test_activation_op.py 49.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
Q
qijun 已提交
20
from op_test import OpTest
C
Clementine 已提交
21
from scipy.special import expit, erf
22
import paddle
23
import paddle.fluid as fluid
24 25
import paddle.nn as nn
import paddle.nn.functional as functional
26
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
27 28


29
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
45
class TestActivation(OpTest):
Q
qijun 已提交
46 47
    def setUp(self):
        self.op_type = "exp"
48
        self.init_dtype()
49
        self.init_kernel_type()
50 51 52 53 54 55

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
56 57 58 59 60

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
61 62
        if self.dtype == np.float16:
            return
63
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
64

65
    def init_dtype(self):
66
        self.dtype = np.float64
67

68 69 70
    def init_kernel_type(self):
        pass

Q
qijun 已提交
71

72 73 74
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
75
            np_x = np.array([0.1])
76
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
77
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
78 79
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
80 81 82
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
83 84 85 86 87 88 89 90 91 92

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(z, z_expected)


C
chengduo 已提交
93
class TestSigmoid(TestActivation):
Q
qijun 已提交
94 95
    def setUp(self):
        self.op_type = "sigmoid"
96 97 98 99 100 101 102
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
103

104 105 106
    def init_dtype(self):
        self.dtype = np.float32

107
    def test_check_grad(self):
108 109 110 111
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

112

C
chengduo 已提交
113
class TestLogSigmoid(TestActivation):
114 115
    def setUp(self):
        self.op_type = "logsigmoid"
116 117 118 119 120 121 122
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
123 124

    def test_check_grad(self):
125 126
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
127
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
128 129


130
class TestTanh(TestActivation, TestParameter):
131 132
    def setUp(self):
        self.op_type = "tanh"
133 134 135 136 137 138
        self.init_dtype()
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
139 140

    def test_check_grad(self):
141 142
        if self.dtype == np.float16:
            return
143
        self.check_grad(['X'], 'Out')
144

145 146 147 148 149 150
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

151

152
class TestAtan(TestActivation, TestParameter):
153 154 155 156 157 158 159 160 161 162 163 164 165
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
166
        self.check_grad(['X'], 'Out')
167

W
WuHaobo 已提交
168 169 170 171 172 173 174 175 176 177 178
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

179 180 181 182 183 184 185 186
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


C
chengduo 已提交
330
class TestTanhShrink(TestActivation):
K
Kavya Srinet 已提交
331 332
    def setUp(self):
        self.op_type = "tanh_shrink"
333 334 335 336 337 338 339
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype)
        out = x - np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
340 341

    def test_check_grad(self):
342 343
        if self.dtype == np.float16:
            return
344
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
345

346

C
chengduo 已提交
347
class TestHardShrink(TestActivation):
348 349
    def setUp(self):
        self.op_type = "hard_shrink"
350 351
        self.init_dtype()

352
        threshold = 0.5
Z
zhupengyang 已提交
353
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
354 355
        out = np.copy(x)
        out[(out >= -threshold) & (out <= threshold)] = 0
356 357

        self.attrs = {'lambda': threshold}
358 359
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
360 361

    def test_check_grad(self):
362 363
        if self.dtype == np.float16:
            return
364
        self.check_grad(['X'], 'Out')
365 366


367 368 369 370 371 372 373 374 375 376 377 378 379
class TestHardShrinkOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_shrink, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_shrink, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_shrink(x_fp16)


C
chengduo 已提交
380
class TestSoftShrink(TestActivation):
381 382
    def setUp(self):
        self.op_type = "softshrink"
383 384
        self.init_dtype()

385
        lambda_val = 0.1
Z
zhupengyang 已提交
386
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
387 388 389 390
        out = np.copy(x)
        out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * (
            out - lambda_val)

391
        self.attrs = {'lambda': lambda_val}
392 393
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
394 395

    def test_check_grad(self):
396 397
        if self.dtype == np.float16:
            return
398
        self.check_grad(['X'], 'Out')
399

400

401 402 403 404 405 406 407 408 409 410 411 412 413
class TestSoftShrinkOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.softshrink, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.softshrink, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.softshrink(x_fp16)


414
class TestSqrt(TestActivation, TestParameter):
415 416
    def setUp(self):
        self.op_type = "sqrt"
417 418 419 420 421 422 423
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
424 425

    def test_check_grad(self):
426 427
        if self.dtype == np.float16:
            return
428
        self.check_grad(['X'], 'Out')
429

430

Z
zhoukunsheng 已提交
431 432 433 434 435
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

Z
zhupengyang 已提交
436
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
437 438 439 440 441 442 443 444 445 446 447
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
448
class TestAbs(TestActivation):
449 450
    def setUp(self):
        self.op_type = "abs"
451 452
        self.init_dtype()

453
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
454
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
455
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
456
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
457 458
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
459 460 461 462
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
463 464

    def test_check_grad(self):
465 466
        if self.dtype == np.float16:
            return
467
        self.check_grad(['X'], 'Out')
468

469

C
chengduo 已提交
470
class TestCeil(TestActivation):
D
dzhwinter 已提交
471 472
    def setUp(self):
        self.op_type = "ceil"
473 474
        self.init_dtype()

Z
zhupengyang 已提交
475
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
476 477 478 479
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
480

D
dzhwinter 已提交
481
    # The same reason with TestFloor
C
chengduo 已提交
482
    def test_check_grad(self):
483 484 485
        pass


C
chengduo 已提交
486
class TestFloor(TestActivation):
D
dzhwinter 已提交
487 488
    def setUp(self):
        self.op_type = "floor"
489 490
        self.init_dtype()

Z
zhupengyang 已提交
491
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
492 493 494 495
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
496

D
dzhwinter 已提交
497
    # the gradient on floor, ceil, round is undefined.
498
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
499 500
    # The same reason with TestFloor
    def test_check_grad(self):
501 502 503
        pass


C
chengduo 已提交
504
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
505 506
    def setUp(self):
        self.op_type = "cos"
507 508
        self.init_dtype()

Z
zhupengyang 已提交
509
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
510 511 512 513
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
514 515

    def test_check_grad(self):
516 517
        if self.dtype == np.float16:
            return
518
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
519

520

521 522 523 524 525
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

Z
zhupengyang 已提交
526
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
527 528 529 530 531 532 533 534
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
535
        self.check_grad(['X'], 'Out')
536 537


538
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
539 540
    def setUp(self):
        self.op_type = "sin"
541 542
        self.init_dtype()

Z
zhupengyang 已提交
543
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
544 545 546 547
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
548 549

    def test_check_grad(self):
550 551
        if self.dtype == np.float16:
            return
552
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
553 554


555 556 557 558 559
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

Z
zhupengyang 已提交
560
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
561 562 563 564 565 566 567 568
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
569
        self.check_grad(['X'], 'Out')
570 571


C
chengduo 已提交
572
class TestRound(TestActivation):
D
dzhwinter 已提交
573 574
    def setUp(self):
        self.op_type = "round"
575 576
        self.init_dtype()

Z
zhupengyang 已提交
577
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
578 579 580 581
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
582

C
chengduo 已提交
583
    def test_check_grad(self):
584 585 586
        pass


C
chengduo 已提交
587
class TestRelu(TestActivation):
588
    def setUp(self):
Q
qijun 已提交
589
        self.op_type = "relu"
K
Kexin Zhao 已提交
590 591 592
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
593 594
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
595 596 597 598
        out = np.maximum(x, 0)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
599 600

    def test_check_grad(self):
K
Kexin Zhao 已提交
601 602
        if self.dtype == np.float16:
            return
603
        self.check_grad(['X'], 'Out')
A
Adam 已提交
604 605


606 607 608 609
class TestReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
610
            self.assertRaises(TypeError, fluid.layers.relu, 1)
611 612 613 614 615 616 617 618 619
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.relu(x_fp16)


A
Adam 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
class TestLeakyRelu(TestActivation):
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        out = np.maximum(x, 0.02 * x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
636
        self.check_grad(['X'], 'Out')
637 638


639 640 641 642 643 644 645 646 647 648 649 650 651 652
class TestLeakyReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.leaky_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.leaky_relu, x_int32)
            # support the input dtype is float32
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float32')
            fluid.layers.leaky_relu(x_fp16)


653 654 655 656 657 658 659 660 661 662
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
663 664 665
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
666 667 668
        approximate = True
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
669

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
C
Clementine 已提交
685
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
686
        out = gelu(x, approximate)
C
Clementine 已提交
687 688 689

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
690
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
691 692 693 694

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
695
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
696 697


C
chengduo 已提交
698
class TestBRelu(TestActivation):
699 700
    def setUp(self):
        self.op_type = "brelu"
701 702
        self.init_dtype()

Z
zhupengyang 已提交
703
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
704 705
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
706 707
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
708
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
709 710 711
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
712 713 714

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
715
        self.outputs = {'Out': t}
716 717

    def test_check_grad(self):
718 719
        if self.dtype == np.float16:
            return
720
        self.check_grad(['X'], 'Out')
721

722

723 724 725 726 727 728 729 730 731 732 733 734 735 736
class TestBReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


C
chengduo 已提交
737
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
738
    def setUp(self):
739
        self.op_type = "relu6"
740 741
        self.init_dtype()

Z
zhupengyang 已提交
742
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
743 744 745 746
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
747
        out = np.minimum(np.maximum(x, 0), threshold)
748

749
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
750
        self.attrs = {'threshold': threshold}
751
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
752

753 754 755
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
756
        self.check_grad(['X'], 'Out')
757 758


759 760 761 762 763 764 765 766 767 768 769 770 771
class TestRelu6OpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.relu6, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.relu6, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.relu6(x_fp16)


H
huangjun12 已提交
772 773 774 775 776
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

Z
zhupengyang 已提交
777
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
        out = x * np.minimum(np.maximum(x + offset, 0), threshold) / scale

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
793
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
794 795


796 797 798 799 800 801 802 803 804 805 806 807 808
class TestHardSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_swish(x_fp16)


C
chengduo 已提交
809
class TestSoftRelu(TestActivation):
810 811
    def setUp(self):
        self.op_type = "soft_relu"
812 813 814
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
815
        threshold = 2.0
Q
qijun 已提交
816 817
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
818
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
819 820 821
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
822 823 824 825 826
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
827 828

    def test_check_grad(self):
829 830
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
831
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
832

833

834 835 836 837 838 839 840 841 842 843 844 845 846
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


C
chengduo 已提交
847
class TestELU(TestActivation):
848 849
    def setUp(self):
        self.op_type = "elu"
850 851
        self.init_dtype()

Z
zhupengyang 已提交
852
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
853
        alpha = 1.
854
        out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
855 856 857 858
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
859
        self.outputs = {'Out': out}
860 861

    def test_check_grad(self):
862 863
        if self.dtype == np.float16:
            return
864
        self.check_grad(['X'], 'Out')
865 866


867
class TestELUOpError(unittest.TestCase):
868 869 870 871 872 873 874 875 876 877 878
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of elu_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.elu, x1)
            # The input dtype of elu_op must be float16 float32 or float64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.elu, x2)


C
chengduo 已提交
879
class TestReciprocal(TestActivation):
Q
qijun 已提交
880 881
    def setUp(self):
        self.op_type = "reciprocal"
882 883 884 885 886 887 888
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
889 890

    def test_check_grad(self):
891 892
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
893
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
894 895


C
chengduo 已提交
896
class TestLog(TestActivation):
Q
qijun 已提交
897 898
    def setUp(self):
        self.op_type = "log"
899 900 901 902 903 904 905
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
906 907

    def test_check_grad(self):
908 909
        if self.dtype == np.float16:
            return
910
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
911

912 913 914 915 916 917 918 919 920
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

921

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
950 951 952
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
953
        expected_res = np.log1p(input_x)
954
        self.assertTrue(np.allclose(res1, expected_res))
955 956 957 958 959 960 961 962

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
963
        self.assertTrue(np.allclose(np_z, z_expected))
964 965


C
chengduo 已提交
966
class TestSquare(TestActivation):
Q
qijun 已提交
967 968
    def setUp(self):
        self.op_type = "square"
969 970 971 972 973 974 975
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
976 977

    def test_check_grad(self):
978 979
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
980
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
981

982

C
chengduo 已提交
983
class TestPow(TestActivation):
984 985
    def setUp(self):
        self.op_type = "pow"
986 987 988 989 990 991
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
992
        self.attrs = {'factor': 3.0}
993
        self.outputs = {'Out': out}
994 995

    def test_check_grad(self):
996 997
        if self.dtype == np.float16:
            return
998
        self.check_grad(['X'], 'Out')
999

1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1023
        self.check_grad(['X'], 'Out')
1024 1025 1026 1027 1028

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
1029 1030 1031 1032 1033
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
1034 1035 1036 1037 1038

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
1039 1040 1041
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
1042 1043

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
1044
        res_1, res_2, res, res_6 = exe.run(
1045 1046
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
1047
            fetch_list=[out_1, out_2, res, out_6])
1048 1049 1050

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))
1051
        assert np.array_equal(res_6, np.power(input, 3))
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

1076

C
chengduo 已提交
1077
class TestSTanh(TestActivation):
1078 1079
    def setUp(self):
        self.op_type = "stanh"
1080 1081 1082
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
1083 1084
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
1085 1086 1087
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
1088
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
1089
        self.outputs = {'Out': out}
1090

Q
qijun 已提交
1091
    def test_check_grad(self):
1092 1093
        if self.dtype == np.float16:
            return
1094
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1095

1096

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
class TestSTanhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.stanh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.stanh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.stanh(x_fp16)


C
chengduo 已提交
1110
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
1111 1112
    def setUp(self):
        self.op_type = "softplus"
1113
        self.init_dtype()
C
chengduo 已提交
1114
        self.dtype = np.float64
1115 1116 1117 1118 1119 1120

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 + np.exp(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
kexinzhao 已提交
1121 1122

    def test_check_grad(self):
1123 1124
        if self.dtype == np.float16:
            return
1125
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
1126

1127

C
chengduo 已提交
1128
class TestSoftsign(TestActivation):
1129 1130
    def setUp(self):
        self.op_type = "softsign"
1131 1132 1133 1134 1135 1136 1137
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.divide(x, 1 + np.abs(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1138 1139

    def test_check_grad(self):
1140 1141
        if self.dtype == np.float16:
            return
1142
        self.check_grad(['X'], 'Out')
1143 1144


C
chengduo 已提交
1145
class TestThresholdedRelu(TestActivation):
1146 1147
    def setUp(self):
        self.op_type = "thresholded_relu"
1148 1149
        self.init_dtype()

1150
        threshold = 0.25
Z
zhupengyang 已提交
1151
        self.delta = 0.005
1152
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1153 1154

        # Same reason as TestAbs
Z
zhupengyang 已提交
1155
        X[np.abs(X - threshold) < self.delta] = threshold + 0.2
1156
        out = (X > threshold) * X
1157

1158
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
1159
        self.attrs = {'threshold': threshold}
1160
        self.outputs = {'Out': out}
1161 1162

    def test_check_grad(self):
1163 1164
        if self.dtype == np.float16:
            return
1165
        self.check_grad(['X'], 'Out')
1166 1167


1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
class TestThresholdedReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.thresholded_relu(x_fp16)


C
chengduo 已提交
1181
class TestHardSigmoid(TestActivation):
1182 1183
    def setUp(self):
        self.op_type = "hard_sigmoid"
1184 1185
        self.init_dtype()

Z
zhupengyang 已提交
1186
        X = np.random.uniform(-5, 5, [10, 12]).astype("float32")
1187 1188 1189 1190 1191
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

Z
zhupengyang 已提交
1192 1193
        self.delta = 0.005

1194
        # Same reason as TestAbs
Z
zhupengyang 已提交
1195 1196
        X[(X - lower_threshold) < self.delta] = lower_threshold - 0.02
        X[(X - upper_threshold) < self.delta] = upper_threshold + 0.02
1197 1198

        temp = X * slope + offset
1199 1200 1201 1202
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
1203 1204

    def test_check_grad(self):
1205 1206
        if self.dtype == np.float16:
            return
Z
zhupengyang 已提交
1207
        self.check_grad(['X'], 'Out')
1208

1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
class TestHardSigmoidOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_sigmoid(x_fp16)


C
chengduo 已提交
1223
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
1224 1225
    def setUp(self):
        self.op_type = "swish"
1226 1227 1228 1229 1230 1231 1232 1233 1234
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
1235 1236

    def test_check_grad(self):
1237 1238
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1239
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
1240

1241

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
class TestSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.swish(x_fp16)


1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')


1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
1317

C
chengduo 已提交
1318
        def test_check_output(self):
1319
            place = core.CUDAPlace(0)
C
chengduo 已提交
1320 1321 1322
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
1323

C
chengduo 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
create_test_act_fp16_class(TestTanhShrink)
create_test_act_fp16_class(TestHardShrink)
create_test_act_fp16_class(TestSoftShrink)
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
1348
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
1349
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
1350
create_test_act_fp16_class(TestSin)
1351
create_test_act_fp16_class(TestSinh)
1352 1353
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
1354 1355
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
1356
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
1357 1358 1359 1360 1361 1362
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
1363
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
1364 1365
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
1366
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
1367 1368 1369 1370 1371 1372
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
1373
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

class TestNNReluAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 12]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return np.maximum(x, 0)

    def ref_backward(self, y, dy):
        y_t = y.copy()
        y_t[y_t > 0] = 1
        return y_t * dy

    def check_api(self, place=fluid.CPUPlace(), inplace=False):
        main_program = Program()
        myrelu = nn.ReLU(inplace)
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
            x.stop_gradient = False
            y = myrelu(x)
            fluid.backward.append_backward(fluid.layers.mean(y))
        exe = fluid.Executor(place)
        out = exe.run(main_program,
                      feed={'x': self.x},
                      fetch_list=[y, y.grad_name, x.grad_name])
        self.assertTrue(np.allclose(out[0], self.y))
        self.assertTrue(np.allclose(out[2], self.ref_backward(self.y, out[1])))

        with fluid.dygraph.guard(place):
            x = fluid.dygraph.to_variable(self.x)
            y = myrelu(x)
        self.assertTrue(np.allclose(y.numpy(), self.y))

    def test_check_api(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            for inplace in [True, False]:
                self.check_api(place, inplace)


class TestNNFunctionalReluAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 12]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return np.maximum(x, 0)

    def test_check_api(self):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
            y = functional.relu(x)
        exe = fluid.Executor(fluid.CPUPlace())
        out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
        self.assertTrue(np.allclose(out[0], self.y))


1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
class TestNNSigmoidAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 15]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return 1 / (1 + np.exp(-x))

    def ref_backward(self, y, dy):
        return dy * y * (1 - y)

    def check_api(self, place=fluid.CPUPlace(), inplace=False):
        main_program = Program()
        mysigmoid = nn.Sigmoid(inplace)
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
            x.stop_gradient = False
            y = mysigmoid(x)
            fluid.backward.append_backward(fluid.layers.mean(y))
        exe = fluid.Executor(place)
        out = exe.run(main_program,
                      feed={'x': self.x},
                      fetch_list=[y, y.grad_name, x.grad_name])
        self.assertTrue(np.allclose(out[0], self.y))
        self.assertTrue(np.allclose(out[2], self.ref_backward(self.y, out[1])))

        with fluid.dygraph.guard(place):
            x = fluid.dygraph.to_variable(self.x)
            y = mysigmoid(x)
        self.assertTrue(np.allclose(y.numpy(), self.y))

    def test_check_api(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            for inplace in [True, False]:
                self.check_api(place, inplace)


class TestNNFunctionalSigmoidAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 15]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return 1 / (1 + np.exp(-x))

    def test_check_api(self):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
            y = functional.sigmoid(x)
        exe = fluid.Executor(fluid.CPUPlace())
        out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
        self.assertTrue(np.allclose(out[0], self.y))


Q
qijun 已提交
1510 1511
if __name__ == "__main__":
    unittest.main()