softmax_op.cc 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16

L
liuwei1031 已提交
17
#include <memory>
18
#include <string>
L
liuwei1031 已提交
19
#include <unordered_map>
20

K
Kexin Zhao 已提交
21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
24

25 26 27 28
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif

29 30 31
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
32

33 34 35
namespace paddle {
namespace operators {

D
dongzhihong 已提交
36
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
37 38 39
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

40
  void InferShape(framework::InferShapeContext* ctx) const override {
41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) of SoftmaxOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of SoftmaxOp is not found."));
Q
Qiao Longfei 已提交
47

48 49 50
    auto dim_x = ctx->GetInputDim("X");
    auto rank_x = dim_x.size();
    auto axis = ctx->Attrs().Get<int>("axis");
51 52 53 54 55 56 57 58
    PADDLE_ENFORCE_GE(axis, -rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
    PADDLE_ENFORCE_LT(axis, rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
59

F
fengjiayi 已提交
60
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
61
    ctx->ShareLoD("X", /*->*/ "Out");
62
  }
63 64 65 66 67

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
68
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
69 70
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
71
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
72

73
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
74
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
75
      library_ = framework::LibraryType::kCUDNN;
76 77
    }
#endif
78 79
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
80
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
81
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
82
      layout_ = framework::DataLayout::kMKLDNN;
83 84
    }
#endif
K
Kexin Zhao 已提交
85

86
#ifndef PADDLE_WITH_ASCEND_CL
K
Kexin Zhao 已提交
87
    if (input_data_type == framework::proto::VarType::FP16) {
88 89 90 91
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()) ||
                            platform::is_xpu_place(ctx.GetPlace()),
                        true, platform::errors::InvalidArgument(
                                  "float16 can only be used on GPU/XPU place"));
K
Kexin Zhao 已提交
92
    }
93
#endif
K
Kexin Zhao 已提交
94

M
mozga-intel 已提交
95
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
96
                                   library_);
97
  }
98
};
99

D
dongzhihong 已提交
100
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
101
 public:
Y
Yu Yang 已提交
102
  void Make() override {
103
    AddInput("X",
F
fengjiayi 已提交
104
             "The input tensor of softmax, "
D
dengkaipeng 已提交
105
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
106
    AddOutput("Out", "The normalized values with the same shape as X.");
107
    AddAttr<int>("axis",
D
dengkaipeng 已提交
108
                 "The dimension index of Input(x) to perform softmax,"
109 110
                 "default -1 for last dimension")
        .SetDefault(-1);
111 112 113
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
114 115
        .SetDefault(false)
        .AsExtra();
116 117 118 119 120 121 122
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
123 124
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
125 126
        .SetDefault(false)
        .AsExtra();
127 128 129 130
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
131 132
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
J
Jacek Czaja 已提交
133
    AddAttr<bool>("is_test",
134 135
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
136 137
        .SetDefault(false)
        .AsExtra();
C
caoying03 已提交
138
    AddComment(R"DOC(
139 140
Softmax Operator.

141
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
142
has the same shape as the input.
C
caoying03 已提交
143

D
dengkaipeng 已提交
144
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
145
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
146
second dimension(row length) is as same as the dimension :attr:`axis` of the input
147 148 149
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
150
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
151
K-dimensional vector of real values in the range [0, 1] that add up to 1.
152 153 154 155 156
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
157

F
fengjiayi 已提交
158
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
159
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
160 161

)DOC");
162 163 164
  }
};

C
chengduo 已提交
165 166
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
167
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
168
      const override {
169 170
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
171 172 173
  }
};

D
dongzhihong 已提交
174
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
175 176 177
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

178
  void InferShape(framework::InferShapeContext* ctx) const override {
179 180 181 182 183 184 185 186 187 188 189
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Out"), true,
        platform::errors::InvalidArgument("Input(Out) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::InvalidArgument("Input(Out@GRAD) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->GetInputDim("Out"),
        ctx->GetInputDim(framework::GradVarName("Out")),
        platform::errors::InvalidArgument("Input(Out) and its gradients "
                                          "should have a same shape."));
190

191 192
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
193
  }
194 195 196 197 198

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
199
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
200 201
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
202 203
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
204
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
205
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
206
      library_ = framework::LibraryType::kCUDNN;
207 208
    }
#endif
J
Jacek Czaja 已提交
209 210
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
211
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
J
Jacek Czaja 已提交
212 213 214 215 216
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    if (input_data_type == framework::proto::VarType::FP16) {
217
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
218 219
            platform::is_npu_place(ctx.GetPlace()) ||
            platform::is_xpu_place(ctx.GetPlace())))
220
        PADDLE_THROW(platform::errors::InvalidArgument(
221
            "float16 can only be used on GPU/NPU/XPU place"));
J
Jacek Czaja 已提交
222 223 224 225
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
226
  }
D
dongzhihong 已提交
227 228
};

H
hong 已提交
229 230
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
231
 public:
H
hong 已提交
232
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
233 234

 protected:
235
  void Apply(GradOpPtr<T> op) const override {
236 237
    op->SetType("softmax_grad");

H
hong 已提交
238 239
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
240

H
hong 已提交
241
    op->SetAttrMap(this->Attrs());
242

H
hong 已提交
243
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
244 245
  }
};
D
dzhwinter 已提交
246

247 248
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

249 250 251
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
252
namespace ops = paddle::operators;
D
dongzhihong 已提交
253

Y
Yang Yang 已提交
254
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
H
hong 已提交
255 256 257
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
258
                  ops::SoftmaxInplaceInferer);
259
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
260
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
261 262
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
263 264
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
265 266
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);