test_activation_op.py 110.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20

21
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
28

29 30
paddle.enable_static()

Q
qijun 已提交
31

32
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
48
class TestActivation(OpTest):
Q
qijun 已提交
49 50
    def setUp(self):
        self.op_type = "exp"
51
        self.init_dtype()
52
        self.init_kernel_type()
C
chentianyu03 已提交
53 54
        self.check_eager = True
        self.python_api = paddle.exp
55

56
        np.random.seed(2049)
57 58 59 60 61
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
62 63

    def test_check_output(self):
64 65 66 67
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_output(check_eager=check_eager)
Q
qijun 已提交
68 69

    def test_check_grad(self):
70 71
        if self.dtype == np.float16:
            return
72 73 74 75
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_grad(['X'], 'Out', check_eager=check_eager)
Q
qijun 已提交
76

77
    def init_dtype(self):
78
        self.dtype = np.float64
79

80 81 82
    def init_kernel_type(self):
        pass

Q
qijun 已提交
83

R
ronnywang 已提交
84 85 86
class TestExpm1(TestActivation):
    def setUp(self):
        self.op_type = "expm1"
87
        self.python_api = paddle.expm1
R
ronnywang 已提交
88 89 90 91 92 93 94 95 96 97
        self.init_dtype()

        np.random.seed(2049)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.expm1(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
98 99 100 101
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
R
ronnywang 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151


class TestExpm1API(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [11, 17]

    def setUp(self):
        self.init_dtype()
        self.x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        self.out_ref = np.expm1(self.x)

        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                X = paddle.fluid.data('X', self.shape, dtype=self.dtype)
                out = paddle.expm1(X)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X': self.x})
            for r in res:
                self.assertEqual(np.allclose(self.out_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            X = paddle.to_tensor(self.x)
            out = paddle.expm1(X)
            self.assertEqual(np.allclose(self.out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            X = paddle.fluid.data('X', self.shape, dtype='int32')
            self.assertRaises(TypeError, paddle.expm1, X)
        # The input dtype must be float16, float32, float64.


152 153 154
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
155
            np_x = np.array([0.1])
156
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
157
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
158 159
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
160 161 162
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
163 164 165 166 167 168 169

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
170 171 172 173 174
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
175 176


C
chengduo 已提交
177
class TestSigmoid(TestActivation):
Q
qijun 已提交
178 179
    def setUp(self):
        self.op_type = "sigmoid"
180 181
        self.init_dtype()

182
        np.random.seed(1024)
183 184 185 186 187
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
188

189 190 191
    def init_dtype(self):
        self.dtype = np.float32

192
    def test_check_grad(self):
193 194 195 196
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

197

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSigmoidBF16(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out')


M
minghaoBD 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
class TestSilu(TestActivation):
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
            F.silu(x_fp16)


C
chengduo 已提交
292
class TestLogSigmoid(TestActivation):
293 294
    def setUp(self):
        self.op_type = "logsigmoid"
295 296
        self.init_dtype()

297
        np.random.seed(2048)
298 299 300
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

301
        self.inputs = {'X': x}
302
        self.outputs = {'Out': out}
303 304

    def test_check_grad(self):
305 306
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
307
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
308 309


310
class TestLogSigmoidAPI(unittest.TestCase):
311
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
312
    def setUp(self):
313
        np.random.seed(1024)
314
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
315
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
316 317 318
            else paddle.CPUPlace()

    def test_static_api(self):
319
        paddle.enable_static()
320
        with paddle.static.program_guard(paddle.static.Program()):
321
            x = paddle.fluid.data('X', [11, 17])
322
            out1 = F.log_sigmoid(x)
323 324 325 326 327 328
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
329
            self.assertTrue(np.allclose(out_ref, r))
330 331 332 333

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
334
        out1 = F.log_sigmoid(x)
335 336 337 338
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
339
            self.assertTrue(np.allclose(out_ref, r.numpy()))
340 341
        paddle.enable_static()

342
    def test_fluid_api(self):
343
        paddle.enable_static()
344
        with paddle.static.program_guard(paddle.static.Program()):
345
            x = paddle.fluid.data('X', [11, 17])
346 347 348 349 350 351
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

352
    def test_errors(self):
353
        paddle.enable_static()
354 355
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
356
            self.assertRaises(TypeError, F.log_sigmoid, 1)
357
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
358 359
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
360
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
361
            # support the input dtype is float16
J
joejiong 已提交
362 363
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
364
            F.log_sigmoid(x_fp16)
365 366


367
class TestTanh(TestActivation, TestParameter):
368 369
    def setUp(self):
        self.op_type = "tanh"
370
        self.init_dtype()
371
        np.random.seed(1024)
372 373 374 375 376
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
377 378

    def test_check_grad(self):
379 380
        if self.dtype == np.float16:
            return
381
        self.check_grad(['X'], 'Out')
382

383 384 385 386 387 388
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

389

W
WangXi 已提交
390 391 392 393
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
394
        np.random.seed(1024)
W
WangXi 已提交
395
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
396
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
397
            else paddle.CPUPlace()
398 399 400 401
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
402 403

    def test_static_api(self):
404
        paddle.enable_static()
W
WangXi 已提交
405
        with paddle.static.program_guard(paddle.static.Program()):
406
            x = paddle.fluid.data('X', [10, 12], self.dtype)
407
            out1 = self.tanh(x)
W
WangXi 已提交
408 409 410 411 412 413 414 415 416 417
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
418
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
419 420 421 422 423 424 425 426 427 428
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
429
        paddle.enable_static()
W
WangXi 已提交
430 431 432 433 434 435 436 437 438
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
439
        paddle.enable_static()
W
WangXi 已提交
440 441
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
442
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
443
            # The input dtype must be float16, float32.
J
joejiong 已提交
444 445
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
446
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
447
            # support the input dtype is float16
J
joejiong 已提交
448 449
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
450 451 452 453 454 455 456
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
457 458


459
class TestAtan(TestActivation, TestParameter):
460 461 462 463
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

464
        np.random.seed(1024)
465 466 467 468 469 470 471 472 473
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
474
        self.check_grad(['X'], 'Out')
475

W
WuHaobo 已提交
476 477 478 479 480 481 482 483 484 485 486
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

487 488 489 490 491 492 493 494
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

495

496 497 498 499 500
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

501
        np.random.seed(1024)
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

573
        np.random.seed(1024)
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


640 641 642 643 644 645
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
646 647
    def setUp(self):
        self.op_type = "tanh_shrink"
648 649
        self.init_dtype()

650
        np.random.seed(1024)
651 652
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
653

654
        self.inputs = {'X': x}
655
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
656 657

    def test_check_grad(self):
658 659
        if self.dtype == np.float16:
            return
660
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
661

662

663 664 665
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
666
        np.random.seed(1024)
667
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
668
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
669 670 671
            else paddle.CPUPlace()

    def test_static_api(self):
672
        paddle.enable_static()
673
        with paddle.static.program_guard(paddle.static.Program()):
674
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
696
        paddle.enable_static()
697 698 699 700 701 702 703 704 705
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
706
        paddle.enable_static()
707 708 709 710
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
711 712
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
713 714
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
715 716
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
717 718 719
            F.tanhshrink(x_fp16)


720 721 722 723 724 725
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
726
class TestHardShrink(TestActivation):
727 728
    def setUp(self):
        self.op_type = "hard_shrink"
729 730
        self.init_dtype()

731 732
        self.threshold = 0.5
        self.set_attrs()
733
        np.random.seed(1024)
Z
zhupengyang 已提交
734
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
735
        out = ref_hardshrink(x, self.threshold)
736

737
        self.attrs = {'threshold': self.threshold}
738
        self.inputs = {'X': x}
739
        self.outputs = {'Out': out}
740

741 742 743
    def set_attrs(self):
        pass

744
    def test_check_grad(self):
745 746
        if self.dtype == np.float16:
            return
747
        self.check_grad(['X'], 'Out')
748 749


750 751 752 753 754
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


755 756 757
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
758
        np.random.seed(1024)
759
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
760
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
761 762 763
            else paddle.CPUPlace()

    def test_static_api(self):
764
        paddle.enable_static()
765
        with paddle.static.program_guard(paddle.static.Program()):
766
            x = paddle.fluid.data('X', [10, 12])
767 768 769 770 771 772 773 774 775 776 777
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
778
        x = paddle.to_tensor(self.x_np)
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
795
        paddle.enable_static()
796 797 798 799 800 801 802 803
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

804
    def test_errors(self):
805
        paddle.enable_static()
806
        with paddle.static.program_guard(paddle.static.Program()):
807
            # The input type must be Variable.
808
            self.assertRaises(TypeError, F.hardshrink, 1)
809
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
810 811
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
812
            self.assertRaises(TypeError, F.hardshrink, x_int32)
813
            # support the input dtype is float16
J
joejiong 已提交
814 815
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
816
            F.hardshrink(x_fp16)
817 818


819 820 821 822 823 824 825 826 827 828 829
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
830
        np.random.seed(1024)
831
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
832
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
833 834 835
            else paddle.CPUPlace()

    def test_static_api(self):
836
        paddle.enable_static()
837
        with paddle.static.program_guard(paddle.static.Program()):
838
            x = paddle.fluid.data('X', [10, 12])
839 840 841 842 843 844 845 846 847 848 849
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
850
        x = paddle.to_tensor(self.x_np)
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
867
        paddle.enable_static()
868 869 870 871
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
872 873
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
874 875
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
876 877
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
878 879 880
            F.hardtanh(x_fp16)


881 882 883 884 885 886 887 888
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
889 890
    def setUp(self):
        self.op_type = "softshrink"
891 892
        self.check_eager = True
        self.python_api = paddle.nn.functional.softshrink
893 894
        self.init_dtype()

895
        threshold = 0.8
896

897
        np.random.seed(1023)
898 899 900 901
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
902
        self.outputs = {'Out': out}
903 904

    def test_check_grad(self):
905 906
        if self.dtype == np.float16:
            return
907
        self.check_grad(['X'], 'Out', check_eager=True)
908

909

910 911 912 913
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
914
        np.random.seed(1024)
915
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
916
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
917 918 919
            else paddle.CPUPlace()

    def test_static_api(self):
920
        paddle.enable_static()
921
        with paddle.static.program_guard(paddle.static.Program()):
922
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
944
        paddle.enable_static()
945 946 947 948 949 950 951 952
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

953
    def test_errors(self):
954
        paddle.enable_static()
955
        with paddle.static.program_guard(paddle.static.Program()):
956
            # The input type must be Variable.
957
            self.assertRaises(TypeError, F.softshrink, 1)
958
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
959 960
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
961
            self.assertRaises(TypeError, F.softshrink, x_int32)
962
            # The threshold must be no less than zero
J
joejiong 已提交
963 964
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
965
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
966
            # support the input dtype is float16
J
joejiong 已提交
967 968
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
969
            F.softshrink(x_fp16)
970 971


972
class TestSqrt(TestActivation, TestParameter):
973 974
    def setUp(self):
        self.op_type = "sqrt"
975
        self.python_api = paddle.sqrt
976 977
        self.init_dtype()

978
        np.random.seed(1023)
979 980 981 982 983
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
984 985

    def test_check_grad(self):
986 987
        if self.dtype == np.float16:
            return
988 989 990 991
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
992

993

994 995 996 997 998
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSqrtBF16(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
999
        self.python_api = paddle.sqrt
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        self.init_dtype()

        np.random.seed(1023)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.sqrt(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
1016
        self.check_output_with_place(place, check_eager=True)
1017 1018 1019

    def test_check_grad(self):
        place = core.CUDAPlace(0)
1020
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
1021 1022


Z
zhoukunsheng 已提交
1023 1024 1025
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
Z
zyfncg 已提交
1026
        self.python_api = paddle.rsqrt
Z
zhoukunsheng 已提交
1027 1028
        self.init_dtype()

1029
        np.random.seed(1024)
Z
zhupengyang 已提交
1030
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
1031 1032 1033 1034 1035 1036 1037 1038
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
Z
zyfncg 已提交
1039 1040
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.0005, check_eager=True)
Z
zhoukunsheng 已提交
1041 1042


C
chengduo 已提交
1043
class TestAbs(TestActivation):
1044 1045
    def setUp(self):
        self.op_type = "abs"
1046 1047
        self.init_dtype()

1048
        np.random.seed(1024)
1049
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
1050
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
1051
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
1052
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
1053 1054
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
1055 1056 1057 1058
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1059 1060

    def test_check_grad(self):
1061 1062
        if self.dtype == np.float16:
            return
1063
        self.check_grad(['X'], 'Out', check_eager=False)
1064

1065

C
chengduo 已提交
1066
class TestCeil(TestActivation):
D
dzhwinter 已提交
1067 1068
    def setUp(self):
        self.op_type = "ceil"
1069 1070
        self.check_eager = True
        self.python_api = paddle.ceil
1071 1072
        self.init_dtype()

1073
        np.random.seed(1024)
Z
zhupengyang 已提交
1074
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1075 1076 1077 1078
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1079

D
dzhwinter 已提交
1080
    # The same reason with TestFloor
C
chengduo 已提交
1081
    def test_check_grad(self):
1082 1083 1084
        pass


C
chengduo 已提交
1085
class TestFloor(TestActivation):
D
dzhwinter 已提交
1086 1087
    def setUp(self):
        self.op_type = "floor"
1088 1089
        self.check_eager = True
        self.python_api = paddle.floor
1090 1091
        self.init_dtype()

1092
        np.random.seed(1024)
Z
zhupengyang 已提交
1093
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1094 1095 1096 1097
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1098

D
dzhwinter 已提交
1099
    # the gradient on floor, ceil, round is undefined.
1100
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
1101 1102
    # The same reason with TestFloor
    def test_check_grad(self):
1103 1104 1105
        pass


C
chengduo 已提交
1106
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
1107 1108
    def setUp(self):
        self.op_type = "cos"
1109 1110
        self.init_dtype()

1111
        np.random.seed(1024)
Z
zhupengyang 已提交
1112
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1113 1114 1115 1116
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
1117 1118

    def test_check_grad(self):
1119 1120
        if self.dtype == np.float16:
            return
1121
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
1122

1123

J
joejiong 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1175 1176 1177 1178 1179
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

1180
        np.random.seed(1024)
Z
zhupengyang 已提交
1181
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1182 1183 1184 1185 1186 1187 1188 1189
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1190
        self.check_grad(['X'], 'Out')
1191 1192


1193
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
1194 1195
    def setUp(self):
        self.op_type = "sin"
1196 1197
        self.init_dtype()

1198
        np.random.seed(1024)
Z
zhupengyang 已提交
1199
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1200 1201 1202 1203
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1204 1205

    def test_check_grad(self):
1206 1207
        if self.dtype == np.float16:
            return
1208
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
1209 1210


1211 1212 1213 1214 1215
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1216
        np.random.seed(2048)
Z
zhupengyang 已提交
1217
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1218 1219 1220 1221 1222 1223 1224 1225
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1226
        self.check_grad(['X'], 'Out')
1227 1228


X
xiaoting 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
class TestAcosh(TestActivation):
    def setUp(self):
        self.op_type = "acosh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(2, 3, [10, 12]).astype(self.dtype)
        out = np.arccosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAsinh(TestActivation):
    def setUp(self):
        self.op_type = "asinh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(1, 2, [10, 12]).astype(self.dtype)
        out = np.arcsinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAtanh(TestActivation):
    def setUp(self):
        self.op_type = "atanh"
        self.init_dtype()

        np.random.seed(400)
        x = np.random.uniform(-0.9, 0.9, [10, 12]).astype(self.dtype)
        out = np.arctanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


C
chengduo 已提交
1283
class TestRound(TestActivation):
D
dzhwinter 已提交
1284 1285
    def setUp(self):
        self.op_type = "round"
1286 1287
        self.check_eager = True
        self.python_api = paddle.round
1288 1289
        self.init_dtype()

1290
        np.random.seed(1024)
Z
zhupengyang 已提交
1291
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1292 1293 1294 1295
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1296

C
chengduo 已提交
1297
    def test_check_grad(self):
1298 1299 1300
        pass


C
chengduo 已提交
1301
class TestRelu(TestActivation):
1302
    def setUp(self):
Q
qijun 已提交
1303
        self.op_type = "relu"
K
Kexin Zhao 已提交
1304 1305
        self.init_dtype()

1306
        np.random.seed(1024)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
        if self.dtype == np.uint16:
            x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = convert_float_to_uint16(np.maximum(x, 0))
            self.inputs = {'X': convert_float_to_uint16(x)}
        else:
            x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = np.maximum(x, 0)
            self.inputs = {'X': x}
K
Kexin Zhao 已提交
1319 1320

        self.outputs = {'Out': out}
1321 1322

    def test_check_grad(self):
K
Kexin Zhao 已提交
1323 1324
        if self.dtype == np.float16:
            return
1325
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1326 1327


1328 1329 1330
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1331
        np.random.seed(1024)
1332
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1333
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1334
            else paddle.CPUPlace()
1335 1336 1337 1338
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1339 1340

    def test_static_api(self):
1341
        paddle.enable_static()
1342
        with paddle.static.program_guard(paddle.static.Program()):
1343
            x = paddle.fluid.data('X', [10, 12])
1344
            out1 = self.relu(x)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1357 1358
        out1 = m(x)
        out2 = self.relu(x)
1359 1360 1361 1362 1363
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1364
    def test_errors(self):
1365
        paddle.enable_static()
1366
        with paddle.static.program_guard(paddle.static.Program()):
1367
            # The input type must be Variable.
1368
            self.assertRaises(TypeError, self.relu, 1)
1369
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1370 1371
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1372
            self.assertRaises(TypeError, self.relu, x_int32)
1373
            # support the input dtype is float16
J
joejiong 已提交
1374 1375
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1376 1377 1378 1379 1380 1381 1382
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1383 1384


1385 1386 1387 1388 1389 1390
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1391
class TestLeakyRelu(TestActivation):
1392 1393 1394
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1395 1396 1397
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1398
        alpha = self.get_alpha()
A
Adam 已提交
1399

1400
        np.random.seed(1024)
A
Adam 已提交
1401 1402
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1403 1404
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1405

1406
        self.inputs = {'X': x}
A
Adam 已提交
1407
        self.outputs = {'Out': out}
1408
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1409 1410 1411 1412

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1413
        self.check_grad(['X'], 'Out')
1414 1415


1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1435
        np.random.seed(1024)
1436
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1437
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1438 1439 1440
            else paddle.CPUPlace()

    def test_static_api(self):
1441
        paddle.enable_static()
1442
        with paddle.static.program_guard(paddle.static.Program()):
1443
            x = paddle.fluid.data('X', [10, 12])
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1455
        x = paddle.to_tensor(self.x_np)
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1472
        paddle.enable_static()
1473 1474 1475 1476 1477 1478 1479 1480
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1481
    def test_errors(self):
1482
        paddle.enable_static()
1483
        with paddle.static.program_guard(paddle.static.Program()):
1484
            # The input type must be Variable.
1485
            self.assertRaises(TypeError, F.leaky_relu, 1)
1486
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1487 1488
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1489 1490
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1491 1492
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1493
            F.leaky_relu(x_fp16)
1494 1495


1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1506 1507 1508
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1509
        approximate = True
1510
        np.random.seed(1024)
1511 1512
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1513

1514
        self.inputs = {'X': x}
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1529
        np.random.seed(2048)
C
Clementine 已提交
1530
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1531
        out = gelu(x, approximate)
C
Clementine 已提交
1532

1533
        self.inputs = {'X': x}
C
Clementine 已提交
1534
        self.outputs = {'Out': out}
1535
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1536 1537 1538 1539

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1540
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1541 1542


1543 1544 1545
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1546
        np.random.seed(1024)
1547
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1548
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1549 1550 1551
            else paddle.CPUPlace()

    def test_static_api(self):
1552
        paddle.enable_static()
1553
        with paddle.static.program_guard(paddle.static.Program()):
1554
            x = paddle.fluid.data('X', [11, 17])
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1583
        paddle.enable_static()
1584 1585 1586 1587
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1588 1589
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1590 1591
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1592 1593
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1594 1595 1596
            F.gelu(x_fp16)


C
chengduo 已提交
1597
class TestBRelu(TestActivation):
1598 1599
    def setUp(self):
        self.op_type = "brelu"
1600 1601
        self.init_dtype()

1602
        np.random.seed(1024)
Z
zhupengyang 已提交
1603
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1604 1605
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1606 1607
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1608
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1609 1610 1611
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1612 1613 1614

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1615
        self.outputs = {'Out': t}
1616 1617

    def test_check_grad(self):
1618 1619
        if self.dtype == np.float16:
            return
1620
        self.check_grad(['X'], 'Out')
1621

1622

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1634
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1664 1665 1666 1667 1668 1669 1670
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1671
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1672
    def setUp(self):
1673
        self.op_type = "relu6"
1674 1675
        self.init_dtype()

1676
        np.random.seed(1024)
Z
zhupengyang 已提交
1677
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1678
        x[np.abs(x) < 0.005] = 0.02
1679
        out = ref_relu6(x)
1680

1681 1682
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1683
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1684

1685 1686 1687
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1688
        self.check_grad(['X'], 'Out')
1689 1690


1691 1692 1693
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1694
        np.random.seed(1024)
1695 1696
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1697
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1698 1699 1700
            else paddle.CPUPlace()

    def test_static_api(self):
1701
        paddle.enable_static()
1702
        with paddle.static.program_guard(paddle.static.Program()):
1703
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1725
        paddle.enable_static()
1726 1727 1728 1729 1730 1731 1732 1733
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1734
    def test_errors(self):
1735
        paddle.enable_static()
1736
        with paddle.static.program_guard(paddle.static.Program()):
1737
            # The input type must be Variable.
1738
            self.assertRaises(TypeError, F.relu6, 1)
1739
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1740 1741
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1742
            self.assertRaises(TypeError, F.relu6, x_int32)
1743
            # support the input dtype is float16
J
joejiong 已提交
1744 1745
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1746
            F.relu6(x_fp16)
1747 1748


1749 1750 1751 1752 1753
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1754 1755 1756 1757 1758
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

J
jakpiase 已提交
1759 1760
        skip_check_grad_ci(reason="not implemented yet")

1761
        np.random.seed(1024)
Z
zhupengyang 已提交
1762
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1763 1764 1765 1766 1767 1768
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1769
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1770

1771
        self.inputs = {'X': x}
H
huangjun12 已提交
1772 1773 1774 1775 1776 1777
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1778 1779

        return  # not implemented yet
1780
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1781 1782


1783 1784 1785 1786
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1787
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1788 1789 1790 1791
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1792
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1811
        paddle.enable_static()
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1830
            # The input type must be Variable.
1831
            self.assertRaises(TypeError, F.hardswish, 1)
1832
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1833 1834
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1835
            self.assertRaises(TypeError, F.hardswish, x_int32)
1836
            # support the input dtype is float16
J
joejiong 已提交
1837 1838
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1839
            F.hardswish(x_fp16)
1840 1841


C
chengduo 已提交
1842
class TestSoftRelu(TestActivation):
1843 1844
    def setUp(self):
        self.op_type = "soft_relu"
1845 1846
        self.init_dtype()

1847
        np.random.seed(4096)
1848
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1849
        threshold = 2.0
Q
qijun 已提交
1850 1851
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1852
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1853 1854 1855
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1856 1857 1858 1859 1860
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1861 1862

    def test_check_grad(self):
1863 1864
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1865
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1866

1867

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1881
def elu(x, alpha):
Z
zhupengyang 已提交
1882
    out_ref = np.where(x > 0, x, alpha * (np.exp(x) - 1))
1883 1884 1885
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1886
class TestELU(TestActivation):
1887 1888
    def setUp(self):
        self.op_type = "elu"
1889 1890
        self.init_dtype()

1891
        np.random.seed(1024)
Z
zhupengyang 已提交
1892
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
Z
zhupengyang 已提交
1893
        alpha = self.get_alpha()
1894
        out = elu(x, alpha)
1895 1896 1897 1898
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1899
        self.outputs = {'Out': out}
1900 1901

    def test_check_grad(self):
1902 1903
        if self.dtype == np.float16:
            return
1904
        self.check_grad(['X'], 'Out')
1905

Z
zhupengyang 已提交
1906 1907 1908 1909 1910 1911 1912 1913
    def get_alpha(self):
        return 1.


class TestELUAlpha(TestELU):
    def get_alpha(self):
        return -0.2

1914

1915 1916 1917
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1918
        np.random.seed(1024)
1919
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1920
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1921
            else paddle.CPUPlace()
1922 1923 1924 1925
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1926 1927

    def test_static_api(self):
1928
        paddle.enable_static()
1929
        with paddle.static.program_guard(paddle.static.Program()):
1930
            x = paddle.fluid.data('X', [10, 12])
1931
            out1 = self.elu(x)
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1943 1944
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1945 1946 1947 1948 1949 1950
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1951 1952
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1953 1954 1955 1956 1957 1958 1959
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1960
    def test_errors(self):
1961
        paddle.enable_static()
1962 1963
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1964
            self.assertRaises(TypeError, self.elu, 1)
1965
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1966 1967
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1968
            self.assertRaises(TypeError, self.elu, x_int32)
1969
            # support the input dtype is float16
J
joejiong 已提交
1970 1971
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1972 1973 1974
            self.elu(x_fp16)


Z
zhupengyang 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_

    def test_alpha_error(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        self.assertRaises(Exception, F.elu_, x, -0.2)
        paddle.enable_static()


1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
def celu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x / alpha) - 1))
    return out_ref.astype(x.dtype)


class TestCELU(TestActivation):
    def setUp(self):
        self.op_type = "celu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
        alpha = 1.5
        out = celu(x, alpha)
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestCELUAPI(unittest.TestCase):
    # test paddle.nn.CELU, paddle.nn.functional.celu
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        self.executed_api()

    def executed_api(self):
        self.celu = F.celu

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out1 = self.celu(x, 1.5)
            m = paddle.nn.CELU(1.5)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = celu(self.x_np, 1.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = self.celu(x, 1.5)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(1.5)
        out2 = m(x)
        out_ref = celu(self.x_np, 1.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = self.celu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(0.2)
        out2 = m(x)
        out_ref = celu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, self.celu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, self.celu, x_int32)
            # The alpha must be not equal 0
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[10, 12], dtype='float32')
            self.assertRaises(ZeroDivisionError, F.celu, x_fp32, 0)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
            self.celu(x_fp16)


C
chengduo 已提交
2075
class TestReciprocal(TestActivation):
Q
qijun 已提交
2076 2077
    def setUp(self):
        self.op_type = "reciprocal"
2078
        self.python_api = paddle.reciprocal
2079 2080
        self.init_dtype()

2081
        np.random.seed(1024)
2082 2083 2084 2085 2086
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2087 2088

    def test_check_grad(self):
2089 2090
        if self.dtype == np.float16:
            return
2091 2092 2093 2094
        self.check_grad(['X'], 'Out', max_relative_error=0.01, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2095 2096


C
chengduo 已提交
2097
class TestLog(TestActivation):
Q
qijun 已提交
2098 2099
    def setUp(self):
        self.op_type = "log"
2100 2101
        self.check_eager = True
        self.python_api = paddle.log
2102 2103
        self.init_dtype()

2104
        np.random.seed(1024)
2105 2106 2107 2108 2109
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2110 2111

    def test_check_grad(self):
2112 2113
        if self.dtype == np.float16:
            return
2114
        self.check_grad(['X'], 'Out', check_eager=True)
Q
qijun 已提交
2115

2116 2117 2118 2119 2120 2121 2122 2123 2124
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

2125

J
joejiong 已提交
2126 2127 2128
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
2129 2130
        self.check_eager = True
        self.python_api = paddle.log2
J
joejiong 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2142
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
2177 2178 2179
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
2180 2181
        self.check_eager = True
        self.python_api = paddle.log10
J
joejiong 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2193
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


2228 2229 2230
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
2231 2232
        self.check_eager = True
        self.python_api = paddle.log1p
2233 2234
        self.init_dtype()

2235
        np.random.seed(1024)
2236 2237 2238 2239 2240 2241 2242 2243 2244
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2245
        self.check_grad(['X'], 'Out', check_eager=True)
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
2259 2260 2261
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
2262
        expected_res = np.log1p(input_x)
2263
        self.assertTrue(np.allclose(res1, expected_res))
2264 2265 2266 2267 2268 2269 2270 2271

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
2272
        self.assertTrue(np.allclose(np_z, z_expected))
2273 2274


C
chengduo 已提交
2275
class TestSquare(TestActivation):
Q
qijun 已提交
2276 2277
    def setUp(self):
        self.op_type = "square"
2278
        self.python_api = paddle.square
2279 2280
        self.init_dtype()

2281
        np.random.seed(1024)
2282 2283 2284 2285 2286
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2287 2288

    def test_check_grad(self):
2289 2290
        if self.dtype == np.float16:
            return
2291 2292 2293 2294 2295
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.007, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2296

2297

2298 2299 2300 2301 2302
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSquareBF16(OpTest):
    def setUp(self):
        self.op_type = "square"
2303
        self.python_api = paddle.square
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.square(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
2320
        self.check_output_with_place(place, check_eager=True)
2321 2322 2323

    def test_check_grad(self):
        place = core.CUDAPlace(0)
2324 2325
        self.check_grad_with_place(
            place, ['X'], 'Out', numeric_grad_delta=0.5, check_eager=True)
2326 2327


C
chengduo 已提交
2328
class TestPow(TestActivation):
2329 2330
    def setUp(self):
        self.op_type = "pow"
2331
        self.python_api = paddle.pow
2332
        self.check_eager = True
2333 2334
        self.init_dtype()

2335
        np.random.seed(1024)
2336 2337 2338 2339
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
2340
        self.attrs = {'factor': 3.0}
2341
        self.outputs = {'Out': out}
2342

2343 2344 2345
    def test_check_output(self):
        self.check_output(check_eager=self.check_eager)

2346
    def test_check_grad(self):
2347 2348
        if self.dtype == np.float16:
            return
2349
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2350

2351

2352 2353 2354
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
2355 2356
        self.check_eager = False
        self.python_api = paddle.pow
2357 2358
        self.init_dtype()

2359
        np.random.seed(1024)
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
2372
        self.check_output(check_eager=self.check_eager)
2373 2374 2375 2376

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2377
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2378 2379 2380 2381 2382

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
2383 2384 2385 2386 2387
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
2388 2389 2390 2391 2392

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2393 2394 2395
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2396 2397

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2398
        res_1, res_2, res, res_6 = exe.run(
2399 2400
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2401
            fetch_list=[out_1, out_2, res, out_6])
2402

2403 2404 2405
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2406

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2430

2431 2432 2433 2434 2435
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2436
class TestSTanh(TestActivation):
2437 2438 2439 2440 2441 2442
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2443 2444
    def setUp(self):
        self.op_type = "stanh"
2445
        self.init_dtype()
2446 2447
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2448

2449
        np.random.seed(1024)
2450
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2451 2452
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2453

2454
        self.inputs = {'X': x}
2455
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2456
        self.outputs = {'Out': out}
2457

Q
qijun 已提交
2458
    def test_check_grad(self):
2459 2460
        if self.dtype == np.float16:
            return
2461
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2462

2463

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2520
    def test_errors(self):
2521 2522
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2523
            # The input type must be Variable.
2524
            self.assertRaises(TypeError, paddle.stanh, 1)
2525
            # The input dtype must be float16, float32, float64.
2526 2527 2528
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2529
            # support the input dtype is float16
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2543 2544


2545 2546 2547 2548 2549 2550 2551
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2552
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2553 2554
    def setUp(self):
        self.op_type = "softplus"
2555 2556
        self.init_dtype()

2557 2558
        beta = 2
        threshold = 15
2559

2560
        np.random.seed(1024)
2561 2562 2563 2564
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2565
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2566 2567

    def test_check_grad(self):
2568 2569
        if self.dtype == np.float16:
            return
2570
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2571

2572

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftplusBF16(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.init_dtype()

        beta = 2
        threshold = 15

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(np.float32)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'beta': beta, "threshold": threshold}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', numeric_grad_delta=0.05)


2602 2603 2604 2605 2606
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2607
        np.random.seed(1024)
2608
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2609
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2610 2611 2612
            else paddle.CPUPlace()

    def test_static_api(self):
2613
        paddle.enable_static()
2614
        with paddle.static.program_guard(paddle.static.Program()):
2615
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2637
        paddle.enable_static()
2638 2639 2640 2641 2642 2643 2644 2645 2646
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2647
        paddle.enable_static()
2648 2649 2650 2651
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2652 2653
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2654 2655
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2656 2657
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2658 2659 2660 2661 2662 2663 2664 2665
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2666
class TestSoftsign(TestActivation):
2667 2668
    def setUp(self):
        self.op_type = "softsign"
2669 2670
        self.init_dtype()

2671
        np.random.seed(1024)
2672 2673 2674
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2675
        self.outputs = {'Out': out}
2676 2677

    def test_check_grad(self):
2678 2679
        if self.dtype == np.float16:
            return
2680
        self.check_grad(['X'], 'Out')
2681 2682


2683 2684 2685
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2686
        np.random.seed(1024)
2687
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2688
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2689 2690 2691
            else paddle.CPUPlace()

    def test_static_api(self):
2692
        paddle.enable_static()
2693
        with paddle.static.program_guard(paddle.static.Program()):
2694
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2716
        paddle.enable_static()
2717 2718 2719 2720 2721 2722 2723 2724 2725
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2726
        paddle.enable_static()
2727 2728 2729 2730
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2731 2732
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2733 2734
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2735 2736
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2737 2738 2739
            F.softsign(x_fp16)


2740 2741 2742 2743 2744
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2745
class TestThresholdedRelu(TestActivation):
2746 2747
    def setUp(self):
        self.op_type = "thresholded_relu"
2748 2749
        self.init_dtype()

2750
        threshold = 15
2751

2752 2753 2754 2755 2756 2757
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2758
        self.outputs = {'Out': out}
2759 2760

    def test_check_grad(self):
2761 2762
        if self.dtype == np.float16:
            return
2763
        self.check_grad(['X'], 'Out')
2764 2765


2766 2767 2768 2769 2770 2771 2772
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2773
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2774 2775 2776 2777 2778
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2779
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2810
    def test_errors(self):
2811 2812
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2813
            # The input type must be Variable.
2814
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2815
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2816 2817
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2818
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2819
            # support the input dtype is float16
J
joejiong 已提交
2820 2821
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2822
            F.thresholded_relu(x_fp16)
2823 2824


2825 2826 2827 2828
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2829
class TestHardSigmoid(TestActivation):
2830 2831
    def setUp(self):
        self.op_type = "hard_sigmoid"
2832 2833 2834 2835
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2836

2837 2838 2839
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2840

2841
        # Same reason as TestAbs
2842 2843 2844
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2845

2846
        out = ref_hardsigmoid(x, self.slope, self.offset)
2847

2848 2849
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2850
        self.outputs = {'Out': out}
2851

2852 2853
    def set_attrs(self):
        pass
2854

2855

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2871
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2872 2873 2874 2875
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2876
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2895
        paddle.enable_static()
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2914
            # The input type must be Variable.
2915
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2916
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2917 2918
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2919
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2920
            # support the input dtype is float16
J
joejiong 已提交
2921 2922
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2923
            F.hardsigmoid(x_fp16)
2924 2925


2926 2927 2928 2929 2930
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2931
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2932 2933
    def setUp(self):
        self.op_type = "swish"
2934 2935
        self.init_dtype()

2936
        np.random.seed(1024)
2937 2938 2939
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2940
        self.attrs = {'beta': 1.0}
2941
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2942 2943

    def test_check_grad(self):
2944 2945
        if self.dtype == np.float16:
            return
2946 2947
        self.check_grad(['X'], 'Out')

A
Abhinav Arora 已提交
2948

2949 2950 2951 2952 2953
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2954
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2955 2956 2957 2958 2959
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2960
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
2990

2991
    def test_errors(self):
2992 2993
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2994
            # The input type must be Variable.
2995
            self.assertRaises(TypeError, F.swish, 1)
2996
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2997 2998
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2999
            self.assertRaises(TypeError, F.swish, x_int32)
3000
            # support the input dtype is float16
J
joejiong 已提交
3001 3002
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
3003
            F.swish(x_fp16)
3004 3005


3006 3007 3008 3009 3010 3011 3012 3013 3014
def ref_mish(x, threshold=20.):
    softplus = np.select([x <= threshold, x > threshold],
                         [np.log(1 + np.exp(x)), x])
    return x * np.tanh(softplus)


class TestMish(TestActivation):
    def setUp(self):
        self.op_type = "mish"
3015
        self.python_api = paddle.fluid.layers.nn.mish
3016 3017 3018 3019 3020 3021 3022 3023
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_mish(x)
        self.inputs = {'X': x}
        self.outputs = {'Out': out}

3024 3025 3026
    def test_check_output(self):
        self.check_output(check_eager=True)

3027 3028 3029
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
3030
        self.check_grad(['X'], 'Out', check_eager=True)
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089


class TestMishAPI(unittest.TestCase):
    # test paddle.nn.Mish, paddle.nn.functional.mish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.mish(x)
            mish = paddle.nn.Mish()
            out2 = mish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_mish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.mish(x)
        mish = paddle.nn.Mish()
        out2 = mish(x)
        out_ref = ref_mish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.mish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_mish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.mish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.mish, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            F.mish(x_fp16)


3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
3121
create_test_error_class('tan')
X
xiaoting 已提交
3122 3123 3124
create_test_error_class('acosh')
create_test_error_class('asinh')
create_test_error_class('atanh')
3125 3126


3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
3146 3147 3148 3149 3150
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
3151
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
3152 3153 3154 3155
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
3156

C
chengduo 已提交
3157
        def test_check_output(self):
3158
            place = core.CUDAPlace(0)
C
chengduo 已提交
3159 3160 3161
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
3162

C
chengduo 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
R
ronnywang 已提交
3176
create_test_act_fp16_class(TestExpm1)
C
chengduo 已提交
3177
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
3178
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
3179 3180
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
3181
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
3182
create_test_act_fp16_class(TestHardShrink)
3183
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
3184 3185 3186 3187 3188
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
3189
create_test_act_fp16_class(TestTan, grad_atol=0.85)
3190
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
3191
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
3192
create_test_act_fp16_class(TestSin)
3193
create_test_act_fp16_class(TestSinh)
3194 3195
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
X
xiaoting 已提交
3196 3197 3198
create_test_act_fp16_class(TestAcosh, grad_atol=0.85)
create_test_act_fp16_class(TestAsinh, grad_atol=0.85)
create_test_act_fp16_class(TestAtanh, grad_atol=0.85)
C
chengduo 已提交
3199 3200
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
3201
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
3202 3203
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
3204
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
3205
create_test_act_fp16_class(TestELU)
3206
create_test_act_fp16_class(TestCELU)
C
chengduo 已提交
3207 3208
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
3209 3210 3211 3212
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
3213
create_test_act_fp16_class(TestLog10, atol=5e-2)
3214
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
3215 3216
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
3217
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
3218 3219 3220 3221 3222
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
3223
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
3224
create_test_act_fp16_class(TestHardSwish)
3225
create_test_act_fp16_class(TestMish, grad_atol=0.9)
A
Abhinav Arora 已提交
3226

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253

def create_test_act_bf16_class(parent,
                               atol=1e-2,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActBF16(parent):
        def init_dtype(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "bf16")
    TestActBF16.__name__ = cls_name
    globals()[cls_name] = TestActBF16


create_test_act_bf16_class(TestRelu)

Q
qijun 已提交
3254 3255
if __name__ == "__main__":
    unittest.main()