test_activation_op.py 111.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20

21
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
28
from paddle.fluid.framework import _test_eager_guard
Q
qijun 已提交
29

30 31
paddle.enable_static()

Q
qijun 已提交
32

33
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
49
class TestActivation(OpTest):
Q
qijun 已提交
50 51
    def setUp(self):
        self.op_type = "exp"
52
        self.init_dtype()
53
        self.init_kernel_type()
C
chentianyu03 已提交
54 55
        self.check_eager = True
        self.python_api = paddle.exp
56

57
        np.random.seed(2049)
58 59 60 61 62
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
63 64

    def test_check_output(self):
65 66 67 68
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_output(check_eager=check_eager)
Q
qijun 已提交
69 70

    def test_check_grad(self):
71 72
        if self.dtype == np.float16:
            return
73 74 75 76
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_grad(['X'], 'Out', check_eager=check_eager)
Q
qijun 已提交
77

78
    def init_dtype(self):
79
        self.dtype = np.float64
80

81 82 83
    def init_kernel_type(self):
        pass

Q
qijun 已提交
84

R
ronnywang 已提交
85 86 87
class TestExpm1(TestActivation):
    def setUp(self):
        self.op_type = "expm1"
88
        self.python_api = paddle.expm1
R
ronnywang 已提交
89 90 91 92 93 94 95 96 97 98
        self.init_dtype()

        np.random.seed(2049)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.expm1(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
99 100 101 102
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
R
ronnywang 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152


class TestExpm1API(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [11, 17]

    def setUp(self):
        self.init_dtype()
        self.x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        self.out_ref = np.expm1(self.x)

        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                X = paddle.fluid.data('X', self.shape, dtype=self.dtype)
                out = paddle.expm1(X)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X': self.x})
            for r in res:
                self.assertEqual(np.allclose(self.out_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            X = paddle.to_tensor(self.x)
            out = paddle.expm1(X)
            self.assertEqual(np.allclose(self.out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            X = paddle.fluid.data('X', self.shape, dtype='int32')
            self.assertRaises(TypeError, paddle.expm1, X)
        # The input dtype must be float16, float32, float64.


153 154 155
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
156
            np_x = np.array([0.1])
157
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
158
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
159 160
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
161 162 163
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
164 165 166 167 168 169 170

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
171 172 173 174 175
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
176 177


C
chengduo 已提交
178
class TestSigmoid(TestActivation):
Q
qijun 已提交
179 180
    def setUp(self):
        self.op_type = "sigmoid"
181 182
        self.init_dtype()

183
        np.random.seed(1024)
184 185 186 187 188
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
189

190 191 192
    def init_dtype(self):
        self.dtype = np.float32

193
    def test_check_grad(self):
194 195 196 197
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

198

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSigmoidBF16(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out')


M
minghaoBD 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
class TestSilu(TestActivation):
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
            F.silu(x_fp16)


C
chengduo 已提交
293
class TestLogSigmoid(TestActivation):
294 295
    def setUp(self):
        self.op_type = "logsigmoid"
296 297
        self.init_dtype()

298
        np.random.seed(2048)
299 300 301
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

302
        self.inputs = {'X': x}
303
        self.outputs = {'Out': out}
304 305

    def test_check_grad(self):
306 307
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
308
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
309 310


311
class TestLogSigmoidAPI(unittest.TestCase):
312
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
313
    def setUp(self):
314
        np.random.seed(1024)
315
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
316
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
317 318 319
            else paddle.CPUPlace()

    def test_static_api(self):
320
        paddle.enable_static()
321
        with paddle.static.program_guard(paddle.static.Program()):
322
            x = paddle.fluid.data('X', [11, 17])
323
            out1 = F.log_sigmoid(x)
324 325 326 327 328 329
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
330
            self.assertTrue(np.allclose(out_ref, r))
331 332 333 334

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
335
        out1 = F.log_sigmoid(x)
336 337 338 339
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
340
            self.assertTrue(np.allclose(out_ref, r.numpy()))
341 342
        paddle.enable_static()

343
    def test_fluid_api(self):
344
        paddle.enable_static()
345
        with paddle.static.program_guard(paddle.static.Program()):
346
            x = paddle.fluid.data('X', [11, 17])
347 348 349 350 351 352
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

353
    def test_errors(self):
354
        paddle.enable_static()
355 356
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
357
            self.assertRaises(TypeError, F.log_sigmoid, 1)
358
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
359 360
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
361
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
362
            # support the input dtype is float16
J
joejiong 已提交
363 364
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
365
            F.log_sigmoid(x_fp16)
366 367


368
class TestTanh(TestActivation, TestParameter):
369 370
    def setUp(self):
        self.op_type = "tanh"
371
        self.init_dtype()
372
        np.random.seed(1024)
373 374 375 376 377
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
378 379

    def test_check_grad(self):
380 381
        if self.dtype == np.float16:
            return
382
        self.check_grad(['X'], 'Out')
383

384 385 386 387 388 389
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

390

W
WangXi 已提交
391 392 393 394
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
395
        np.random.seed(1024)
W
WangXi 已提交
396
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
397
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
398
            else paddle.CPUPlace()
399 400 401 402
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
403 404

    def test_static_api(self):
405
        paddle.enable_static()
W
WangXi 已提交
406
        with paddle.static.program_guard(paddle.static.Program()):
407
            x = paddle.fluid.data('X', [10, 12], self.dtype)
408
            out1 = self.tanh(x)
W
WangXi 已提交
409 410 411 412 413 414 415 416 417 418
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
419
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
420 421 422 423 424 425 426 427 428 429
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
430
        paddle.enable_static()
W
WangXi 已提交
431 432 433 434 435 436 437 438 439
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
440
        paddle.enable_static()
W
WangXi 已提交
441 442
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
443
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
444
            # The input dtype must be float16, float32.
J
joejiong 已提交
445 446
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
447
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
448
            # support the input dtype is float16
J
joejiong 已提交
449 450
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
451 452 453 454 455 456 457
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
458 459


460
class TestAtan(TestActivation, TestParameter):
461 462 463 464
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

465
        np.random.seed(1024)
466 467 468 469 470 471 472 473 474
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
475
        self.check_grad(['X'], 'Out')
476

W
WuHaobo 已提交
477 478 479 480 481 482 483 484 485 486 487
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

488 489 490 491 492 493 494 495
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

496

497 498 499 500 501
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

502
        np.random.seed(1024)
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

574
        np.random.seed(1024)
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


641 642 643 644 645 646
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
647 648
    def setUp(self):
        self.op_type = "tanh_shrink"
649 650
        self.init_dtype()

651
        np.random.seed(1024)
652 653
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
654

655
        self.inputs = {'X': x}
656
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
657 658

    def test_check_grad(self):
659 660
        if self.dtype == np.float16:
            return
661
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
662

663

664 665 666
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
667
        np.random.seed(1024)
668
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
669
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
670 671 672
            else paddle.CPUPlace()

    def test_static_api(self):
673
        paddle.enable_static()
674
        with paddle.static.program_guard(paddle.static.Program()):
675
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
697
        paddle.enable_static()
698 699 700 701 702 703 704 705 706
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
707
        paddle.enable_static()
708 709 710 711
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
712 713
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
714 715
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
716 717
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
718 719 720
            F.tanhshrink(x_fp16)


721 722 723 724 725 726
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
727
class TestHardShrink(TestActivation):
728 729
    def setUp(self):
        self.op_type = "hard_shrink"
730 731
        self.init_dtype()

732 733
        self.threshold = 0.5
        self.set_attrs()
734
        np.random.seed(1024)
Z
zhupengyang 已提交
735
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
736
        out = ref_hardshrink(x, self.threshold)
737

738
        self.attrs = {'threshold': self.threshold}
739
        self.inputs = {'X': x}
740
        self.outputs = {'Out': out}
741

742 743 744
    def set_attrs(self):
        pass

745
    def test_check_grad(self):
746 747
        if self.dtype == np.float16:
            return
748
        self.check_grad(['X'], 'Out')
749 750


751 752 753 754 755
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


756 757 758
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
759
        np.random.seed(1024)
760
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
761
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
762 763 764
            else paddle.CPUPlace()

    def test_static_api(self):
765
        paddle.enable_static()
766
        with paddle.static.program_guard(paddle.static.Program()):
767
            x = paddle.fluid.data('X', [10, 12])
768 769 770 771 772 773 774 775 776 777 778
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
779
        x = paddle.to_tensor(self.x_np)
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
796
        paddle.enable_static()
797 798 799 800 801 802 803 804
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

805
    def test_errors(self):
806
        paddle.enable_static()
807
        with paddle.static.program_guard(paddle.static.Program()):
808
            # The input type must be Variable.
809
            self.assertRaises(TypeError, F.hardshrink, 1)
810
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
811 812
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
813
            self.assertRaises(TypeError, F.hardshrink, x_int32)
814
            # support the input dtype is float16
J
joejiong 已提交
815 816
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
817
            F.hardshrink(x_fp16)
818 819


820 821 822 823 824 825 826 827 828 829 830
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
831
        np.random.seed(1024)
832
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
833
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
834 835 836
            else paddle.CPUPlace()

    def test_static_api(self):
837
        paddle.enable_static()
838
        with paddle.static.program_guard(paddle.static.Program()):
839
            x = paddle.fluid.data('X', [10, 12])
840 841 842 843 844 845 846 847 848 849 850
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
851
        x = paddle.to_tensor(self.x_np)
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
868
        paddle.enable_static()
869 870 871 872
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
873 874
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
875 876
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
877 878
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
879 880 881
            F.hardtanh(x_fp16)


882 883 884 885 886 887 888 889
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
890 891
    def setUp(self):
        self.op_type = "softshrink"
892 893
        self.check_eager = True
        self.python_api = paddle.nn.functional.softshrink
894 895
        self.init_dtype()

896
        threshold = 0.8
897

898
        np.random.seed(1023)
899 900 901 902
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
903
        self.outputs = {'Out': out}
904 905

    def test_check_grad(self):
906 907
        if self.dtype == np.float16:
            return
908
        self.check_grad(['X'], 'Out', check_eager=True)
909

910

911 912 913 914
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
915
        np.random.seed(1024)
916
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
917
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
918 919 920
            else paddle.CPUPlace()

    def test_static_api(self):
921
        paddle.enable_static()
922
        with paddle.static.program_guard(paddle.static.Program()):
923
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
945
        paddle.enable_static()
946 947 948 949 950 951 952 953
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

954
    def test_errors(self):
955
        paddle.enable_static()
956
        with paddle.static.program_guard(paddle.static.Program()):
957
            # The input type must be Variable.
958
            self.assertRaises(TypeError, F.softshrink, 1)
959
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
960 961
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
962
            self.assertRaises(TypeError, F.softshrink, x_int32)
963
            # The threshold must be no less than zero
J
joejiong 已提交
964 965
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
966
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
967
            # support the input dtype is float16
J
joejiong 已提交
968 969
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
970
            F.softshrink(x_fp16)
971 972


973
class TestSqrt(TestActivation, TestParameter):
974 975
    def setUp(self):
        self.op_type = "sqrt"
976
        self.python_api = paddle.sqrt
977 978
        self.init_dtype()

979
        np.random.seed(1023)
980 981 982 983 984
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
985 986

    def test_check_grad(self):
987 988
        if self.dtype == np.float16:
            return
989 990 991 992
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
993

994

995 996 997 998 999
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSqrtBF16(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
1000
        self.python_api = paddle.sqrt
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        self.init_dtype()

        np.random.seed(1023)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.sqrt(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
1017
        self.check_output_with_place(place, check_eager=True)
1018 1019 1020

    def test_check_grad(self):
        place = core.CUDAPlace(0)
1021
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
1022 1023


Z
zhoukunsheng 已提交
1024 1025 1026
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
Z
zyfncg 已提交
1027
        self.python_api = paddle.rsqrt
Z
zhoukunsheng 已提交
1028 1029
        self.init_dtype()

1030
        np.random.seed(1024)
Z
zhupengyang 已提交
1031
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
1032 1033 1034 1035 1036 1037 1038 1039
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
Z
zyfncg 已提交
1040 1041
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.0005, check_eager=True)
Z
zhoukunsheng 已提交
1042 1043


C
chengduo 已提交
1044
class TestAbs(TestActivation):
1045 1046
    def setUp(self):
        self.op_type = "abs"
1047 1048
        self.init_dtype()

1049
        np.random.seed(1024)
1050
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
1051
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
1052
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
1053
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
1054 1055
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
1056 1057 1058 1059
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1060 1061

    def test_check_grad(self):
1062 1063
        if self.dtype == np.float16:
            return
1064
        self.check_grad(['X'], 'Out', check_eager=False)
1065

1066

C
chengduo 已提交
1067
class TestCeil(TestActivation):
D
dzhwinter 已提交
1068 1069
    def setUp(self):
        self.op_type = "ceil"
1070 1071
        self.check_eager = True
        self.python_api = paddle.ceil
1072 1073
        self.init_dtype()

1074
        np.random.seed(1024)
Z
zhupengyang 已提交
1075
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1076 1077 1078 1079
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1080

D
dzhwinter 已提交
1081
    # The same reason with TestFloor
C
chengduo 已提交
1082
    def test_check_grad(self):
1083 1084 1085
        pass


C
chengduo 已提交
1086
class TestFloor(TestActivation):
D
dzhwinter 已提交
1087 1088
    def setUp(self):
        self.op_type = "floor"
1089 1090
        self.check_eager = True
        self.python_api = paddle.floor
1091 1092
        self.init_dtype()

1093
        np.random.seed(1024)
Z
zhupengyang 已提交
1094
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1095 1096 1097 1098
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1099

D
dzhwinter 已提交
1100
    # the gradient on floor, ceil, round is undefined.
1101
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
1102 1103
    # The same reason with TestFloor
    def test_check_grad(self):
1104 1105 1106
        pass


C
chengduo 已提交
1107
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
1108 1109
    def setUp(self):
        self.op_type = "cos"
1110 1111
        self.init_dtype()

1112
        np.random.seed(1024)
Z
zhupengyang 已提交
1113
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1114 1115 1116 1117
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
1118 1119

    def test_check_grad(self):
1120 1121
        if self.dtype == np.float16:
            return
1122
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
1123

1124

J
joejiong 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1176 1177 1178 1179 1180
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

1181
        np.random.seed(1024)
Z
zhupengyang 已提交
1182
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1183 1184 1185 1186 1187 1188 1189 1190
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1191
        self.check_grad(['X'], 'Out')
1192 1193


1194
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
1195 1196
    def setUp(self):
        self.op_type = "sin"
1197 1198
        self.init_dtype()

1199
        np.random.seed(1024)
Z
zhupengyang 已提交
1200
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1201 1202 1203 1204
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1205 1206

    def test_check_grad(self):
1207 1208
        if self.dtype == np.float16:
            return
1209
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
1210 1211


1212 1213 1214 1215 1216
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1217
        np.random.seed(2048)
Z
zhupengyang 已提交
1218
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1219 1220 1221 1222 1223 1224 1225 1226
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1227
        self.check_grad(['X'], 'Out')
1228 1229


X
xiaoting 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
class TestAcosh(TestActivation):
    def setUp(self):
        self.op_type = "acosh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(2, 3, [10, 12]).astype(self.dtype)
        out = np.arccosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAsinh(TestActivation):
    def setUp(self):
        self.op_type = "asinh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(1, 2, [10, 12]).astype(self.dtype)
        out = np.arcsinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAtanh(TestActivation):
    def setUp(self):
        self.op_type = "atanh"
        self.init_dtype()

        np.random.seed(400)
        x = np.random.uniform(-0.9, 0.9, [10, 12]).astype(self.dtype)
        out = np.arctanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


C
chengduo 已提交
1284
class TestRound(TestActivation):
D
dzhwinter 已提交
1285 1286
    def setUp(self):
        self.op_type = "round"
1287 1288
        self.check_eager = True
        self.python_api = paddle.round
1289 1290
        self.init_dtype()

1291
        np.random.seed(1024)
Z
zhupengyang 已提交
1292
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1293 1294 1295 1296
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1297

C
chengduo 已提交
1298
    def test_check_grad(self):
1299 1300 1301
        pass


C
chengduo 已提交
1302
class TestRelu(TestActivation):
1303
    def setUp(self):
Q
qijun 已提交
1304
        self.op_type = "relu"
K
Kexin Zhao 已提交
1305 1306
        self.init_dtype()

1307
        np.random.seed(1024)
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
        if self.dtype == np.uint16:
            x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = convert_float_to_uint16(np.maximum(x, 0))
            self.inputs = {'X': convert_float_to_uint16(x)}
        else:
            x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = np.maximum(x, 0)
            self.inputs = {'X': x}
K
Kexin Zhao 已提交
1320 1321

        self.outputs = {'Out': out}
1322 1323

    def test_check_grad(self):
K
Kexin Zhao 已提交
1324 1325
        if self.dtype == np.float16:
            return
1326
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1327 1328


1329 1330 1331
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1332
        np.random.seed(1024)
1333
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1334
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1335
            else paddle.CPUPlace()
1336 1337 1338 1339
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1340 1341

    def test_static_api(self):
1342
        paddle.enable_static()
1343
        with paddle.static.program_guard(paddle.static.Program()):
1344
            x = paddle.fluid.data('X', [10, 12])
1345
            out1 = self.relu(x)
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1358 1359
        out1 = m(x)
        out2 = self.relu(x)
1360 1361 1362 1363 1364
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1365
    def test_errors(self):
1366
        paddle.enable_static()
1367
        with paddle.static.program_guard(paddle.static.Program()):
1368
            # The input type must be Variable.
1369
            self.assertRaises(TypeError, self.relu, 1)
1370
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1371 1372
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1373
            self.assertRaises(TypeError, self.relu, x_int32)
1374
            # support the input dtype is float16
J
joejiong 已提交
1375 1376
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1377 1378 1379 1380 1381 1382 1383
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1384 1385


1386 1387 1388 1389 1390 1391
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1392
class TestLeakyRelu(TestActivation):
1393 1394 1395
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1396 1397 1398
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1399
        alpha = self.get_alpha()
A
Adam 已提交
1400

1401
        np.random.seed(1024)
A
Adam 已提交
1402 1403
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1404 1405
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1406

1407
        self.inputs = {'X': x}
A
Adam 已提交
1408
        self.outputs = {'Out': out}
1409
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1410 1411 1412 1413

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1414
        self.check_grad(['X'], 'Out')
1415 1416


1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1436
        np.random.seed(1024)
1437
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1438
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1439 1440 1441
            else paddle.CPUPlace()

    def test_static_api(self):
1442
        paddle.enable_static()
1443
        with paddle.static.program_guard(paddle.static.Program()):
1444
            x = paddle.fluid.data('X', [10, 12])
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1456
        x = paddle.to_tensor(self.x_np)
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1473
        paddle.enable_static()
1474 1475 1476 1477 1478 1479 1480 1481
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1482
    def test_errors(self):
1483
        paddle.enable_static()
1484
        with paddle.static.program_guard(paddle.static.Program()):
1485
            # The input type must be Variable.
1486
            self.assertRaises(TypeError, F.leaky_relu, 1)
1487
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1488 1489
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1490 1491
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1492 1493
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1494
            F.leaky_relu(x_fp16)
1495 1496


1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1507 1508 1509
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1510
        approximate = True
1511
        np.random.seed(1024)
1512 1513
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1514

1515
        self.inputs = {'X': x}
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1530
        np.random.seed(2048)
C
Clementine 已提交
1531
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1532
        out = gelu(x, approximate)
C
Clementine 已提交
1533

1534
        self.inputs = {'X': x}
C
Clementine 已提交
1535
        self.outputs = {'Out': out}
1536
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1537 1538 1539 1540

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1541
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1542 1543


1544 1545 1546
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1547
        np.random.seed(1024)
1548
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1549
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1550 1551 1552
            else paddle.CPUPlace()

    def test_static_api(self):
1553
        paddle.enable_static()
1554
        with paddle.static.program_guard(paddle.static.Program()):
1555
            x = paddle.fluid.data('X', [11, 17])
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1584
        paddle.enable_static()
1585 1586 1587 1588
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1589 1590
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1591 1592
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1593 1594
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1595 1596 1597
            F.gelu(x_fp16)


C
chengduo 已提交
1598
class TestBRelu(TestActivation):
1599 1600
    def setUp(self):
        self.op_type = "brelu"
1601 1602
        self.init_dtype()

1603
        np.random.seed(1024)
Z
zhupengyang 已提交
1604
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1605 1606
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1607 1608
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1609
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1610 1611 1612
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1613 1614 1615

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1616
        self.outputs = {'Out': t}
1617 1618

    def test_check_grad(self):
1619 1620
        if self.dtype == np.float16:
            return
1621
        self.check_grad(['X'], 'Out')
1622

1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1635
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1665 1666 1667 1668 1669 1670 1671
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1672
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1673
    def setUp(self):
1674
        self.op_type = "relu6"
1675 1676
        self.init_dtype()

1677
        np.random.seed(1024)
Z
zhupengyang 已提交
1678
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1679
        x[np.abs(x) < 0.005] = 0.02
1680
        out = ref_relu6(x)
1681

1682 1683
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1684
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1685

1686 1687 1688
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1689
        self.check_grad(['X'], 'Out')
1690 1691


1692 1693 1694
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1695
        np.random.seed(1024)
1696 1697
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1698
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1699 1700 1701
            else paddle.CPUPlace()

    def test_static_api(self):
1702
        paddle.enable_static()
1703
        with paddle.static.program_guard(paddle.static.Program()):
1704
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1726
        paddle.enable_static()
1727 1728 1729 1730 1731 1732 1733 1734
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1735
    def test_errors(self):
1736
        paddle.enable_static()
1737
        with paddle.static.program_guard(paddle.static.Program()):
1738
            # The input type must be Variable.
1739
            self.assertRaises(TypeError, F.relu6, 1)
1740
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1741 1742
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1743
            self.assertRaises(TypeError, F.relu6, x_int32)
1744
            # support the input dtype is float16
J
joejiong 已提交
1745 1746
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1747
            F.relu6(x_fp16)
1748 1749


1750 1751 1752 1753 1754
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1755 1756 1757 1758
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()
1759
        self.python_api = paddle.nn.functional.hardswish
J
jakpiase 已提交
1760 1761
        skip_check_grad_ci(reason="not implemented yet")

1762
        np.random.seed(1024)
Z
zhupengyang 已提交
1763
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1764 1765 1766 1767 1768 1769
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1770
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1771

1772
        self.inputs = {'X': x}
H
huangjun12 已提交
1773 1774 1775 1776 1777 1778
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1779 1780

        return  # not implemented yet
1781 1782 1783 1784
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
H
huangjun12 已提交
1785 1786


1787 1788 1789 1790
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1791
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1792 1793 1794 1795
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1796
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1815
        paddle.enable_static()
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1834
            # The input type must be Variable.
1835
            self.assertRaises(TypeError, F.hardswish, 1)
1836
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1837 1838
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1839
            self.assertRaises(TypeError, F.hardswish, x_int32)
1840
            # support the input dtype is float16
J
joejiong 已提交
1841 1842
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1843
            F.hardswish(x_fp16)
1844

1845 1846 1847 1848 1849
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_dygraph_api()
            self.test_errors()

1850

C
chengduo 已提交
1851
class TestSoftRelu(TestActivation):
1852 1853
    def setUp(self):
        self.op_type = "soft_relu"
1854 1855
        self.init_dtype()

1856
        np.random.seed(4096)
1857
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1858
        threshold = 2.0
Q
qijun 已提交
1859 1860
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1861
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1862 1863 1864
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1865 1866 1867 1868 1869
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1870 1871

    def test_check_grad(self):
1872 1873
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1874
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1875

1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1890
def elu(x, alpha):
Z
zhupengyang 已提交
1891
    out_ref = np.where(x > 0, x, alpha * (np.exp(x) - 1))
1892 1893 1894
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1895
class TestELU(TestActivation):
1896 1897
    def setUp(self):
        self.op_type = "elu"
1898 1899
        self.init_dtype()

1900
        np.random.seed(1024)
Z
zhupengyang 已提交
1901
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
Z
zhupengyang 已提交
1902
        alpha = self.get_alpha()
1903
        out = elu(x, alpha)
1904 1905 1906 1907
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1908
        self.outputs = {'Out': out}
1909 1910

    def test_check_grad(self):
1911 1912
        if self.dtype == np.float16:
            return
1913
        self.check_grad(['X'], 'Out')
1914

Z
zhupengyang 已提交
1915 1916 1917 1918 1919 1920 1921 1922
    def get_alpha(self):
        return 1.


class TestELUAlpha(TestELU):
    def get_alpha(self):
        return -0.2

1923

1924 1925 1926
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1927
        np.random.seed(1024)
1928
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1929
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1930
            else paddle.CPUPlace()
1931 1932 1933 1934
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1935 1936

    def test_static_api(self):
1937
        paddle.enable_static()
1938
        with paddle.static.program_guard(paddle.static.Program()):
1939
            x = paddle.fluid.data('X', [10, 12])
1940
            out1 = self.elu(x)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1952 1953
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1954 1955 1956 1957 1958 1959
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1960 1961
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1962 1963 1964 1965 1966 1967 1968
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1969
    def test_errors(self):
1970
        paddle.enable_static()
1971 1972
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1973
            self.assertRaises(TypeError, self.elu, 1)
1974
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1975 1976
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1977
            self.assertRaises(TypeError, self.elu, x_int32)
1978
            # support the input dtype is float16
J
joejiong 已提交
1979 1980
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1981 1982 1983
            self.elu(x_fp16)


Z
zhupengyang 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_

    def test_alpha_error(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        self.assertRaises(Exception, F.elu_, x, -0.2)
        paddle.enable_static()


1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
def celu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x / alpha) - 1))
    return out_ref.astype(x.dtype)


class TestCELU(TestActivation):
    def setUp(self):
        self.op_type = "celu"
        self.init_dtype()

2006
        self.python_api = paddle.nn.functional.celu
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
        np.random.seed(1024)
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
        alpha = 1.5
        out = celu(x, alpha)
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2018
        self.check_grad(['X'], 'Out', check_eager=True)
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083


class TestCELUAPI(unittest.TestCase):
    # test paddle.nn.CELU, paddle.nn.functional.celu
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        self.executed_api()

    def executed_api(self):
        self.celu = F.celu

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out1 = self.celu(x, 1.5)
            m = paddle.nn.CELU(1.5)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = celu(self.x_np, 1.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = self.celu(x, 1.5)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(1.5)
        out2 = m(x)
        out_ref = celu(self.x_np, 1.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = self.celu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(0.2)
        out2 = m(x)
        out_ref = celu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, self.celu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, self.celu, x_int32)
            # The alpha must be not equal 0
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[10, 12], dtype='float32')
            self.assertRaises(ZeroDivisionError, F.celu, x_fp32, 0)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
            self.celu(x_fp16)

2084 2085 2086 2087 2088
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_dygraph_api()
            self.test_errors()

2089

C
chengduo 已提交
2090
class TestReciprocal(TestActivation):
Q
qijun 已提交
2091 2092
    def setUp(self):
        self.op_type = "reciprocal"
2093
        self.python_api = paddle.reciprocal
2094 2095
        self.init_dtype()

2096
        np.random.seed(1024)
2097 2098 2099 2100 2101
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2102 2103

    def test_check_grad(self):
2104 2105
        if self.dtype == np.float16:
            return
2106 2107 2108 2109
        self.check_grad(['X'], 'Out', max_relative_error=0.01, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2110 2111


C
chengduo 已提交
2112
class TestLog(TestActivation):
Q
qijun 已提交
2113 2114
    def setUp(self):
        self.op_type = "log"
2115 2116
        self.check_eager = True
        self.python_api = paddle.log
2117 2118
        self.init_dtype()

2119
        np.random.seed(1024)
2120 2121 2122 2123 2124
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2125 2126

    def test_check_grad(self):
2127 2128
        if self.dtype == np.float16:
            return
2129
        self.check_grad(['X'], 'Out', check_eager=True)
Q
qijun 已提交
2130

2131 2132 2133 2134 2135 2136 2137 2138 2139
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

2140

J
joejiong 已提交
2141 2142 2143
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
2144 2145
        self.check_eager = True
        self.python_api = paddle.log2
J
joejiong 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2157
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
2192 2193 2194
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
2195 2196
        self.check_eager = True
        self.python_api = paddle.log10
J
joejiong 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2208
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


2243 2244 2245
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
2246 2247
        self.check_eager = True
        self.python_api = paddle.log1p
2248 2249
        self.init_dtype()

2250
        np.random.seed(1024)
2251 2252 2253 2254 2255 2256 2257 2258 2259
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2260
        self.check_grad(['X'], 'Out', check_eager=True)
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
2274 2275 2276
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
2277
        expected_res = np.log1p(input_x)
2278
        self.assertTrue(np.allclose(res1, expected_res))
2279 2280 2281 2282 2283 2284 2285 2286

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
2287
        self.assertTrue(np.allclose(np_z, z_expected))
2288 2289


C
chengduo 已提交
2290
class TestSquare(TestActivation):
Q
qijun 已提交
2291 2292
    def setUp(self):
        self.op_type = "square"
2293
        self.python_api = paddle.square
2294 2295
        self.init_dtype()

2296
        np.random.seed(1024)
2297 2298 2299 2300 2301
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2302 2303

    def test_check_grad(self):
2304 2305
        if self.dtype == np.float16:
            return
2306 2307 2308 2309 2310
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.007, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2311

2312

2313 2314 2315 2316 2317
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSquareBF16(OpTest):
    def setUp(self):
        self.op_type = "square"
2318
        self.python_api = paddle.square
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.square(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
2335
        self.check_output_with_place(place, check_eager=True)
2336 2337 2338

    def test_check_grad(self):
        place = core.CUDAPlace(0)
2339 2340
        self.check_grad_with_place(
            place, ['X'], 'Out', numeric_grad_delta=0.5, check_eager=True)
2341 2342


C
chengduo 已提交
2343
class TestPow(TestActivation):
2344 2345
    def setUp(self):
        self.op_type = "pow"
2346
        self.python_api = paddle.pow
2347
        self.check_eager = True
2348 2349
        self.init_dtype()

2350
        np.random.seed(1024)
2351 2352 2353 2354
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
2355
        self.attrs = {'factor': 3.0}
2356
        self.outputs = {'Out': out}
2357

2358 2359 2360
    def test_check_output(self):
        self.check_output(check_eager=self.check_eager)

2361
    def test_check_grad(self):
2362 2363
        if self.dtype == np.float16:
            return
2364
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2365

2366

2367 2368 2369
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
2370 2371
        self.check_eager = False
        self.python_api = paddle.pow
2372 2373
        self.init_dtype()

2374
        np.random.seed(1024)
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
2387
        self.check_output(check_eager=self.check_eager)
2388 2389 2390 2391

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2392
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2393 2394 2395 2396 2397

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
2398 2399 2400 2401 2402
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
2403 2404 2405 2406 2407

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2408 2409 2410
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2411 2412

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2413
        res_1, res_2, res, res_6 = exe.run(
2414 2415
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2416
            fetch_list=[out_1, out_2, res, out_6])
2417

2418 2419 2420
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2421

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2445

2446 2447 2448 2449 2450
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2451
class TestSTanh(TestActivation):
2452 2453 2454 2455 2456 2457
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2458 2459
    def setUp(self):
        self.op_type = "stanh"
2460
        self.init_dtype()
2461 2462
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2463

2464
        np.random.seed(1024)
2465
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2466 2467
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2468

2469
        self.inputs = {'X': x}
2470
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2471
        self.outputs = {'Out': out}
2472

Q
qijun 已提交
2473
    def test_check_grad(self):
2474 2475
        if self.dtype == np.float16:
            return
2476
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2477

2478

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2535
    def test_errors(self):
2536 2537
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2538
            # The input type must be Variable.
2539
            self.assertRaises(TypeError, paddle.stanh, 1)
2540
            # The input dtype must be float16, float32, float64.
2541 2542 2543
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2544
            # support the input dtype is float16
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2558 2559


2560 2561 2562 2563 2564 2565 2566
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2567
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2568 2569
    def setUp(self):
        self.op_type = "softplus"
2570 2571
        self.init_dtype()

2572 2573
        beta = 2
        threshold = 15
2574

2575
        np.random.seed(1024)
2576 2577 2578 2579
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2580
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2581 2582

    def test_check_grad(self):
2583 2584
        if self.dtype == np.float16:
            return
2585
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2586

2587

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftplusBF16(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.init_dtype()

        beta = 2
        threshold = 15

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(np.float32)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'beta': beta, "threshold": threshold}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', numeric_grad_delta=0.05)


2617 2618 2619 2620 2621
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2622
        np.random.seed(1024)
2623
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2624
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2625 2626 2627
            else paddle.CPUPlace()

    def test_static_api(self):
2628
        paddle.enable_static()
2629
        with paddle.static.program_guard(paddle.static.Program()):
2630
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2652
        paddle.enable_static()
2653 2654 2655 2656 2657 2658 2659 2660 2661
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2662
        paddle.enable_static()
2663 2664 2665 2666
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2667 2668
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2669 2670
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2671 2672
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2673 2674 2675 2676 2677 2678 2679 2680
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2681
class TestSoftsign(TestActivation):
2682 2683
    def setUp(self):
        self.op_type = "softsign"
2684 2685
        self.init_dtype()

2686
        np.random.seed(1024)
2687 2688 2689
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2690
        self.outputs = {'Out': out}
2691 2692

    def test_check_grad(self):
2693 2694
        if self.dtype == np.float16:
            return
2695
        self.check_grad(['X'], 'Out')
2696 2697


2698 2699 2700
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2701
        np.random.seed(1024)
2702
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2703
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2704 2705 2706
            else paddle.CPUPlace()

    def test_static_api(self):
2707
        paddle.enable_static()
2708
        with paddle.static.program_guard(paddle.static.Program()):
2709
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2731
        paddle.enable_static()
2732 2733 2734 2735 2736 2737 2738 2739 2740
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2741
        paddle.enable_static()
2742 2743 2744 2745
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2746 2747
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2748 2749
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2750 2751
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2752 2753 2754
            F.softsign(x_fp16)


2755 2756 2757 2758 2759
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2760
class TestThresholdedRelu(TestActivation):
2761 2762
    def setUp(self):
        self.op_type = "thresholded_relu"
2763 2764
        self.init_dtype()

2765
        threshold = 15
2766

2767 2768 2769 2770 2771 2772
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2773
        self.outputs = {'Out': out}
2774 2775

    def test_check_grad(self):
2776 2777
        if self.dtype == np.float16:
            return
2778
        self.check_grad(['X'], 'Out')
2779 2780


2781 2782 2783 2784 2785 2786 2787
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2788
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2789 2790 2791 2792 2793
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2794
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2825
    def test_errors(self):
2826 2827
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2828
            # The input type must be Variable.
2829
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2830
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2831 2832
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2833
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2834
            # support the input dtype is float16
J
joejiong 已提交
2835 2836
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2837
            F.thresholded_relu(x_fp16)
2838 2839


2840 2841 2842 2843
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2844
class TestHardSigmoid(TestActivation):
2845 2846
    def setUp(self):
        self.op_type = "hard_sigmoid"
2847 2848 2849 2850
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2851

2852 2853 2854
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2855

2856
        # Same reason as TestAbs
2857 2858 2859
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2860

2861
        out = ref_hardsigmoid(x, self.slope, self.offset)
2862

2863 2864
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2865
        self.outputs = {'Out': out}
2866

2867 2868
    def set_attrs(self):
        pass
2869

2870

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2886
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2887 2888 2889 2890
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2891
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2910
        paddle.enable_static()
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2929
            # The input type must be Variable.
2930
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2931
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2932 2933
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2934
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2935
            # support the input dtype is float16
J
joejiong 已提交
2936 2937
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2938
            F.hardsigmoid(x_fp16)
2939 2940


2941 2942 2943 2944 2945
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2946
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2947 2948
    def setUp(self):
        self.op_type = "swish"
2949
        self.python_api = paddle.nn.functional.swish
2950
        self.init_dtype()
2951
        self.check_eager = True
2952

2953
        np.random.seed(1024)
2954 2955 2956
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2957
        self.attrs = {'beta': 1.0}
2958
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2959 2960

    def test_check_grad(self):
2961 2962
        if self.dtype == np.float16:
            return
2963 2964 2965 2966
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_grad(['X'], 'Out', check_eager=check_eager)
2967

A
Abhinav Arora 已提交
2968

2969 2970 2971 2972 2973
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2974
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2975 2976 2977 2978 2979
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2980
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

3001 3002 3003 3004
    def test_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_dygraph_api()

3005 3006 3007 3008 3009 3010 3011 3012 3013
    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
3014

3015
    def test_errors(self):
3016 3017
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
3018
            # The input type must be Variable.
3019
            self.assertRaises(TypeError, F.swish, 1)
3020
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
3021 3022
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
3023
            self.assertRaises(TypeError, F.swish, x_int32)
3024
            # support the input dtype is float16
J
joejiong 已提交
3025 3026
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
3027
            F.swish(x_fp16)
3028 3029


3030 3031 3032 3033 3034 3035 3036 3037 3038
def ref_mish(x, threshold=20.):
    softplus = np.select([x <= threshold, x > threshold],
                         [np.log(1 + np.exp(x)), x])
    return x * np.tanh(softplus)


class TestMish(TestActivation):
    def setUp(self):
        self.op_type = "mish"
3039
        self.python_api = paddle.fluid.layers.nn.mish
3040 3041 3042 3043 3044 3045 3046 3047
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_mish(x)
        self.inputs = {'X': x}
        self.outputs = {'Out': out}

3048 3049 3050
    def test_check_output(self):
        self.check_output(check_eager=True)

3051 3052 3053
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
3054
        self.check_grad(['X'], 'Out', check_eager=True)
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113


class TestMishAPI(unittest.TestCase):
    # test paddle.nn.Mish, paddle.nn.functional.mish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.mish(x)
            mish = paddle.nn.Mish()
            out2 = mish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_mish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.mish(x)
        mish = paddle.nn.Mish()
        out2 = mish(x)
        out_ref = ref_mish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.mish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_mish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.mish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.mish, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            F.mish(x_fp16)


3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
3145
create_test_error_class('tan')
X
xiaoting 已提交
3146 3147 3148
create_test_error_class('acosh')
create_test_error_class('asinh')
create_test_error_class('atanh')
3149 3150


3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
3170 3171 3172 3173 3174
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
3175
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
3176 3177 3178 3179
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
3180

C
chengduo 已提交
3181
        def test_check_output(self):
3182
            place = core.CUDAPlace(0)
C
chengduo 已提交
3183 3184 3185
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
3186

C
chengduo 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
R
ronnywang 已提交
3200
create_test_act_fp16_class(TestExpm1)
C
chengduo 已提交
3201
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
3202
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
3203 3204
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
3205
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
3206
create_test_act_fp16_class(TestHardShrink)
3207
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
3208 3209 3210 3211 3212
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
3213
create_test_act_fp16_class(TestTan, grad_atol=0.85)
3214
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
3215
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
3216
create_test_act_fp16_class(TestSin)
3217
create_test_act_fp16_class(TestSinh)
3218 3219
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
X
xiaoting 已提交
3220 3221 3222
create_test_act_fp16_class(TestAcosh, grad_atol=0.85)
create_test_act_fp16_class(TestAsinh, grad_atol=0.85)
create_test_act_fp16_class(TestAtanh, grad_atol=0.85)
C
chengduo 已提交
3223 3224
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
3225
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
3226 3227
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
3228
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
3229
create_test_act_fp16_class(TestELU)
3230
create_test_act_fp16_class(TestCELU)
C
chengduo 已提交
3231 3232
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
3233 3234 3235 3236
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
3237
create_test_act_fp16_class(TestLog10, atol=5e-2)
3238
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
3239 3240
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
3241
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
3242 3243 3244 3245 3246
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
3247
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
3248
create_test_act_fp16_class(TestHardSwish)
3249
create_test_act_fp16_class(TestMish, grad_atol=0.9)
A
Abhinav Arora 已提交
3250

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277

def create_test_act_bf16_class(parent,
                               atol=1e-2,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActBF16(parent):
        def init_dtype(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "bf16")
    TestActBF16.__name__ = cls_name
    globals()[cls_name] = TestActBF16


create_test_act_bf16_class(TestRelu)

Q
qijun 已提交
3278 3279
if __name__ == "__main__":
    unittest.main()