softmax_op.cc 8.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

L
liuwei1031 已提交
15
#include <memory>
16
#include <string>
L
liuwei1031 已提交
17
#include <unordered_map>
18

19
#include "paddle/fluid/framework/infershape_utils.h"
20
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22

23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
26

27 28 29 30
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"

31 32 33
namespace paddle {
namespace operators {

D
dongzhihong 已提交
34
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
35 36 37
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

38 39 40 41
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
42
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
43 44
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
45
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
46

47
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
48
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
49
      library_ = framework::LibraryType::kCUDNN;
50 51
    }
#endif
52 53
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
54
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
55
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
56
      layout_ = framework::DataLayout::kMKLDNN;
57 58
    }
#endif
K
Kexin Zhao 已提交
59 60

    if (input_data_type == framework::proto::VarType::FP16) {
61 62 63 64 65 66 67 68
      PADDLE_ENFORCE_EQ(
          platform::is_gpu_place(ctx.GetPlace()) ||
              platform::is_npu_place(ctx.GetPlace()) ||
              platform::is_xpu_place(ctx.GetPlace()) ||
              platform::is_mlu_place(ctx.GetPlace()),
          true,
          platform::errors::InvalidArgument(
              "float16 can only be used on GPU/NPU/XPU/MLU place"));
K
Kexin Zhao 已提交
69 70
    }

M
mozga-intel 已提交
71
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
72
                                   library_);
73
  }
74
};
75

D
dongzhihong 已提交
76
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
77
 public:
Y
Yu Yang 已提交
78
  void Make() override {
79
    AddInput("X",
F
fengjiayi 已提交
80
             "The input tensor of softmax, "
D
dengkaipeng 已提交
81
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
82
    AddOutput("Out", "The normalized values with the same shape as X.");
83
    AddAttr<int>("axis",
D
dengkaipeng 已提交
84
                 "The dimension index of Input(x) to perform softmax,"
85 86
                 "default -1 for last dimension")
        .SetDefault(-1);
87 88 89
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
90 91
        .SetDefault(false)
        .AsExtra();
92 93 94 95 96 97 98
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
99 100
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
101 102
        .SetDefault(false)
        .AsExtra();
103 104 105 106
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
107 108
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
J
Jacek Czaja 已提交
109
    AddAttr<bool>("is_test",
110 111
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
112 113
        .SetDefault(false)
        .AsExtra();
C
caoying03 已提交
114
    AddComment(R"DOC(
115 116
Softmax Operator.

117
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
118
has the same shape as the input.
C
caoying03 已提交
119

D
dengkaipeng 已提交
120
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
121
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
122
second dimension(row length) is as same as the dimension :attr:`axis` of the input
123 124 125
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
126
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
127
K-dimensional vector of real values in the range [0, 1] that add up to 1.
128 129 130 131 132
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
133

F
fengjiayi 已提交
134
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
135
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
136 137

)DOC");
138 139 140
  }
};

C
chengduo 已提交
141 142
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
143
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
144
      const override {
145 146
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
147 148 149
  }
};

D
dongzhihong 已提交
150
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
151 152 153
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

154 155 156 157
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
158
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
159 160
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
161 162
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
163
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
164
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
165
      library_ = framework::LibraryType::kCUDNN;
166 167
    }
#endif
J
Jacek Czaja 已提交
168 169
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
170
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
J
Jacek Czaja 已提交
171 172 173 174 175
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    if (input_data_type == framework::proto::VarType::FP16) {
176
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
177
            platform::is_npu_place(ctx.GetPlace()) ||
178 179
            platform::is_xpu_place(ctx.GetPlace()) ||
            platform::is_mlu_place(ctx.GetPlace())))
180
        PADDLE_THROW(platform::errors::InvalidArgument(
181
            "float16 can only be used on GPU/NPU/XPU/MLU place"));
J
Jacek Czaja 已提交
182 183 184 185
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
186
  }
D
dongzhihong 已提交
187 188
};

H
hong 已提交
189 190
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
191
 public:
H
hong 已提交
192
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
193 194

 protected:
195
  void Apply(GradOpPtr<T> op) const override {
196 197
    op->SetType("softmax_grad");

H
hong 已提交
198 199
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
200

H
hong 已提交
201
    op->SetAttrMap(this->Attrs());
202

H
hong 已提交
203
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
204 205
  }
};
D
dzhwinter 已提交
206

207 208
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

209 210 211
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
212
namespace ops = paddle::operators;
D
dongzhihong 已提交
213

214 215
DECLARE_INFER_SHAPE_FUNCTOR(softmax, SoftmaxInferShapeFunctor,
                            PD_INFER_META(phi::SoftmaxInferMeta));
Y
Yang Yang 已提交
216
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
H
hong 已提交
217 218 219
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
220
                  ops::SoftmaxInplaceInferer, SoftmaxInferShapeFunctor);
C
Chen Weihang 已提交
221
DECLARE_INFER_SHAPE_FUNCTOR(softmax_grad, SoftmaxGradInferShapeFunctor,
222 223
                            PD_INFER_META(phi::GeneralUnaryGradInferMeta));
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad,
C
Chen Weihang 已提交
224
                  SoftmaxGradInferShapeFunctor);