softmax_op.cc 9.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16

L
liuwei1031 已提交
17
#include <memory>
18
#include <string>
L
liuwei1031 已提交
19
#include <unordered_map>
20

K
Kexin Zhao 已提交
21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
24

25 26 27
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28

29 30 31
namespace paddle {
namespace operators {

D
dongzhihong 已提交
32
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
33 34 35
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

36
  void InferShape(framework::InferShapeContext* ctx) const override {
37 38 39 40 41 42
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) of SoftmaxOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of SoftmaxOp is not found."));
Q
Qiao Longfei 已提交
43

44 45 46
    auto dim_x = ctx->GetInputDim("X");
    auto rank_x = dim_x.size();
    auto axis = ctx->Attrs().Get<int>("axis");
47 48 49 50 51 52 53 54
    PADDLE_ENFORCE_GE(axis, -rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
    PADDLE_ENFORCE_LT(axis, rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
55

F
fengjiayi 已提交
56
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
57
    ctx->ShareLoD("X", /*->*/ "Out");
58
  }
59 60 61 62 63

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
64
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
65 66 67
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

68
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
69
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
70
      library_ = framework::LibraryType::kCUDNN;
71 72
    }
#endif
73 74 75 76
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
77
      layout_ = framework::DataLayout::kMKLDNN;
78 79
    }
#endif
K
Kexin Zhao 已提交
80

81
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
K
Kexin Zhao 已提交
82
    if (input_data_type == framework::proto::VarType::FP16) {
83 84 85
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                        platform::errors::InvalidArgument(
                            "float16 can only be used on GPU place"));
K
Kexin Zhao 已提交
86 87
    }

M
mozga-intel 已提交
88
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
89
                                   library_);
90
  }
91
};
92

D
dongzhihong 已提交
93
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
94
 public:
Y
Yu Yang 已提交
95
  void Make() override {
96
    AddInput("X",
F
fengjiayi 已提交
97
             "The input tensor of softmax, "
D
dengkaipeng 已提交
98
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
99
    AddOutput("Out", "The normalized values with the same shape as X.");
100
    AddAttr<int>("axis",
D
dengkaipeng 已提交
101
                 "The dimension index of Input(x) to perform softmax,"
102 103
                 "default -1 for last dimension")
        .SetDefault(-1);
104 105 106 107 108 109 110 111 112 113 114
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
115 116 117
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
118
    AddAttr<bool>("is_test",
119 120
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
J
Jacek Czaja 已提交
121
        .SetDefault(false);
C
caoying03 已提交
122
    AddComment(R"DOC(
123 124
Softmax Operator.

125
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
126
has the same shape as the input.
C
caoying03 已提交
127

D
dengkaipeng 已提交
128
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
129
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
130
second dimension(row length) is as same as the dimension :attr:`axis` of the input
131 132 133
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
134
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
135
K-dimensional vector of real values in the range [0, 1] that add up to 1.
136 137 138 139 140
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
141

F
fengjiayi 已提交
142
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
143
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
144 145

)DOC");
146 147 148
  }
};

C
chengduo 已提交
149 150
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
151
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
152
      const override {
153 154
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
155 156 157
  }
};

D
dongzhihong 已提交
158
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
159 160 161
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

162
  void InferShape(framework::InferShapeContext* ctx) const override {
163 164 165 166 167 168 169 170 171 172 173
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Out"), true,
        platform::errors::InvalidArgument("Input(Out) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::InvalidArgument("Input(Out@GRAD) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->GetInputDim("Out"),
        ctx->GetInputDim(framework::GradVarName("Out")),
        platform::errors::InvalidArgument("Input(Out) and its gradients "
                                          "should have a same shape."));
174

175 176
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
177
  }
178 179 180 181 182

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
183
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
184 185
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
M
mozga-intel 已提交
186

187
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
188
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
189
      library_ = framework::LibraryType::kCUDNN;
190 191
    }
#endif
J
Jacek Czaja 已提交
192 193 194 195 196 197 198
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
199 200
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
J
Jacek Czaja 已提交
201
    if (input_data_type == framework::proto::VarType::FP16) {
202 203 204
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                        platform::errors::InvalidArgument(
                            "float16 can only be used on GPU place"));
J
Jacek Czaja 已提交
205 206 207 208
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
209
  }
D
dongzhihong 已提交
210 211
};

H
hong 已提交
212 213
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
214
 public:
H
hong 已提交
215
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
216 217

 protected:
218
  void Apply(GradOpPtr<T> op) const override {
219 220
    op->SetType("softmax_grad");

H
hong 已提交
221 222
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
223

H
hong 已提交
224
    op->SetAttrMap(this->Attrs());
225

H
hong 已提交
226
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
227 228
  }
};
D
dzhwinter 已提交
229

230 231
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

232 233 234
// NOTE(zjl): AVX implementation of SoftmaxGrad does not support in-place
DECLARE_CUDA_ONLY_INPLACE_OP_INFERER(SoftmaxGradInplaceInferer,
                                     {"Out", framework::GradVarName("X")});
235

236 237 238
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
239
namespace ops = paddle::operators;
D
dongzhihong 已提交
240

Y
Yang Yang 已提交
241
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
H
hong 已提交
242 243 244
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
245 246 247
                  ops::SoftmaxInplaceInferer);
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad,
                  ops::SoftmaxGradInplaceInferer);
D
dongzhihong 已提交
248
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
249 250
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
251 252
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
253 254
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);