test_activation_op.py 84.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
Q
qijun 已提交
20
from op_test import OpTest
C
Clementine 已提交
21
from scipy.special import expit, erf
22
import paddle
23
import paddle.fluid as fluid
24
import paddle.nn as nn
25
import paddle.nn.functional as F
26
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
27

28 29
paddle.enable_static()

Q
qijun 已提交
30

31
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
47
class TestActivation(OpTest):
Q
qijun 已提交
48 49
    def setUp(self):
        self.op_type = "exp"
50
        self.init_dtype()
51
        self.init_kernel_type()
52

53
        np.random.seed(2049)
54 55 56 57 58
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
59 60 61 62 63

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
64 65
        if self.dtype == np.float16:
            return
66
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
67

68
    def init_dtype(self):
69
        self.dtype = np.float64
70

71 72 73
    def init_kernel_type(self):
        pass

Q
qijun 已提交
74

75 76 77
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
78
            np_x = np.array([0.1])
79
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
80
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
81 82
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
83 84 85
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
86 87 88 89 90 91 92 93 94 95

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(z, z_expected)


C
chengduo 已提交
96
class TestSigmoid(TestActivation):
Q
qijun 已提交
97 98
    def setUp(self):
        self.op_type = "sigmoid"
99 100
        self.init_dtype()

101
        np.random.seed(1024)
102 103 104 105 106
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
107

108 109 110
    def init_dtype(self):
        self.dtype = np.float32

111
    def test_check_grad(self):
112 113 114 115
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

116

C
chengduo 已提交
117
class TestLogSigmoid(TestActivation):
118 119
    def setUp(self):
        self.op_type = "logsigmoid"
120 121
        self.init_dtype()

122
        np.random.seed(2048)
123 124 125
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

126
        self.inputs = {'X': x}
127
        self.outputs = {'Out': out}
128 129

    def test_check_grad(self):
130 131
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
132
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
133 134


135
class TestLogSigmoidAPI(unittest.TestCase):
136
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
137
    def setUp(self):
138
        np.random.seed(1024)
139 140 141 142 143
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
144
        paddle.enable_static()
145
        with paddle.static.program_guard(paddle.static.Program()):
146
            x = paddle.fluid.data('X', [11, 17])
147
            out1 = F.log_sigmoid(x)
148 149 150 151 152 153
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
154
            self.assertTrue(np.allclose(out_ref, r))
155 156 157 158

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
159
        out1 = F.log_sigmoid(x)
160 161 162 163
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
164
            self.assertTrue(np.allclose(out_ref, r.numpy()))
165 166
        paddle.enable_static()

167
    def test_fluid_api(self):
168
        paddle.enable_static()
169
        with paddle.static.program_guard(paddle.static.Program()):
170
            x = paddle.fluid.data('X', [11, 17])
171 172 173 174 175 176
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

177
    def test_errors(self):
178
        paddle.enable_static()
179 180
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
181
            self.assertRaises(TypeError, F.log_sigmoid, 1)
182
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
183 184
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
185
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
186
            # support the input dtype is float16
J
joejiong 已提交
187 188
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
189
            F.log_sigmoid(x_fp16)
190 191


192
class TestTanh(TestActivation, TestParameter):
193 194
    def setUp(self):
        self.op_type = "tanh"
195
        self.init_dtype()
196
        np.random.seed(1024)
197 198 199 200 201
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
202 203

    def test_check_grad(self):
204 205
        if self.dtype == np.float16:
            return
206
        self.check_grad(['X'], 'Out')
207

208 209 210 211 212 213
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

214

W
WangXi 已提交
215 216 217 218
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
219
        np.random.seed(1024)
W
WangXi 已提交
220 221 222 223 224
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
225
        paddle.enable_static()
W
WangXi 已提交
226
        with paddle.static.program_guard(paddle.static.Program()):
227
            x = paddle.fluid.data('X', [10, 12], self.dtype)
W
WangXi 已提交
228 229 230 231 232 233 234 235 236 237 238
            out1 = F.tanh(x)
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
239
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
240 241 242 243 244 245 246 247 248 249
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
250
        paddle.enable_static()
W
WangXi 已提交
251 252 253 254 255 256 257 258 259
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
260
        paddle.enable_static()
W
WangXi 已提交
261 262 263 264
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanh, 1)
            # The input dtype must be float16, float32.
J
joejiong 已提交
265 266
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
W
WangXi 已提交
267 268
            self.assertRaises(TypeError, F.tanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
269 270
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
W
WangXi 已提交
271 272 273
            F.tanh(x_fp16)


274
class TestAtan(TestActivation, TestParameter):
275 276 277 278
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

279
        np.random.seed(1024)
280 281 282 283 284 285 286 287 288
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
289
        self.check_grad(['X'], 'Out')
290

W
WuHaobo 已提交
291 292 293 294 295 296 297 298 299 300 301
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

302 303 304 305 306 307 308 309
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

310

311 312 313 314 315
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

316
        np.random.seed(1024)
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

388
        np.random.seed(1024)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


455 456 457 458 459 460
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
461 462
    def setUp(self):
        self.op_type = "tanh_shrink"
463 464
        self.init_dtype()

465
        np.random.seed(1024)
466 467
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
468

469
        self.inputs = {'X': x}
470
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
471 472

    def test_check_grad(self):
473 474
        if self.dtype == np.float16:
            return
475
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
476

477

478 479 480
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
481
        np.random.seed(1024)
482 483 484 485 486
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
487
        paddle.enable_static()
488
        with paddle.static.program_guard(paddle.static.Program()):
489
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
511
        paddle.enable_static()
512 513 514 515 516 517 518 519 520
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
521
        paddle.enable_static()
522 523 524 525
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
526 527
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
528 529
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
530 531
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
532 533 534
            F.tanhshrink(x_fp16)


535 536 537 538 539 540
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
541
class TestHardShrink(TestActivation):
542 543
    def setUp(self):
        self.op_type = "hard_shrink"
544 545
        self.init_dtype()

546 547
        self.threshold = 0.5
        self.set_attrs()
548
        np.random.seed(1024)
Z
zhupengyang 已提交
549
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
550
        out = ref_hardshrink(x, self.threshold)
551

552
        self.attrs = {'threshold': self.threshold}
553
        self.inputs = {'X': x}
554
        self.outputs = {'Out': out}
555

556 557 558
    def set_attrs(self):
        pass

559
    def test_check_grad(self):
560 561
        if self.dtype == np.float16:
            return
562
        self.check_grad(['X'], 'Out')
563 564


565 566 567 568 569
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


570 571 572
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
573
        np.random.seed(1024)
574 575 576 577 578
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
579
        paddle.enable_static()
580
        with paddle.static.program_guard(paddle.static.Program()):
581
            x = paddle.fluid.data('X', [10, 12])
582 583 584 585 586 587 588 589 590 591 592
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
593
        x = paddle.to_tensor(self.x_np)
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
610
        paddle.enable_static()
611 612 613 614 615 616 617 618
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

619
    def test_errors(self):
620
        paddle.enable_static()
621
        with paddle.static.program_guard(paddle.static.Program()):
622
            # The input type must be Variable.
623
            self.assertRaises(TypeError, F.hardshrink, 1)
624
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
625 626
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
627
            self.assertRaises(TypeError, F.hardshrink, x_int32)
628
            # support the input dtype is float16
J
joejiong 已提交
629 630
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
631
            F.hardshrink(x_fp16)
632 633


634 635 636 637 638 639 640 641 642 643 644
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
645
        np.random.seed(1024)
646 647 648 649 650
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
651
        paddle.enable_static()
652
        with paddle.static.program_guard(paddle.static.Program()):
653
            x = paddle.fluid.data('X', [10, 12])
654 655 656 657 658 659 660 661 662 663 664
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
665
        x = paddle.to_tensor(self.x_np)
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
682
        paddle.enable_static()
683 684 685 686
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
687 688
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
689 690
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
691 692
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
693 694 695
            F.hardtanh(x_fp16)


696 697 698 699 700 701 702 703
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
704 705
    def setUp(self):
        self.op_type = "softshrink"
706 707
        self.init_dtype()

708
        threshold = 0.8
709

710
        np.random.seed(1023)
711 712 713 714
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
715
        self.outputs = {'Out': out}
716 717

    def test_check_grad(self):
718 719
        if self.dtype == np.float16:
            return
720
        self.check_grad(['X'], 'Out')
721

722

723 724 725 726
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
727
        np.random.seed(1024)
728 729 730 731 732
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
733
        paddle.enable_static()
734
        with paddle.static.program_guard(paddle.static.Program()):
735
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
757
        paddle.enable_static()
758 759 760 761 762 763 764 765
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

766
    def test_errors(self):
767
        paddle.enable_static()
768
        with paddle.static.program_guard(paddle.static.Program()):
769
            # The input type must be Variable.
770
            self.assertRaises(TypeError, F.softshrink, 1)
771
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
772 773
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
774
            self.assertRaises(TypeError, F.softshrink, x_int32)
775
            # The threshold must be no less than zero
J
joejiong 已提交
776 777
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
778
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
779
            # support the input dtype is float16
J
joejiong 已提交
780 781
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
782
            F.softshrink(x_fp16)
783 784


785
class TestSqrt(TestActivation, TestParameter):
786 787
    def setUp(self):
        self.op_type = "sqrt"
788 789
        self.init_dtype()

790
        np.random.seed(1023)
791 792 793 794 795
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
796 797

    def test_check_grad(self):
798 799
        if self.dtype == np.float16:
            return
800
        self.check_grad(['X'], 'Out')
801

802

Z
zhoukunsheng 已提交
803 804 805 806 807
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

808
        np.random.seed(1024)
Z
zhupengyang 已提交
809
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
810 811 812 813 814 815 816 817 818 819 820
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
821
class TestAbs(TestActivation):
822 823
    def setUp(self):
        self.op_type = "abs"
824 825
        self.init_dtype()

826
        np.random.seed(1024)
827
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
828
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
829
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
830
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
831 832
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
833 834 835 836
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
837 838

    def test_check_grad(self):
839 840
        if self.dtype == np.float16:
            return
841
        self.check_grad(['X'], 'Out')
842

843

C
chengduo 已提交
844
class TestCeil(TestActivation):
D
dzhwinter 已提交
845 846
    def setUp(self):
        self.op_type = "ceil"
847 848
        self.init_dtype()

849
        np.random.seed(1024)
Z
zhupengyang 已提交
850
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
851 852 853 854
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
855

D
dzhwinter 已提交
856
    # The same reason with TestFloor
C
chengduo 已提交
857
    def test_check_grad(self):
858 859 860
        pass


C
chengduo 已提交
861
class TestFloor(TestActivation):
D
dzhwinter 已提交
862 863
    def setUp(self):
        self.op_type = "floor"
864 865
        self.init_dtype()

866
        np.random.seed(1024)
Z
zhupengyang 已提交
867
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
868 869 870 871
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
872

D
dzhwinter 已提交
873
    # the gradient on floor, ceil, round is undefined.
874
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
875 876
    # The same reason with TestFloor
    def test_check_grad(self):
877 878 879
        pass


C
chengduo 已提交
880
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
881 882
    def setUp(self):
        self.op_type = "cos"
883 884
        self.init_dtype()

885
        np.random.seed(1024)
Z
zhupengyang 已提交
886
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
887 888 889 890
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
891 892

    def test_check_grad(self):
893 894
        if self.dtype == np.float16:
            return
895
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
896

897

898 899 900 901 902
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

903
        np.random.seed(1024)
Z
zhupengyang 已提交
904
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
905 906 907 908 909 910 911 912
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
913
        self.check_grad(['X'], 'Out')
914 915


916
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
917 918
    def setUp(self):
        self.op_type = "sin"
919 920
        self.init_dtype()

921
        np.random.seed(1024)
Z
zhupengyang 已提交
922
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
923 924 925 926
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
927 928

    def test_check_grad(self):
929 930
        if self.dtype == np.float16:
            return
931
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
932 933


934 935 936 937 938
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

939
        np.random.seed(2048)
Z
zhupengyang 已提交
940
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
941 942 943 944 945 946 947 948
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
949
        self.check_grad(['X'], 'Out')
950 951


C
chengduo 已提交
952
class TestRound(TestActivation):
D
dzhwinter 已提交
953 954
    def setUp(self):
        self.op_type = "round"
955 956
        self.init_dtype()

957
        np.random.seed(1024)
Z
zhupengyang 已提交
958
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
959 960 961 962
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
963

C
chengduo 已提交
964
    def test_check_grad(self):
965 966 967
        pass


C
chengduo 已提交
968
class TestRelu(TestActivation):
969
    def setUp(self):
Q
qijun 已提交
970
        self.op_type = "relu"
K
Kexin Zhao 已提交
971 972
        self.init_dtype()

973
        np.random.seed(1024)
K
Kexin Zhao 已提交
974
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
975 976
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
977 978
        out = np.maximum(x, 0)

979
        self.inputs = {'X': x}
K
Kexin Zhao 已提交
980
        self.outputs = {'Out': out}
981 982

    def test_check_grad(self):
K
Kexin Zhao 已提交
983 984
        if self.dtype == np.float16:
            return
985
        self.check_grad(['X'], 'Out')
A
Adam 已提交
986 987


988 989 990
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
991
        np.random.seed(1024)
992 993 994 995 996
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
997
        paddle.enable_static()
998
        with paddle.static.program_guard(paddle.static.Program()):
999
            x = paddle.fluid.data('X', [10, 12])
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
            out1 = F.relu(x)
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu(x)
        m = paddle.nn.ReLU()
        out2 = m(x)
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1020
    def test_errors(self):
1021
        paddle.enable_static()
1022
        with paddle.static.program_guard(paddle.static.Program()):
1023
            # The input type must be Variable.
1024
            self.assertRaises(TypeError, F.relu, 1)
1025
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1026 1027
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1028
            self.assertRaises(TypeError, F.relu, x_int32)
1029
            # support the input dtype is float16
J
joejiong 已提交
1030 1031
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1032
            F.relu(x_fp16)
1033 1034


1035 1036 1037 1038 1039 1040
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1041
class TestLeakyRelu(TestActivation):
1042 1043 1044
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1045 1046 1047
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1048
        alpha = self.get_alpha()
A
Adam 已提交
1049

1050
        np.random.seed(1024)
A
Adam 已提交
1051 1052
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1053 1054
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1055

1056
        self.inputs = {'X': x}
A
Adam 已提交
1057
        self.outputs = {'Out': out}
1058
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1059 1060 1061 1062

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1063
        self.check_grad(['X'], 'Out')
1064 1065


1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1085
        np.random.seed(1024)
1086 1087 1088 1089 1090
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
1091
        paddle.enable_static()
1092
        with paddle.static.program_guard(paddle.static.Program()):
1093
            x = paddle.fluid.data('X', [10, 12])
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1105
        x = paddle.to_tensor(self.x_np)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1122
        paddle.enable_static()
1123 1124 1125 1126 1127 1128 1129 1130
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1131
    def test_errors(self):
1132
        paddle.enable_static()
1133
        with paddle.static.program_guard(paddle.static.Program()):
1134
            # The input type must be Variable.
1135
            self.assertRaises(TypeError, F.leaky_relu, 1)
1136
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1137 1138
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1139 1140
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1141 1142
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1143
            F.leaky_relu(x_fp16)
1144 1145


1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1156 1157 1158
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1159
        approximate = True
1160
        np.random.seed(1024)
1161 1162
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1163

1164
        self.inputs = {'X': x}
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1179
        np.random.seed(2048)
C
Clementine 已提交
1180
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1181
        out = gelu(x, approximate)
C
Clementine 已提交
1182

1183
        self.inputs = {'X': x}
C
Clementine 已提交
1184
        self.outputs = {'Out': out}
1185
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1186 1187 1188 1189

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1190
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1191 1192


1193 1194 1195
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1196
        np.random.seed(1024)
1197 1198 1199 1200 1201
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
1202
        paddle.enable_static()
1203
        with paddle.static.program_guard(paddle.static.Program()):
1204
            x = paddle.fluid.data('X', [11, 17])
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1233
        paddle.enable_static()
1234 1235 1236 1237
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1238 1239
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1240 1241
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1242 1243
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1244 1245 1246
            F.gelu(x_fp16)


C
chengduo 已提交
1247
class TestBRelu(TestActivation):
1248 1249
    def setUp(self):
        self.op_type = "brelu"
1250 1251
        self.init_dtype()

1252
        np.random.seed(1024)
Z
zhupengyang 已提交
1253
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1254 1255
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1256 1257
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1258
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1259 1260 1261
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1262 1263 1264

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1265
        self.outputs = {'Out': t}
1266 1267

    def test_check_grad(self):
1268 1269
        if self.dtype == np.float16:
            return
1270
        self.check_grad(['X'], 'Out')
1271

1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1314 1315 1316 1317 1318 1319 1320
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1321
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1322
    def setUp(self):
1323
        self.op_type = "relu6"
1324 1325
        self.init_dtype()

1326
        np.random.seed(1024)
Z
zhupengyang 已提交
1327
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1328
        x[np.abs(x) < 0.005] = 0.02
1329
        out = ref_relu6(x)
1330

1331 1332
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1333
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1334

1335 1336 1337
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1338
        self.check_grad(['X'], 'Out')
1339 1340


1341 1342 1343
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1344
        np.random.seed(1024)
1345 1346 1347 1348 1349 1350
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
1351
        paddle.enable_static()
1352
        with paddle.static.program_guard(paddle.static.Program()):
1353
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1375
        paddle.enable_static()
1376 1377 1378 1379 1380 1381 1382 1383
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1384
    def test_errors(self):
1385
        paddle.enable_static()
1386
        with paddle.static.program_guard(paddle.static.Program()):
1387
            # The input type must be Variable.
1388
            self.assertRaises(TypeError, F.relu6, 1)
1389
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1390 1391
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1392
            self.assertRaises(TypeError, F.relu6, x_int32)
1393
            # support the input dtype is float16
J
joejiong 已提交
1394 1395
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1396
            F.relu6(x_fp16)
1397 1398


1399 1400 1401 1402 1403
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1404 1405 1406 1407 1408
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

1409
        np.random.seed(1024)
Z
zhupengyang 已提交
1410
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1411 1412 1413 1414 1415 1416
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1417
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1418

1419
        self.inputs = {'X': x}
H
huangjun12 已提交
1420 1421 1422 1423 1424 1425
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1426
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1427 1428


1429 1430 1431 1432 1433 1434 1435 1436 1437
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1438
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1457
        paddle.enable_static()
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1476
            # The input type must be Variable.
1477
            self.assertRaises(TypeError, F.hardswish, 1)
1478
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1479 1480
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1481
            self.assertRaises(TypeError, F.hardswish, x_int32)
1482
            # support the input dtype is float16
J
joejiong 已提交
1483 1484
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1485
            F.hardswish(x_fp16)
1486 1487


C
chengduo 已提交
1488
class TestSoftRelu(TestActivation):
1489 1490
    def setUp(self):
        self.op_type = "soft_relu"
1491 1492
        self.init_dtype()

1493
        np.random.seed(4096)
1494
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1495
        threshold = 2.0
Q
qijun 已提交
1496 1497
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1498
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1499 1500 1501
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1502 1503 1504 1505 1506
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1507 1508

    def test_check_grad(self):
1509 1510
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1511
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1512

1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1527 1528 1529 1530 1531
def elu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1532
class TestELU(TestActivation):
1533 1534
    def setUp(self):
        self.op_type = "elu"
1535 1536
        self.init_dtype()

1537
        np.random.seed(1024)
Z
zhupengyang 已提交
1538
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
1539
        alpha = 1.
1540
        out = elu(x, alpha)
1541 1542 1543 1544
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1545
        self.outputs = {'Out': out}
1546 1547

    def test_check_grad(self):
1548 1549
        if self.dtype == np.float16:
            return
1550
        self.check_grad(['X'], 'Out')
1551 1552


1553 1554 1555
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1556
        np.random.seed(1024)
1557 1558 1559 1560 1561
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
1562
        paddle.enable_static()
1563
        with paddle.static.program_guard(paddle.static.Program()):
1564
            x = paddle.fluid.data('X', [10, 12])
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
            out1 = F.elu(x)
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.elu(x)
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.elu(x, 0.2)
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1592
    def test_errors(self):
1593
        paddle.enable_static()
1594 1595 1596 1597
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.elu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1598 1599
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1600 1601
            self.assertRaises(TypeError, F.elu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1602 1603
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1604
            F.elu(x_fp16)
1605 1606


C
chengduo 已提交
1607
class TestReciprocal(TestActivation):
Q
qijun 已提交
1608 1609
    def setUp(self):
        self.op_type = "reciprocal"
1610 1611
        self.init_dtype()

1612
        np.random.seed(1024)
1613 1614 1615 1616 1617
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1618 1619

    def test_check_grad(self):
1620 1621
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1622
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
1623 1624


C
chengduo 已提交
1625
class TestLog(TestActivation):
Q
qijun 已提交
1626 1627
    def setUp(self):
        self.op_type = "log"
1628 1629
        self.init_dtype()

1630
        np.random.seed(1024)
1631 1632 1633 1634 1635
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1636 1637

    def test_check_grad(self):
1638 1639
        if self.dtype == np.float16:
            return
1640
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

1651

J
joejiong 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


1701 1702 1703 1704 1705
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

1706
        np.random.seed(1024)
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
1730 1731 1732
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
1733
        expected_res = np.log1p(input_x)
1734
        self.assertTrue(np.allclose(res1, expected_res))
1735 1736 1737 1738 1739 1740 1741 1742

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
1743
        self.assertTrue(np.allclose(np_z, z_expected))
1744 1745


C
chengduo 已提交
1746
class TestSquare(TestActivation):
Q
qijun 已提交
1747 1748
    def setUp(self):
        self.op_type = "square"
1749 1750
        self.init_dtype()

1751
        np.random.seed(1024)
1752 1753 1754 1755 1756
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1757 1758

    def test_check_grad(self):
1759 1760
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1761
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
1762

1763

C
chengduo 已提交
1764
class TestPow(TestActivation):
1765 1766
    def setUp(self):
        self.op_type = "pow"
1767 1768
        self.init_dtype()

1769
        np.random.seed(1024)
1770 1771 1772 1773
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
1774
        self.attrs = {'factor': 3.0}
1775
        self.outputs = {'Out': out}
1776 1777

    def test_check_grad(self):
1778 1779
        if self.dtype == np.float16:
            return
1780
        self.check_grad(['X'], 'Out')
1781

1782

1783 1784 1785 1786 1787
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

1788
        np.random.seed(1024)
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1806
        self.check_grad(['X'], 'Out')
1807 1808 1809 1810 1811

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
1812 1813 1814 1815 1816
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
1817 1818 1819 1820 1821

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
1822 1823 1824
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
1825 1826

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
1827
        res_1, res_2, res, res_6 = exe.run(
1828 1829
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
1830
            fetch_list=[out_1, out_2, res, out_6])
1831 1832 1833

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))
1834
        assert np.array_equal(res_6, np.power(input, 3))
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

1859

C
chengduo 已提交
1860
class TestSTanh(TestActivation):
1861 1862
    def setUp(self):
        self.op_type = "stanh"
1863 1864
        self.init_dtype()

1865
        np.random.seed(1024)
1866
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
1867 1868
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
1869 1870 1871
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
1872
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
1873
        self.outputs = {'Out': out}
1874

Q
qijun 已提交
1875
    def test_check_grad(self):
1876 1877
        if self.dtype == np.float16:
            return
1878
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1879

1880

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
class TestSTanhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.stanh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.stanh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.stanh(x_fp16)


1894 1895 1896 1897 1898 1899 1900
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
1901
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
1902 1903
    def setUp(self):
        self.op_type = "softplus"
1904 1905
        self.init_dtype()

1906 1907
        beta = 2
        threshold = 15
1908

1909
        np.random.seed(1024)
1910 1911 1912 1913
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
1914
        self.outputs = {'Out': out}
K
kexinzhao 已提交
1915 1916

    def test_check_grad(self):
1917 1918
        if self.dtype == np.float16:
            return
1919
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
1920

1921

1922 1923 1924 1925 1926
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
1927
        np.random.seed(1024)
1928 1929 1930 1931 1932
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
1933
        paddle.enable_static()
1934
        with paddle.static.program_guard(paddle.static.Program()):
1935
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1957
        paddle.enable_static()
1958 1959 1960 1961 1962 1963 1964 1965 1966
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
1967
        paddle.enable_static()
1968 1969 1970 1971
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1972 1973
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1974 1975
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1976 1977
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1978 1979 1980 1981 1982 1983 1984 1985
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
1986
class TestSoftsign(TestActivation):
1987 1988
    def setUp(self):
        self.op_type = "softsign"
1989 1990
        self.init_dtype()

1991
        np.random.seed(1024)
1992 1993 1994
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
1995
        self.outputs = {'Out': out}
1996 1997

    def test_check_grad(self):
1998 1999
        if self.dtype == np.float16:
            return
2000
        self.check_grad(['X'], 'Out')
2001 2002


2003 2004 2005
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2006
        np.random.seed(1024)
2007 2008 2009 2010 2011
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
2012
        paddle.enable_static()
2013
        with paddle.static.program_guard(paddle.static.Program()):
2014
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2036
        paddle.enable_static()
2037 2038 2039 2040 2041 2042 2043 2044 2045
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2046
        paddle.enable_static()
2047 2048 2049 2050
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2051 2052
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2053 2054
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2055 2056
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2057 2058 2059
            F.softsign(x_fp16)


2060 2061 2062 2063 2064
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2065
class TestThresholdedRelu(TestActivation):
2066 2067
    def setUp(self):
        self.op_type = "thresholded_relu"
2068 2069
        self.init_dtype()

2070
        threshold = 15
2071

2072 2073 2074 2075 2076 2077
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2078
        self.outputs = {'Out': out}
2079 2080

    def test_check_grad(self):
2081 2082
        if self.dtype == np.float16:
            return
2083
        self.check_grad(['X'], 'Out')
2084 2085


2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2099
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2130
    def test_errors(self):
2131 2132
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2133
            # The input type must be Variable.
2134
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2135
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2136 2137
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2138
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2139
            # support the input dtype is float16
J
joejiong 已提交
2140 2141
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2142
            F.thresholded_relu(x_fp16)
2143 2144


2145 2146 2147 2148
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2149
class TestHardSigmoid(TestActivation):
2150 2151
    def setUp(self):
        self.op_type = "hard_sigmoid"
2152 2153 2154 2155
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2156

2157 2158 2159
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2160

2161
        # Same reason as TestAbs
2162 2163 2164
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2165

2166
        out = ref_hardsigmoid(x, self.slope, self.offset)
2167

2168 2169
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2170
        self.outputs = {'Out': out}
2171

2172 2173
    def set_attrs(self):
        pass
2174

2175

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
2196
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2215
        paddle.enable_static()
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2234
            # The input type must be Variable.
2235
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2236
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2237 2238
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2239
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2240
            # support the input dtype is float16
J
joejiong 已提交
2241 2242
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2243
            F.hardsigmoid(x_fp16)
2244 2245


2246 2247 2248 2249 2250
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2251
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2252 2253
    def setUp(self):
        self.op_type = "swish"
2254 2255
        self.init_dtype()

2256
        np.random.seed(1024)
2257 2258 2259
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2260
        self.attrs = {'beta': 1.0}
2261
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2262 2263

    def test_check_grad(self):
2264 2265
        if self.dtype == np.float16:
            return
2266 2267
        self.check_grad(['X'], 'Out')

A
Abhinav Arora 已提交
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2280
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
2310

2311
    def test_errors(self):
2312 2313
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2314
            # The input type must be Variable.
2315
            self.assertRaises(TypeError, F.swish, 1)
2316
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2317 2318
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2319
            self.assertRaises(TypeError, F.swish, x_int32)
2320
            # support the input dtype is float16
J
joejiong 已提交
2321 2322
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2323
            F.swish(x_fp16)
2324 2325


2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')


2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
2388

C
chengduo 已提交
2389
        def test_check_output(self):
2390
            place = core.CUDAPlace(0)
C
chengduo 已提交
2391 2392 2393
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
2394

C
chengduo 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
2411
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
2412
create_test_act_fp16_class(TestHardShrink)
2413
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
2414 2415 2416 2417 2418
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
2419
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
2420
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
2421
create_test_act_fp16_class(TestSin)
2422
create_test_act_fp16_class(TestSinh)
2423 2424
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
2425 2426
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
2427
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
2428 2429 2430 2431 2432 2433
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
J
joejiong 已提交
2434
create_test_act_fp16_class(TestLog2, atol=5e-2)
2435
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
2436 2437
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
2438
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
2439 2440 2441 2442 2443 2444
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
2445
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
2446

Q
qijun 已提交
2447 2448
if __name__ == "__main__":
    unittest.main()