softmax_op.cc 9.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16

L
liuwei1031 已提交
17
#include <memory>
18
#include <string>
L
liuwei1031 已提交
19
#include <unordered_map>
20

K
Kexin Zhao 已提交
21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
24

25 26 27 28
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif

29 30 31
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
32

33 34 35
namespace paddle {
namespace operators {

D
dongzhihong 已提交
36
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
37 38 39
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

40
  void InferShape(framework::InferShapeContext* ctx) const override {
41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) of SoftmaxOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of SoftmaxOp is not found."));
Q
Qiao Longfei 已提交
47

48 49 50
    auto dim_x = ctx->GetInputDim("X");
    auto rank_x = dim_x.size();
    auto axis = ctx->Attrs().Get<int>("axis");
51 52 53 54 55 56 57 58
    PADDLE_ENFORCE_GE(axis, -rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
    PADDLE_ENFORCE_LT(axis, rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
59

F
fengjiayi 已提交
60
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
61
    ctx->ShareLoD("X", /*->*/ "Out");
62
  }
63 64 65 66 67

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
68
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
69 70
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
71
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
72

73
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
74
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
75
      library_ = framework::LibraryType::kCUDNN;
76 77
    }
#endif
78 79
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
80
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
81
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
82
      layout_ = framework::DataLayout::kMKLDNN;
83 84
    }
#endif
K
Kexin Zhao 已提交
85

86
#ifndef PADDLE_WITH_ASCEND_CL
K
Kexin Zhao 已提交
87
    if (input_data_type == framework::proto::VarType::FP16) {
88 89 90
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                        platform::errors::InvalidArgument(
                            "float16 can only be used on GPU place"));
K
Kexin Zhao 已提交
91
    }
92
#endif
K
Kexin Zhao 已提交
93

M
mozga-intel 已提交
94
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
95
                                   library_);
96
  }
97
};
98

D
dongzhihong 已提交
99
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
100
 public:
Y
Yu Yang 已提交
101
  void Make() override {
102
    AddInput("X",
F
fengjiayi 已提交
103
             "The input tensor of softmax, "
D
dengkaipeng 已提交
104
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
105
    AddOutput("Out", "The normalized values with the same shape as X.");
106
    AddAttr<int>("axis",
D
dengkaipeng 已提交
107
                 "The dimension index of Input(x) to perform softmax,"
108 109
                 "default -1 for last dimension")
        .SetDefault(-1);
110 111 112
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
113 114
        .SetDefault(false)
        .AsExtra();
115 116 117 118 119 120 121
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
122 123
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
124 125
        .SetDefault(false)
        .AsExtra();
126 127 128 129
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
130 131
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
J
Jacek Czaja 已提交
132
    AddAttr<bool>("is_test",
133 134
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
135 136
        .SetDefault(false)
        .AsExtra();
C
caoying03 已提交
137
    AddComment(R"DOC(
138 139
Softmax Operator.

140
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
141
has the same shape as the input.
C
caoying03 已提交
142

D
dengkaipeng 已提交
143
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
144
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
145
second dimension(row length) is as same as the dimension :attr:`axis` of the input
146 147 148
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
149
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
150
K-dimensional vector of real values in the range [0, 1] that add up to 1.
151 152 153 154 155
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
156

F
fengjiayi 已提交
157
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
158
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
159 160

)DOC");
161 162 163
  }
};

C
chengduo 已提交
164 165
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
166
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
167
      const override {
168 169
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
170 171 172
  }
};

D
dongzhihong 已提交
173
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
174 175 176
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

177
  void InferShape(framework::InferShapeContext* ctx) const override {
178 179 180 181 182 183 184 185 186 187 188
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Out"), true,
        platform::errors::InvalidArgument("Input(Out) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::InvalidArgument("Input(Out@GRAD) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->GetInputDim("Out"),
        ctx->GetInputDim(framework::GradVarName("Out")),
        platform::errors::InvalidArgument("Input(Out) and its gradients "
                                          "should have a same shape."));
189

190 191
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
192
  }
193 194 195 196 197

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
198
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
199 200
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
201 202
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
203
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
204
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
205
      library_ = framework::LibraryType::kCUDNN;
206 207
    }
#endif
J
Jacek Czaja 已提交
208 209
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
210
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
J
Jacek Czaja 已提交
211 212 213 214 215
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    if (input_data_type == framework::proto::VarType::FP16) {
216 217 218 219
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
            platform::is_npu_place(ctx.GetPlace())))
        PADDLE_THROW(platform::errors::InvalidArgument(
            "float16 can only be used on GPU/NPU place"));
J
Jacek Czaja 已提交
220 221 222 223
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
224
  }
D
dongzhihong 已提交
225 226
};

H
hong 已提交
227 228
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
229
 public:
H
hong 已提交
230
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
231 232

 protected:
233
  void Apply(GradOpPtr<T> op) const override {
234 235
    op->SetType("softmax_grad");

H
hong 已提交
236 237
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
238

H
hong 已提交
239
    op->SetAttrMap(this->Attrs());
240

H
hong 已提交
241
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
242 243
  }
};
D
dzhwinter 已提交
244

245 246
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

247 248 249
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
250
namespace ops = paddle::operators;
D
dongzhihong 已提交
251

Y
Yang Yang 已提交
252
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
H
hong 已提交
253 254 255
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
256
                  ops::SoftmaxInplaceInferer);
257
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
258
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
259 260
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
261 262
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
263 264
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);