softmax_op.cc 9.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16

L
liuwei1031 已提交
17
#include <memory>
18
#include <string>
L
liuwei1031 已提交
19
#include <unordered_map>
20

K
Kexin Zhao 已提交
21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
24

25 26 27 28
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif

29 30 31
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
32

33 34 35
namespace paddle {
namespace operators {

D
dongzhihong 已提交
36
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
37 38 39
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

40
  void InferShape(framework::InferShapeContext* ctx) const override {
41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) of SoftmaxOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of SoftmaxOp is not found."));
Q
Qiao Longfei 已提交
47

48 49 50
    auto dim_x = ctx->GetInputDim("X");
    auto rank_x = dim_x.size();
    auto axis = ctx->Attrs().Get<int>("axis");
51 52 53 54 55 56 57 58
    PADDLE_ENFORCE_GE(axis, -rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
    PADDLE_ENFORCE_LT(axis, rank_x,
                      platform::errors::InvalidArgument(
                          "Attr(axis) value should be in range [-R, R-1], "
                          "R is the rank of Input(X)."));
59

F
fengjiayi 已提交
60
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
61
    ctx->ShareLoD("X", /*->*/ "Out");
62
  }
63 64 65 66 67

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
68
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
69 70
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
71
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
72

73
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
74
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
75
      library_ = framework::LibraryType::kCUDNN;
76 77
    }
#endif
78 79
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
80
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
81
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
82
      layout_ = framework::DataLayout::kMKLDNN;
83 84
    }
#endif
K
Kexin Zhao 已提交
85 86

    if (input_data_type == framework::proto::VarType::FP16) {
87 88 89
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                        platform::errors::InvalidArgument(
                            "float16 can only be used on GPU place"));
K
Kexin Zhao 已提交
90 91
    }

M
mozga-intel 已提交
92
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
93
                                   library_);
94
  }
95
};
96

D
dongzhihong 已提交
97
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
98
 public:
Y
Yu Yang 已提交
99
  void Make() override {
100
    AddInput("X",
F
fengjiayi 已提交
101
             "The input tensor of softmax, "
D
dengkaipeng 已提交
102
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
103
    AddOutput("Out", "The normalized values with the same shape as X.");
104
    AddAttr<int>("axis",
D
dengkaipeng 已提交
105
                 "The dimension index of Input(x) to perform softmax,"
106 107
                 "default -1 for last dimension")
        .SetDefault(-1);
108 109 110 111 112 113 114 115 116 117 118
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
119 120 121
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
122 123 124 125 126
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
J
Jacek Czaja 已提交
127
    AddAttr<bool>("is_test",
128 129
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
J
Jacek Czaja 已提交
130
        .SetDefault(false);
C
caoying03 已提交
131
    AddComment(R"DOC(
132 133
Softmax Operator.

134
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
135
has the same shape as the input.
C
caoying03 已提交
136

D
dengkaipeng 已提交
137
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
138
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
139
second dimension(row length) is as same as the dimension :attr:`axis` of the input
140 141 142
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
143
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
144
K-dimensional vector of real values in the range [0, 1] that add up to 1.
145 146 147 148 149
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
150

F
fengjiayi 已提交
151
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
152
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
153 154

)DOC");
155 156 157
  }
};

C
chengduo 已提交
158 159
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
160
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
161
      const override {
162 163
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
164 165 166
  }
};

D
dongzhihong 已提交
167
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
168 169 170
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

171
  void InferShape(framework::InferShapeContext* ctx) const override {
172 173 174 175 176 177 178 179 180 181 182
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Out"), true,
        platform::errors::InvalidArgument("Input(Out) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::InvalidArgument("Input(Out@GRAD) is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->GetInputDim("Out"),
        ctx->GetInputDim(framework::GradVarName("Out")),
        platform::errors::InvalidArgument("Input(Out) and its gradients "
                                          "should have a same shape."));
183

184 185
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
186
  }
187 188 189 190 191

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
192
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
193 194
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
195 196
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
197
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
198
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
199
      library_ = framework::LibraryType::kCUDNN;
200 201
    }
#endif
J
Jacek Czaja 已提交
202 203
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
204
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
J
Jacek Czaja 已提交
205 206 207 208 209
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    if (input_data_type == framework::proto::VarType::FP16) {
210 211 212
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                        platform::errors::InvalidArgument(
                            "float16 can only be used on GPU place"));
J
Jacek Czaja 已提交
213 214 215 216
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
217
  }
D
dongzhihong 已提交
218 219
};

H
hong 已提交
220 221
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
222
 public:
H
hong 已提交
223
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
224 225

 protected:
226
  void Apply(GradOpPtr<T> op) const override {
227 228
    op->SetType("softmax_grad");

H
hong 已提交
229 230
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
231

H
hong 已提交
232
    op->SetAttrMap(this->Attrs());
233

H
hong 已提交
234
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
235 236
  }
};
D
dzhwinter 已提交
237

238 239
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

240 241 242
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
243
namespace ops = paddle::operators;
D
dongzhihong 已提交
244

Y
Yang Yang 已提交
245
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
H
hong 已提交
246 247 248
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
249
                  ops::SoftmaxInplaceInferer);
250
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
251
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
252 253
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
254 255
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
256 257
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);