test_activation_op.py 63.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
Q
qijun 已提交
20
from op_test import OpTest
C
Clementine 已提交
21
from scipy.special import expit, erf
22
import paddle
23
import paddle.fluid as fluid
24
import paddle.nn as nn
25
import paddle.nn.functional as F
26
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
27 28


29
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
45
class TestActivation(OpTest):
Q
qijun 已提交
46 47
    def setUp(self):
        self.op_type = "exp"
48
        self.init_dtype()
49
        self.init_kernel_type()
50 51 52 53 54 55

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
56 57 58 59 60

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
61 62
        if self.dtype == np.float16:
            return
63
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
64

65
    def init_dtype(self):
66
        self.dtype = np.float64
67

68 69 70
    def init_kernel_type(self):
        pass

Q
qijun 已提交
71

72 73 74
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
75
            np_x = np.array([0.1])
76
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
77
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
78 79
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
80 81 82
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
83 84 85 86 87 88 89 90 91 92

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(z, z_expected)


C
chengduo 已提交
93
class TestSigmoid(TestActivation):
Q
qijun 已提交
94 95
    def setUp(self):
        self.op_type = "sigmoid"
96 97 98 99 100 101 102
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
103

104 105 106
    def init_dtype(self):
        self.dtype = np.float32

107
    def test_check_grad(self):
108 109 110 111
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

112

C
chengduo 已提交
113
class TestLogSigmoid(TestActivation):
114 115
    def setUp(self):
        self.op_type = "logsigmoid"
116 117 118 119 120
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

121
        self.inputs = {'X': x}
122
        self.outputs = {'Out': out}
123 124

    def test_check_grad(self):
125 126
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
127
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
128 129


130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class TestLogSigmoidAPI(unittest.TestCase):
    # test paddle.nn.LogSigmoid, paddle.nn.functional.logsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [11, 17])
            out1 = F.logsigmoid(x)
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.logsigmoid(x)
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.logsigmoid, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.logsigmoid, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[11, 17], dtype='float16')
            F.logsigmoid(x_fp16)


172
class TestTanh(TestActivation, TestParameter):
173 174
    def setUp(self):
        self.op_type = "tanh"
175 176 177 178 179 180
        self.init_dtype()
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
181 182

    def test_check_grad(self):
183 184
        if self.dtype == np.float16:
            return
185
        self.check_grad(['X'], 'Out')
186

187 188 189 190 191 192
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

193

194
class TestAtan(TestActivation, TestParameter):
195 196 197 198 199 200 201 202 203 204 205 206 207
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
208
        self.check_grad(['X'], 'Out')
209

W
WuHaobo 已提交
210 211 212 213 214 215 216 217 218 219 220
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

221 222 223 224 225 226 227 228
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


372 373 374 375 376 377
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
378 379
    def setUp(self):
        self.op_type = "tanh_shrink"
380 381
        self.init_dtype()

382 383
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
384

385
        self.inputs = {'X': x}
386
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
387 388

    def test_check_grad(self):
389 390
        if self.dtype == np.float16:
            return
391
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
392

393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.tanhshrink(x_fp16)


445 446 447 448 449 450
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
451
class TestHardShrink(TestActivation):
452 453
    def setUp(self):
        self.op_type = "hard_shrink"
454 455
        self.init_dtype()

456 457
        self.threshold = 0.5
        self.set_attrs()
Z
zhupengyang 已提交
458
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
459
        out = ref_hardshrink(x, self.threshold)
460

461
        self.attrs = {'threshold': self.threshold}
462
        self.inputs = {'X': x}
463
        self.outputs = {'Out': out}
464

465 466 467
    def set_attrs(self):
        pass

468
    def test_check_grad(self):
469 470
        if self.dtype == np.float16:
            return
471
        self.check_grad(['X'], 'Out')
472 473


474 475 476 477 478
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_variable(self.x_np)
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

525
    def test_errors(self):
526
        with paddle.static.program_guard(paddle.static.Program()):
527
            # The input type must be Variable.
528
            self.assertRaises(TypeError, F.hardshrink, 1)
529
            # The input dtype must be float16, float32, float64.
530 531
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.hardshrink, x_int32)
532
            # support the input dtype is float16
533 534
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.hardshrink(x_fp16)
535 536


537 538 539 540 541 542 543 544
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
545 546
    def setUp(self):
        self.op_type = "softshrink"
547 548
        self.init_dtype()

549
        threshold = 0.8
550

551 552 553 554
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
555
        self.outputs = {'Out': out}
556 557

    def test_check_grad(self):
558 559
        if self.dtype == np.float16:
            return
560
        self.check_grad(['X'], 'Out')
561

562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

603
    def test_errors(self):
604
        with paddle.static.program_guard(paddle.static.Program()):
605
            # The input type must be Variable.
606
            self.assertRaises(TypeError, F.softshrink, 1)
607
            # The input dtype must be float16, float32, float64.
608 609
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softshrink, x_int32)
610
            # support the input dtype is float16
611 612
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softshrink(x_fp16)
613 614


615
class TestSqrt(TestActivation, TestParameter):
616 617
    def setUp(self):
        self.op_type = "sqrt"
618 619 620 621 622 623 624
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
625 626

    def test_check_grad(self):
627 628
        if self.dtype == np.float16:
            return
629
        self.check_grad(['X'], 'Out')
630

631

Z
zhoukunsheng 已提交
632 633 634 635 636
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

Z
zhupengyang 已提交
637
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
638 639 640 641 642 643 644 645 646 647 648
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
649
class TestAbs(TestActivation):
650 651
    def setUp(self):
        self.op_type = "abs"
652 653
        self.init_dtype()

654
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
655
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
656
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
657
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
658 659
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
660 661 662 663
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
664 665

    def test_check_grad(self):
666 667
        if self.dtype == np.float16:
            return
668
        self.check_grad(['X'], 'Out')
669

670

C
chengduo 已提交
671
class TestCeil(TestActivation):
D
dzhwinter 已提交
672 673
    def setUp(self):
        self.op_type = "ceil"
674 675
        self.init_dtype()

Z
zhupengyang 已提交
676
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
677 678 679 680
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
681

D
dzhwinter 已提交
682
    # The same reason with TestFloor
C
chengduo 已提交
683
    def test_check_grad(self):
684 685 686
        pass


C
chengduo 已提交
687
class TestFloor(TestActivation):
D
dzhwinter 已提交
688 689
    def setUp(self):
        self.op_type = "floor"
690 691
        self.init_dtype()

Z
zhupengyang 已提交
692
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
693 694 695 696
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
697

D
dzhwinter 已提交
698
    # the gradient on floor, ceil, round is undefined.
699
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
700 701
    # The same reason with TestFloor
    def test_check_grad(self):
702 703 704
        pass


C
chengduo 已提交
705
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
706 707
    def setUp(self):
        self.op_type = "cos"
708 709
        self.init_dtype()

Z
zhupengyang 已提交
710
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
711 712 713 714
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
715 716

    def test_check_grad(self):
717 718
        if self.dtype == np.float16:
            return
719
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
720

721

722 723 724 725 726
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

Z
zhupengyang 已提交
727
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
728 729 730 731 732 733 734 735
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
736
        self.check_grad(['X'], 'Out')
737 738


739
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
740 741
    def setUp(self):
        self.op_type = "sin"
742 743
        self.init_dtype()

Z
zhupengyang 已提交
744
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
745 746 747 748
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
749 750

    def test_check_grad(self):
751 752
        if self.dtype == np.float16:
            return
753
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
754 755


756 757 758 759 760
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

Z
zhupengyang 已提交
761
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
762 763 764 765 766 767 768 769
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
770
        self.check_grad(['X'], 'Out')
771 772


C
chengduo 已提交
773
class TestRound(TestActivation):
D
dzhwinter 已提交
774 775
    def setUp(self):
        self.op_type = "round"
776 777
        self.init_dtype()

Z
zhupengyang 已提交
778
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
779 780 781 782
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
783

C
chengduo 已提交
784
    def test_check_grad(self):
785 786 787
        pass


C
chengduo 已提交
788
class TestRelu(TestActivation):
789
    def setUp(self):
Q
qijun 已提交
790
        self.op_type = "relu"
K
Kexin Zhao 已提交
791 792 793
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
794 795
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
796 797
        out = np.maximum(x, 0)

798
        self.inputs = {'X': x}
K
Kexin Zhao 已提交
799
        self.outputs = {'Out': out}
800 801

    def test_check_grad(self):
K
Kexin Zhao 已提交
802 803
        if self.dtype == np.float16:
            return
804
        self.check_grad(['X'], 'Out')
A
Adam 已提交
805 806


807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.relu(x)
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu(x)
        m = paddle.nn.ReLU()
        out2 = m(x)
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

837
    def test_errors(self):
838
        with paddle.static.program_guard(paddle.static.Program()):
839
            # The input type must be Variable.
840
            self.assertRaises(TypeError, F.relu, 1)
841
            # The input dtype must be float16, float32, float64.
842 843
            x_int32 = paddle.data(name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, F.relu, x_int32)
844
            # support the input dtype is float16
845 846
            x_fp16 = paddle.data(name='x_fp16', shape=[10, 12], dtype='float16')
            F.relu(x_fp16)
847 848


A
Adam 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
class TestLeakyRelu(TestActivation):
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        out = np.maximum(x, 0.02 * x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
865
        self.check_grad(['X'], 'Out')
866 867


868 869 870 871 872 873 874 875 876 877 878 879 880 881
class TestLeakyReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.leaky_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.leaky_relu, x_int32)
            # support the input dtype is float32
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float32')
            fluid.layers.leaky_relu(x_fp16)


882 883 884 885 886 887 888 889 890 891
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
892 893 894
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
895 896 897
        approximate = True
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
898

899
        self.inputs = {'X': x}
900 901 902 903 904 905 906 907 908 909 910 911 912 913
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
C
Clementine 已提交
914
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
915
        out = gelu(x, approximate)
C
Clementine 已提交
916

917
        self.inputs = {'X': x}
C
Clementine 已提交
918
        self.outputs = {'Out': out}
919
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
920 921 922 923

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
924
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
925 926


927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [11, 17])
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[11, 17], dtype='float16')
            F.gelu(x_fp16)


C
chengduo 已提交
976
class TestBRelu(TestActivation):
977 978
    def setUp(self):
        self.op_type = "brelu"
979 980
        self.init_dtype()

Z
zhupengyang 已提交
981
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
982 983
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
984 985
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
986
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
987 988 989
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
990 991 992

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
993
        self.outputs = {'Out': t}
994 995

    def test_check_grad(self):
996 997
        if self.dtype == np.float16:
            return
998
        self.check_grad(['X'], 'Out')
999

1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
class TestBReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1015 1016 1017 1018 1019 1020 1021
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1022
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1023
    def setUp(self):
1024
        self.op_type = "relu6"
1025 1026
        self.init_dtype()

Z
zhupengyang 已提交
1027
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1028
        x[np.abs(x) < 0.005] = 0.02
1029
        out = ref_relu6(x)
1030

1031 1032
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1033
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1034

1035 1036 1037
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1038
        self.check_grad(['X'], 'Out')
1039 1040


1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1081
    def test_errors(self):
1082
        with paddle.static.program_guard(paddle.static.Program()):
1083
            # The input type must be Variable.
1084
            self.assertRaises(TypeError, F.relu6, 1)
1085
            # The input dtype must be float16, float32, float64.
1086 1087
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.relu6, x_int32)
1088
            # support the input dtype is float16
1089 1090
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.relu6(x_fp16)
1091 1092


H
huangjun12 已提交
1093 1094 1095 1096 1097
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

Z
zhupengyang 已提交
1098
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
        out = x * np.minimum(np.maximum(x + offset, 0), threshold) / scale

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1114
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1115 1116


1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
class TestHardSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_swish(x_fp16)


C
chengduo 已提交
1130
class TestSoftRelu(TestActivation):
1131 1132
    def setUp(self):
        self.op_type = "soft_relu"
1133 1134 1135
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1136
        threshold = 2.0
Q
qijun 已提交
1137 1138
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1139
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1140 1141 1142
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1143 1144 1145 1146 1147
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1148 1149

    def test_check_grad(self):
1150 1151
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1152
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1153

1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1168 1169 1170 1171 1172
def elu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1173
class TestELU(TestActivation):
1174 1175
    def setUp(self):
        self.op_type = "elu"
1176 1177
        self.init_dtype()

Z
zhupengyang 已提交
1178
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
1179
        alpha = 1.
1180
        out = elu(x, alpha)
1181 1182 1183 1184
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1185
        self.outputs = {'Out': out}
1186 1187

    def test_check_grad(self):
1188 1189
        if self.dtype == np.float16:
            return
1190
        self.check_grad(['X'], 'Out')
1191 1192


1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.elu(x)
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.elu(x)
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.elu(x, 0.2)
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1230
    def test_errors(self):
1231 1232 1233 1234 1235 1236 1237 1238 1239
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.elu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, F.elu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[10, 12], dtype='float16')
            F.elu(x_fp16)
1240 1241


C
chengduo 已提交
1242
class TestReciprocal(TestActivation):
Q
qijun 已提交
1243 1244
    def setUp(self):
        self.op_type = "reciprocal"
1245 1246 1247 1248 1249 1250 1251
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1252 1253

    def test_check_grad(self):
1254 1255
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1256
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
1257 1258


C
chengduo 已提交
1259
class TestLog(TestActivation):
Q
qijun 已提交
1260 1261
    def setUp(self):
        self.op_type = "log"
1262 1263 1264 1265 1266 1267 1268
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1269 1270

    def test_check_grad(self):
1271 1272
        if self.dtype == np.float16:
            return
1273
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
1313 1314 1315
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
1316
        expected_res = np.log1p(input_x)
1317
        self.assertTrue(np.allclose(res1, expected_res))
1318 1319 1320 1321 1322 1323 1324 1325

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
1326
        self.assertTrue(np.allclose(np_z, z_expected))
1327 1328


C
chengduo 已提交
1329
class TestSquare(TestActivation):
Q
qijun 已提交
1330 1331
    def setUp(self):
        self.op_type = "square"
1332 1333 1334 1335 1336 1337 1338
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1339 1340

    def test_check_grad(self):
1341 1342
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1343
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
1344

1345

C
chengduo 已提交
1346
class TestPow(TestActivation):
1347 1348
    def setUp(self):
        self.op_type = "pow"
1349 1350 1351 1352 1353 1354
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
1355
        self.attrs = {'factor': 3.0}
1356
        self.outputs = {'Out': out}
1357 1358

    def test_check_grad(self):
1359 1360
        if self.dtype == np.float16:
            return
1361
        self.check_grad(['X'], 'Out')
1362

1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1386
        self.check_grad(['X'], 'Out')
1387 1388 1389 1390 1391

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
1392 1393 1394 1395 1396
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
1397 1398 1399 1400 1401

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
1402 1403 1404
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
1405 1406

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
1407
        res_1, res_2, res, res_6 = exe.run(
1408 1409
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
1410
            fetch_list=[out_1, out_2, res, out_6])
1411 1412 1413

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))
1414
        assert np.array_equal(res_6, np.power(input, 3))
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

1439

C
chengduo 已提交
1440
class TestSTanh(TestActivation):
1441 1442
    def setUp(self):
        self.op_type = "stanh"
1443 1444 1445
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
1446 1447
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
1448 1449 1450
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
1451
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
1452
        self.outputs = {'Out': out}
1453

Q
qijun 已提交
1454
    def test_check_grad(self):
1455 1456
        if self.dtype == np.float16:
            return
1457
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1458

1459

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
class TestSTanhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.stanh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.stanh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.stanh(x_fp16)


1473 1474 1475 1476 1477 1478 1479
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
1480
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
1481 1482
    def setUp(self):
        self.op_type = "softplus"
1483 1484
        self.init_dtype()

1485 1486
        beta = 2
        threshold = 15
1487

1488 1489 1490 1491
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
1492
        self.outputs = {'Out': out}
K
kexinzhao 已提交
1493 1494

    def test_check_grad(self):
1495 1496
        if self.dtype == np.float16:
            return
1497
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
1498

1499

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
1558
class TestSoftsign(TestActivation):
1559 1560
    def setUp(self):
        self.op_type = "softsign"
1561 1562
        self.init_dtype()

1563 1564 1565
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
1566
        self.outputs = {'Out': out}
1567 1568

    def test_check_grad(self):
1569 1570
        if self.dtype == np.float16:
            return
1571
        self.check_grad(['X'], 'Out')
1572 1573


1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softsign(x_fp16)


C
chengduo 已提交
1625
class TestThresholdedRelu(TestActivation):
1626 1627
    def setUp(self):
        self.op_type = "thresholded_relu"
1628 1629
        self.init_dtype()

1630
        threshold = 0.25
Z
zhupengyang 已提交
1631
        self.delta = 0.005
1632
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1633 1634

        # Same reason as TestAbs
Z
zhupengyang 已提交
1635
        X[np.abs(X - threshold) < self.delta] = threshold + 0.2
1636
        out = (X > threshold) * X
1637

1638
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
1639
        self.attrs = {'threshold': threshold}
1640
        self.outputs = {'Out': out}
1641 1642

    def test_check_grad(self):
1643 1644
        if self.dtype == np.float16:
            return
1645
        self.check_grad(['X'], 'Out')
1646 1647


1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
class TestThresholdedReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.thresholded_relu(x_fp16)


C
chengduo 已提交
1661
class TestHardSigmoid(TestActivation):
1662 1663
    def setUp(self):
        self.op_type = "hard_sigmoid"
1664 1665
        self.init_dtype()

Z
zhupengyang 已提交
1666
        X = np.random.uniform(-5, 5, [10, 12]).astype("float32")
1667 1668 1669 1670 1671
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

Z
zhupengyang 已提交
1672 1673
        self.delta = 0.005

1674
        # Same reason as TestAbs
Z
zhupengyang 已提交
1675 1676
        X[(X - lower_threshold) < self.delta] = lower_threshold - 0.02
        X[(X - upper_threshold) < self.delta] = upper_threshold + 0.02
1677 1678

        temp = X * slope + offset
1679 1680 1681 1682
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
1683 1684

    def test_check_grad(self):
1685 1686
        if self.dtype == np.float16:
            return
Z
zhupengyang 已提交
1687
        self.check_grad(['X'], 'Out')
1688

1689

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
class TestHardSigmoidOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_sigmoid(x_fp16)


C
chengduo 已提交
1703
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
1704 1705
    def setUp(self):
        self.op_type = "swish"
1706 1707 1708 1709 1710 1711 1712 1713 1714
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
1715 1716

    def test_check_grad(self):
1717 1718
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1719
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
1720

1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
class TestSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.swish(x_fp16)


1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')


1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
1797

C
chengduo 已提交
1798
        def test_check_output(self):
1799
            place = core.CUDAPlace(0)
C
chengduo 已提交
1800 1801 1802
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
1803

C
chengduo 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
1820
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
1821
create_test_act_fp16_class(TestHardShrink)
1822
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
1823 1824 1825 1826 1827
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
1828
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
1829
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
1830
create_test_act_fp16_class(TestSin)
1831
create_test_act_fp16_class(TestSinh)
1832 1833
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
1834 1835
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
1836
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
1837 1838 1839 1840 1841 1842
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
1843
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
1844 1845
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
1846
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
1847 1848 1849 1850 1851 1852
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
1853
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
1854

Q
qijun 已提交
1855 1856
if __name__ == "__main__":
    unittest.main()