test_activation_op.py 22.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
Q
qijun 已提交
20
from op_test import OpTest
C
Clementine 已提交
21
from scipy.special import expit, erf
Q
qijun 已提交
22 23


C
chengduo 已提交
24
class TestActivation(OpTest):
Q
qijun 已提交
25 26
    def setUp(self):
        self.op_type = "exp"
27 28
        self.dtype = np.float32
        self.init_dtype()
29
        self.init_kernel_type()
30 31 32 33 34 35

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
36 37 38 39 40

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
41 42
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
43
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
44

45
    def init_dtype(self):
C
chengduo 已提交
46
        self.dtype = np.float32
47

48 49 50
    def init_kernel_type(self):
        pass

Q
qijun 已提交
51

C
chengduo 已提交
52
class TestSigmoid(TestActivation):
Q
qijun 已提交
53 54
    def setUp(self):
        self.op_type = "sigmoid"
55 56 57 58 59 60 61
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
62

63
    def test_check_grad(self):
64 65 66 67
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

68

C
chengduo 已提交
69
class TestLogSigmoid(TestActivation):
70 71
    def setUp(self):
        self.op_type = "logsigmoid"
72 73 74 75 76 77 78
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
79 80

    def test_check_grad(self):
81 82
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
83
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
84 85


C
chengduo 已提交
86
class TestTanh(TestActivation):
87 88
    def setUp(self):
        self.op_type = "tanh"
89 90 91 92 93 94 95
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
96 97

    def test_check_grad(self):
98 99
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
100
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
101 102


103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
class TestAtan(TestActivation):
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


C
chengduo 已提交
120
class TestTanhShrink(TestActivation):
K
Kavya Srinet 已提交
121 122
    def setUp(self):
        self.op_type = "tanh_shrink"
123 124 125 126 127 128 129
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype)
        out = x - np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
130 131

    def test_check_grad(self):
132 133
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
134
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
K
Kavya Srinet 已提交
135

136

C
chengduo 已提交
137
class TestHardShrink(TestActivation):
138 139
    def setUp(self):
        self.op_type = "hard_shrink"
140 141
        self.init_dtype()

142
        threshold = 0.5
143 144 145
        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.copy(x)
        out[(out >= -threshold) & (out <= threshold)] = 0
146 147

        self.attrs = {'lambda': threshold}
148 149
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
150 151

    def test_check_grad(self):
152 153
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
154
        self.check_grad(['X'], 'Out', max_relative_error=0.005)
155 156


C
chengduo 已提交
157
class TestSoftShrink(TestActivation):
158 159
    def setUp(self):
        self.op_type = "softshrink"
160 161
        self.init_dtype()

162
        lambda_val = 0.1
163 164 165 166 167
        x = np.random.uniform(0.25, 10, [4, 4]).astype(self.dtype)
        out = np.copy(x)
        out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * (
            out - lambda_val)

168
        self.attrs = {'lambda': lambda_val}
169 170
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
171 172

    def test_check_grad(self):
173 174
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
175
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
176

177

C
chengduo 已提交
178
class TestSqrt(TestActivation):
179 180
    def setUp(self):
        self.op_type = "sqrt"
181 182 183 184 185 186 187
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
188 189

    def test_check_grad(self):
190 191
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
192
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
193

194

Z
zhoukunsheng 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [2, 3]).astype(self.dtype)
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
212
class TestAbs(TestActivation):
213 214
    def setUp(self):
        self.op_type = "abs"
215 216 217
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
C
chengduo 已提交
218
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
219
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
220
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
221 222
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
223 224 225 226
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
227 228

    def test_check_grad(self):
229 230
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
231
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
232

233

C
chengduo 已提交
234
class TestCeil(TestActivation):
D
dzhwinter 已提交
235 236
    def setUp(self):
        self.op_type = "ceil"
237 238 239 240 241 242 243
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
244

D
dzhwinter 已提交
245
    # The same reason with TestFloor
C
chengduo 已提交
246
    def test_check_grad(self):
247 248 249
        pass


C
chengduo 已提交
250
class TestFloor(TestActivation):
D
dzhwinter 已提交
251 252
    def setUp(self):
        self.op_type = "floor"
253 254 255 256 257 258 259
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
260

D
dzhwinter 已提交
261 262
    # the gradient on floor, ceil, round is undefined.
    # we return zero as gradient, but the numpy return nan 
C
chengduo 已提交
263 264
    # The same reason with TestFloor
    def test_check_grad(self):
265 266 267
        pass


C
chengduo 已提交
268
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
269 270
    def setUp(self):
        self.op_type = "cos"
271 272 273 274 275 276 277
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
278 279

    def test_check_grad(self):
280 281
        if self.dtype == np.float16:
            return
C
add sin  
chengduoZH 已提交
282 283
        self.check_grad(['X'], 'Out', max_relative_error=0.007)

284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


C
chengduo 已提交
302
class TestSin(TestActivation):
C
add sin  
chengduoZH 已提交
303 304
    def setUp(self):
        self.op_type = "sin"
305 306 307 308 309 310 311
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
312 313

    def test_check_grad(self):
314 315
        if self.dtype == np.float16:
            return
C
add cos  
chengduoZH 已提交
316 317 318
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


C
chengduo 已提交
336
class TestRound(TestActivation):
D
dzhwinter 已提交
337 338
    def setUp(self):
        self.op_type = "round"
339 340 341 342 343 344 345
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
346

C
chengduo 已提交
347
    def test_check_grad(self):
348 349 350
        pass


C
chengduo 已提交
351
class TestRelu(TestActivation):
352
    def setUp(self):
Q
qijun 已提交
353
        self.op_type = "relu"
K
Kexin Zhao 已提交
354 355 356
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
357 358
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
359 360 361 362
        out = np.maximum(x, 0)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
363 364

    def test_check_grad(self):
K
Kexin Zhao 已提交
365 366
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
367
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
A
Adam 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386


class TestLeakyRelu(TestActivation):
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        out = np.maximum(x, 0.02 * x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
387 388


C
Clementine 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 0.5 * x * (1.0 + erf(x / np.sqrt(2.0)))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


C
chengduo 已提交
406
class TestBRelu(TestActivation):
407 408
    def setUp(self):
        self.op_type = "brelu"
409 410 411
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
412 413
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
414 415
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
416
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
417 418 419
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
420 421 422

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
423
        self.outputs = {'Out': t}
424 425

    def test_check_grad(self):
426 427
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
428
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
429

430

C
chengduo 已提交
431
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
432
    def setUp(self):
433
        self.op_type = "relu6"
434 435 436
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 10]).astype(self.dtype)
437 438 439 440
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
441
        out = np.minimum(np.maximum(x, 0), threshold)
442

443
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
444
        self.attrs = {'threshold': threshold}
445
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
446

447 448 449 450 451 452
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.02)


C
chengduo 已提交
453
class TestSoftRelu(TestActivation):
454 455
    def setUp(self):
        self.op_type = "soft_relu"
456 457 458
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
459
        threshold = 2.0
Q
qijun 已提交
460 461 462
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
        x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
463 464 465
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
466 467 468 469 470
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
471 472

    def test_check_grad(self):
473 474
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
475
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
476

477

C
chengduo 已提交
478
class TestELU(TestActivation):
479 480
    def setUp(self):
        self.op_type = "elu"
481 482 483
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
484
        alpha = 1.
485
        out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
486 487 488 489
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
490
        self.outputs = {'Out': out}
491 492

    def test_check_grad(self):
493 494
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
495
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
496 497


C
chengduo 已提交
498
class TestReciprocal(TestActivation):
Q
qijun 已提交
499 500
    def setUp(self):
        self.op_type = "reciprocal"
501 502 503 504 505 506 507
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
508 509

    def test_check_grad(self):
510 511
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
512
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
513 514


C
chengduo 已提交
515
class TestLog(TestActivation):
Q
qijun 已提交
516 517
    def setUp(self):
        self.op_type = "log"
518 519 520 521 522 523 524
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
525 526

    def test_check_grad(self):
527 528
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
529
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
530

531

C
chengduo 已提交
532
class TestSquare(TestActivation):
Q
qijun 已提交
533 534
    def setUp(self):
        self.op_type = "square"
535 536 537 538 539 540 541
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
542 543

    def test_check_grad(self):
544 545
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
546
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
547

548

C
chengduo 已提交
549
class TestPow(TestActivation):
550 551
    def setUp(self):
        self.op_type = "pow"
552 553 554 555 556 557
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
558
        self.attrs = {'factor': 3.0}
559
        self.outputs = {'Out': out}
560 561

    def test_check_grad(self):
562 563
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
564
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
565

566

C
chengduo 已提交
567
class TestSTanh(TestActivation):
568 569
    def setUp(self):
        self.op_type = "stanh"
570 571 572
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
573 574
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
575 576 577
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
578
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
579
        self.outputs = {'Out': out}
580

Q
qijun 已提交
581
    def test_check_grad(self):
582 583
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
584
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
585

586

C
chengduo 已提交
587
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
588 589
    def setUp(self):
        self.op_type = "softplus"
590
        self.init_dtype()
C
chengduo 已提交
591
        self.dtype = np.float64
592 593 594 595 596 597

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 + np.exp(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
kexinzhao 已提交
598 599

    def test_check_grad(self):
600 601
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
602
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
K
kexinzhao 已提交
603

604

C
chengduo 已提交
605
class TestSoftsign(TestActivation):
606 607
    def setUp(self):
        self.op_type = "softsign"
608 609 610 611 612 613 614
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.divide(x, 1 + np.abs(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
615 616

    def test_check_grad(self):
617 618
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
619
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
620 621


C
chengduo 已提交
622
class TestThresholdedRelu(TestActivation):
623 624
    def setUp(self):
        self.op_type = "thresholded_relu"
625 626
        self.init_dtype()

627 628
        threshold = 0.25
        self.relative_error = 0.005
629
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
630 631 632

        # Same reason as TestAbs
        X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2
633
        out = (X > threshold) * X
634

635
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
636
        self.attrs = {'threshold': threshold}
637
        self.outputs = {'Out': out}
638 639

    def test_check_grad(self):
640 641
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
642
        self.check_grad(['X'], 'Out', max_relative_error=self.relative_error)
643 644


C
chengduo 已提交
645
class TestHardSigmoid(TestActivation):
646 647
    def setUp(self):
        self.op_type = "hard_sigmoid"
648 649
        self.init_dtype()

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
        self.relative_error = 0.002

        X = np.random.uniform(-5, 5, [2, 2]).astype("float32")
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

        # Same reason as TestAbs
        X[np.abs(X - lower_threshold) < self.relative_error] = \
            lower_threshold + 0.2
        X[np.abs(X - upper_threshold) < self.relative_error] = \
            upper_threshold - 0.2

        temp = X * slope + offset
665 666 667 668
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
669 670

    def test_check_grad(self):
671 672
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
673
        self.check_grad(['X'], 'Out', max_relative_error=0.002)
674

675

C
chengduo 已提交
676
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
677 678
    def setUp(self):
        self.op_type = "swish"
679 680 681 682 683 684 685 686 687
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
688 689

    def test_check_grad(self):
690 691
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
692
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
693

694

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
714 715 716 717 718 719 720 721 722 723
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
724

C
chengduo 已提交
725
        def test_check_output(self):
726
            place = core.CUDAPlace(0)
C
chengduo 已提交
727 728 729
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
730

C
chengduo 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
create_test_act_fp16_class(TestTanhShrink)
create_test_act_fp16_class(TestHardShrink)
create_test_act_fp16_class(TestSoftShrink)
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
755
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
756
create_test_act_fp16_class(TestSin)
757 758
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
759 760
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
761
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
A
Abhinav Arora 已提交
776

Q
qijun 已提交
777 778
if __name__ == "__main__":
    unittest.main()