager=True)
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230


class TestMishAPI(unittest.TestCase):
    # test paddle.nn.Mish, paddle.nn.functional.mish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.mish(x)
            mish = paddle.nn.Mish()
            out2 = mish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_mish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.mish(x)
        mish = paddle.nn.Mish()
        out2 = mish(x)
        out_ref = ref_mish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.mish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_mish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.mish, 1)
            # The input dtype must be float16, float32, float64.
3231 3232 3233
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[12, 10],
                                        dtype='int32')
3234 3235
            self.assertRaises(TypeError, F.mish, x_int32)
            # support the input dtype is float16
3236 3237 3238
            x_fp16 = paddle.fluid.data(name='x_fp16',
                                       shape=[12, 10],
                                       dtype='float16')
3239 3240 3241
            F.mish(x_fp16)


3242 3243
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
3244

3245
    class TestOpErrors(unittest.TestCase):
3246

3247 3248 3249 3250
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
3251 3252 3253 3254 3255 3256
                in1 = fluid.layers.data(name='input2',
                                        shape=[12, 10],
                                        dtype="int32")
                in2 = fluid.layers.data(name='input3',
                                        shape=[12, 10],
                                        dtype="int64")
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
3277
create_test_error_class('tan')
X
xiaoting 已提交
3278 3279 3280
create_test_error_class('acosh')
create_test_error_class('asinh')
create_test_error_class('atanh')
3281 3282


3283 3284
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
3285

3286 3287 3288
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
3289

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
3304 3305 3306 3307 3308
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
3309

J
joejiong 已提交
3310
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
3311 3312
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
3313

C
chengduo 已提交
3314 3315
        def init_dtype(self):
            self.dtype = np.float16
3316

C
chengduo 已提交
3317
        def test_check_output(self):
3318
            place = core.CUDAPlace(0)
C
chengduo 已提交
3319 3320 3321
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
3322

C
chengduo 已提交
3323 3324 3325 3326
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
3327 3328 3329
                self.check_grad_with_place(place, ['X'],
                                           'Out',
                                           max_relative_error=grad_atol)
C
chengduo 已提交
3330 3331 3332 3333 3334 3335 3336

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
R
ronnywang 已提交
3337
create_test_act_fp16_class(TestExpm1)
C
chengduo 已提交
3338
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
3339
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
3340 3341
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
3342
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
3343
create_test_act_fp16_class(TestHardShrink)
3344
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
3345 3346 3347 3348 3349
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
3350
create_test_act_fp16_class(TestTan, grad_atol=0.85)
3351
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
3352
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
3353
create_test_act_fp16_class(TestSin)
3354
create_test_act_fp16_class(TestSinh)
3355 3356
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
X
xiaoting 已提交
3357 3358 3359
create_test_act_fp16_class(TestAcosh, grad_atol=0.85)
create_test_act_fp16_class(TestAsinh, grad_atol=0.85)
create_test_act_fp16_class(TestAtanh, grad_atol=0.85)
C
chengduo 已提交
3360 3361
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
3362
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
3363 3364
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
3365
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
3366
create_test_act_fp16_class(TestELU)
3367
create_test_act_fp16_class(TestCELU)
C
chengduo 已提交
3368 3369
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
3370 3371 3372 3373
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
3374
create_test_act_fp16_class(TestLog10, atol=5e-2)
3375
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
3376 3377
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
3378
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
3379 3380 3381 3382 3383
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
3384
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
3385
create_test_act_fp16_class(TestHardSwish)
3386
create_test_act_fp16_class(TestMish, grad_atol=0.9)
A
Abhinav Arora 已提交
3387

3388 3389 3390 3391 3392

def create_test_act_bf16_class(parent,
                               atol=1e-2,
                               grad_check=True,
                               grad_atol=0.80):
3393

3394 3395 3396
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActBF16(parent):
3397

3398 3399 3400 3401 3402 3403 3404 3405 3406
        def init_dtype(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
3407 3408 3409
            self.check_grad_with_place(place, ['X'],
                                       'Out',
                                       max_relative_error=grad_atol)
3410 3411 3412 3413 3414 3415 3416 3417

    cls_name = "{0}_{1}".format(parent.__name__, "bf16")
    TestActBF16.__name__ = cls_name
    globals()[cls_name] = TestActBF16


create_test_act_bf16_class(TestRelu)

Q
qijun 已提交
3418 3419
if __name__ == "__main__":
    unittest.main()