softmax_op.cc 9.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16

L
liuwei1031 已提交
17
#include <memory>
18
#include <string>
L
liuwei1031 已提交
19
#include <unordered_map>
20

21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22

23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
26

27 28 29
namespace paddle {
namespace operators {

D
dongzhihong 已提交
30
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31 32 33
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

34
  void InferShape(framework::InferShapeContext* ctx) const override {
35 36 37 38 39 40
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) of SoftmaxOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of SoftmaxOp is not found."));
Q
Qiao Longfei 已提交
41

42 43 44
    auto dim_x = ctx->GetInputDim("X");
    auto rank_x = dim_x.size();
    auto axis = ctx->Attrs().Get<int>("axis");
45 46 47 48 49 50 51 52
    PADDLE_ENFORCE_GE(axis, -rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
    PADDLE_ENFORCE_LT(axis, rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
53

F
fengjiayi 已提交
54
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
55
    ctx->ShareLoD("X", /*->*/ "Out");
56
  }
57 58 59 60 61

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
62
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
63 64
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
65
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
66

67
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
68
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
69
      library_ = framework::LibraryType::kCUDNN;
70 71
    }
#endif
72 73
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
74
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
75
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
76
      layout_ = framework::DataLayout::kMKLDNN;
77 78
    }
#endif
K
Kexin Zhao 已提交
79

80
#ifndef PADDLE_WITH_ASCEND_CL
K
Kexin Zhao 已提交
81
    if (input_data_type == framework::proto::VarType::FP16) {
82 83 84 85
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()) ||
                            platform::is_xpu_place(ctx.GetPlace()),
                        true, platform::errors::InvalidArgument(
                                  "float16 can only be used on GPU/XPU place"));
K
Kexin Zhao 已提交
86
    }
87
#endif
K
Kexin Zhao 已提交
88

M
mozga-intel 已提交
89
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
90
                                   library_);
91
  }
92
};
93

D
dongzhihong 已提交
94
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
95
 public:
Y
Yu Yang 已提交
96
  void Make() override {
97
    AddInput("X",
F
fengjiayi 已提交
98
             "The input tensor of softmax, "
D
dengkaipeng 已提交
99
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
100
    AddOutput("Out", "The normalized values with the same shape as X.");
101
    AddAttr<int>("axis",
D
dengkaipeng 已提交
102
                 "The dimension index of Input(x) to perform softmax,"
103 104
                 "default -1 for last dimension")
        .SetDefault(-1);
105 106 107
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
108 109
        .SetDefault(false)
        .AsExtra();
110 111 112 113 114 115 116
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
117 118
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
119 120
        .SetDefault(false)
        .AsExtra();
121 122 123 124
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
125 126
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
J
Jacek Czaja 已提交
127
    AddAttr<bool>("is_test",
128 129
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
130 131
        .SetDefault(false)
        .AsExtra();
C
caoying03 已提交
132
    AddComment(R"DOC(
133 134
Softmax Operator.

135
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
136
has the same shape as the input.
C
caoying03 已提交
137

D
dengkaipeng 已提交
138
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
139
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
140
second dimension(row length) is as same as the dimension :attr:`axis` of the input
141 142 143
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
144
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
145
K-dimensional vector of real values in the range [0, 1] that add up to 1.
146 147 148 149 150
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
151

F
fengjiayi 已提交
152
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
153
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
154 155

)DOC");
156 157 158
  }
};

C
chengduo 已提交
159 160
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
161
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
162
      const override {
163 164
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
165 166 167
  }
};

D
dongzhihong 已提交
168
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
169 170 171
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

172
  void InferShape(framework::InferShapeContext* ctx) const override {
173 174 175 176 177 178 179 180 181 182 183
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Out"), true,
        platform::errors::InvalidArgument("Input(Out) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::InvalidArgument("Input(Out@GRAD) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->GetInputDim("Out"),
        ctx->GetInputDim(framework::GradVarName("Out")),
        platform::errors::InvalidArgument("Input(Out) and its gradients "
                                          "should have a same shape."));
184

185 186
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
187
  }
188 189 190 191 192

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
193
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
194 195
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
196 197
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
198
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
199
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
200
      library_ = framework::LibraryType::kCUDNN;
201 202
    }
#endif
J
Jacek Czaja 已提交
203 204
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
205
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
J
Jacek Czaja 已提交
206 207 208 209 210
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    if (input_data_type == framework::proto::VarType::FP16) {
211
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
212 213
            platform::is_npu_place(ctx.GetPlace()) ||
            platform::is_xpu_place(ctx.GetPlace())))
214
        PADDLE_THROW(platform::errors::InvalidArgument(
215
            "float16 can only be used on GPU/NPU/XPU place"));
J
Jacek Czaja 已提交
216 217 218 219
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
220
  }
D
dongzhihong 已提交
221 222
};

H
hong 已提交
223 224
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
225
 public:
H
hong 已提交
226
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
227 228

 protected:
229
  void Apply(GradOpPtr<T> op) const override {
230 231
    op->SetType("softmax_grad");

H
hong 已提交
232 233
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
234

H
hong 已提交
235
    op->SetAttrMap(this->Attrs());
236

H
hong 已提交
237
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
238 239
  }
};
D
dzhwinter 已提交
240

241 242
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

243 244 245
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
246
namespace ops = paddle::operators;
D
dongzhihong 已提交
247

Y
Yang Yang 已提交
248
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
H
hong 已提交
249 250 251
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
252
                  ops::SoftmaxInplaceInferer);
253
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
254
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
255 256
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
257 258
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
259 260
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);