softmax_op.cc 9.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16

L
liuwei1031 已提交
17
#include <memory>
18
#include <string>
L
liuwei1031 已提交
19
#include <unordered_map>
20

K
Kexin Zhao 已提交
21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
24

25 26 27 28
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif

29 30 31
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
32

33 34 35
namespace paddle {
namespace operators {

D
dongzhihong 已提交
36
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
37 38 39
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

40
  void InferShape(framework::InferShapeContext* ctx) const override {
41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) of SoftmaxOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of SoftmaxOp is not found."));
Q
Qiao Longfei 已提交
47

48 49 50
    auto dim_x = ctx->GetInputDim("X");
    auto rank_x = dim_x.size();
    auto axis = ctx->Attrs().Get<int>("axis");
51 52 53 54 55 56 57 58
    PADDLE_ENFORCE_GE(axis, -rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
    PADDLE_ENFORCE_LT(axis, rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
59

F
fengjiayi 已提交
60
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
61
    ctx->ShareLoD("X", /*->*/ "Out");
62
  }
63 64 65 66 67

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
68
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
69 70
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
71
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
72

73
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
74
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
75
      library_ = framework::LibraryType::kCUDNN;
76 77
    }
#endif
78 79
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
80
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
81
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
82
      layout_ = framework::DataLayout::kMKLDNN;
83 84
    }
#endif
K
Kexin Zhao 已提交
85

86
#ifndef PADDLE_WITH_ASCEND_CL
K
Kexin Zhao 已提交
87
    if (input_data_type == framework::proto::VarType::FP16) {
88 89 90
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                        platform::errors::InvalidArgument(
                            "float16 can only be used on GPU place"));
K
Kexin Zhao 已提交
91
    }
92
#endif
K
Kexin Zhao 已提交
93

M
mozga-intel 已提交
94
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
95
                                   library_);
96
  }
97
};
98

D
dongzhihong 已提交
99
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
100
 public:
Y
Yu Yang 已提交
101
  void Make() override {
102
    AddInput("X",
F
fengjiayi 已提交
103
             "The input tensor of softmax, "
D
dengkaipeng 已提交
104
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
105
    AddOutput("Out", "The normalized values with the same shape as X.");
106
    AddAttr<int>("axis",
D
dengkaipeng 已提交
107
                 "The dimension index of Input(x) to perform softmax,"
108 109
                 "default -1 for last dimension")
        .SetDefault(-1);
110 111 112 113 114 115 116 117 118 119 120
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
121 122 123
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
124 125 126 127 128
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
J
Jacek Czaja 已提交
129
    AddAttr<bool>("is_test",
130 131
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
J
Jacek Czaja 已提交
132
        .SetDefault(false);
C
caoying03 已提交
133
    AddComment(R"DOC(
134 135
Softmax Operator.

136
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
137
has the same shape as the input.
C
caoying03 已提交
138

D
dengkaipeng 已提交
139
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
140
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
141
second dimension(row length) is as same as the dimension :attr:`axis` of the input
142 143 144
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
145
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
146
K-dimensional vector of real values in the range [0, 1] that add up to 1.
147 148 149 150 151
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
152

F
fengjiayi 已提交
153
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
154
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
155 156

)DOC");
157 158 159
  }
};

C
chengduo 已提交
160 161
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
162
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
163
      const override {
164 165
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
166 167 168
  }
};

D
dongzhihong 已提交
169
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
170 171 172
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

173
  void InferShape(framework::InferShapeContext* ctx) const override {
174 175 176 177 178 179 180 181 182 183 184
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Out"), true,
        platform::errors::InvalidArgument("Input(Out) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::InvalidArgument("Input(Out@GRAD) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->GetInputDim("Out"),
        ctx->GetInputDim(framework::GradVarName("Out")),
        platform::errors::InvalidArgument("Input(Out) and its gradients "
                                          "should have a same shape."));
185

186 187
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
188
  }
189 190 191 192 193

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
194
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
195 196
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
197 198
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
199
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
200
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
201
      library_ = framework::LibraryType::kCUDNN;
202 203
    }
#endif
J
Jacek Czaja 已提交
204 205
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
206
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
J
Jacek Czaja 已提交
207 208 209 210 211
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    if (input_data_type == framework::proto::VarType::FP16) {
212 213 214 215
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
            platform::is_npu_place(ctx.GetPlace())))
        PADDLE_THROW(platform::errors::InvalidArgument(
            "float16 can only be used on GPU/NPU place"));
J
Jacek Czaja 已提交
216 217 218 219
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
220
  }
D
dongzhihong 已提交
221 222
};

H
hong 已提交
223 224
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
225
 public:
H
hong 已提交
226
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
227 228

 protected:
229
  void Apply(GradOpPtr<T> op) const override {
230 231
    op->SetType("softmax_grad");

H
hong 已提交
232 233
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
234

H
hong 已提交
235
    op->SetAttrMap(this->Attrs());
236

H
hong 已提交
237
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
238 239
  }
};
D
dzhwinter 已提交
240

241 242
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

243 244 245
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
246
namespace ops = paddle::operators;
D
dongzhihong 已提交
247

Y
Yang Yang 已提交
248
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
H
hong 已提交
249 250 251
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
252
                  ops::SoftmaxInplaceInferer);
253
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
254
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
255 256
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
257 258
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
259 260
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);