framework.py 115.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
70
]
Y
Yu Yang 已提交
71

Q
qiaolongfei 已提交
72 73 74 75
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
76 77
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

78
_imperative_tracer_ = None
M
minqiyang 已提交
79
_imperative_current_expected_place_ = None
80 81 82 83 84 85 86 87 88


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
89

M
minqiyang 已提交
90
def _current_expected_place():
M
minqiyang 已提交
91
    return _imperative_current_expected_place_
M
minqiyang 已提交
92 93


S
sneaxiy 已提交
94 95 96 97 98
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
S
add doc  
sneaxiy 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    '''
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
    '''
S
sneaxiy 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
S
add doc  
sneaxiy 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
    '''
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
    '''
S
sneaxiy 已提交
148 149 150 151 152 153
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
S
add doc  
sneaxiy 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167
    '''
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
    '''
S
sneaxiy 已提交
168 169 170 171 172 173 174
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
201
@signature_safe_contextmanager
202 203 204 205 206 207 208 209 210 211 212 213
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
214

215 216 217 218
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
219 220
          with name_scope("attention"):
             ...
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
240 241 242
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
243 244 245 246


def grad_var_name(var_name):
    """
247 248
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
249 250 251
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
252

253
def convert_np_dtype_to_dtype_(np_dtype):
254 255
    """
    Convert the data type in numpy to the data type in Paddle
256

257
    Args:
258
        np_dtype(np.dtype): the data type in numpy.
259

260 261
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
262 263

    """
264 265
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
266
        return core.VarDesc.VarType.FP32
267
    elif dtype == np.float64:
268
        return core.VarDesc.VarType.FP64
269
    elif dtype == np.float16:
270
        return core.VarDesc.VarType.FP16
271
    elif dtype == np.int32:
272
        return core.VarDesc.VarType.INT32
273
    elif dtype == np.int16:
274
        return core.VarDesc.VarType.INT16
275
    elif dtype == np.int64:
276
        return core.VarDesc.VarType.INT64
277
    elif dtype == np.bool:
278
        return core.VarDesc.VarType.BOOL
279 280
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
281 282
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
283 284
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
285
    else:
M
minqiyang 已提交
286
        raise ValueError("Not supported numpy dtype %s" % dtype)
287 288 289


def dtype_is_floating(dtype):
290 291 292
    """
    Check the data type is floating or not.
    Args:
293
        dtype(np.dtype|core.VarDesc.VarType): data type.
294 295 296 297 298
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
299
    if not isinstance(dtype, core.VarDesc.VarType):
300 301
        dtype = convert_np_dtype_to_dtype_(dtype)

302 303 304 305
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
306 307


Y
Yang Yang(Tony) 已提交
308
def _debug_string_(proto, throw_on_error=True):
309 310 311 312 313 314 315 316 317 318 319
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
320
    error_fields = list()
Y
Yang Yang(Tony) 已提交
321
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
322 323
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
324 325 326
    return proto.__str__()


X
Xin Pan 已提交
327
class Variable(object):
328
    """
329 330 331
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
332
    two variables in different blocks could have the same name.
333

334 335
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
336

337
    Most of a Variable's member variables can be setted to be None. It mean
338
    it is not available or will be specified later.
339 340

    Args:
341
        block(Block): The block that the variable belongs to.
342 343
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
344 345
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
346
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
347
            Some kinds of variable do not contain shape, just set it to None.
348 349 350
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
351
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
352
            series data.
353
            Default: None
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
376 377
    """

Y
Yu Yang 已提交
378 379
    def __init__(self,
                 block,
Y
Yu Yang 已提交
380
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
381 382 383 384
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
385
                 capacity=None,
Q
QI JUN 已提交
386
                 persistable=None,
F
fengjiayi 已提交
387
                 error_clip=None,
Y
Yu Yang 已提交
388
                 stop_gradient=False,
F
fengjiayi 已提交
389
                 is_data=False,
Y
Yu Yang 已提交
390
                 **kwargs):
Y
Yu Yang 已提交
391 392
        self.block = block
        if name is None:
Y
Yu Yang 已提交
393
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
394

Y
Yu Yang 已提交
395
        if dtype is not None:
396
            if not isinstance(dtype, core.VarDesc.VarType):
397
                dtype = convert_np_dtype_to_dtype_(dtype)
398

X
Xin Pan 已提交
399
        if _in_imperative_mode():
M
minqiyang 已提交
400
            # record vars in tracer rather than blocks
M
minqiyang 已提交
401 402
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
403 404 405
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
406 407
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
408
            if persistable:
409
                _imperative_tracer().trace_var(name, self)
M
minqiyang 已提交
410
        else:
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
483
            self.block.vars[name] = self
484 485 486
            self.op = None
            self.stop_gradient = stop_gradient
            self.is_data = is_data
Y
Yu Yang 已提交
487

488
    def _numpy(self):
M
minqiyang 已提交
489
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
490
        return np.array(new_ivar.value().get_tensor())
491 492

    def _backward(self):
X
Xin Pan 已提交
493
        self._ivar._run_backward()
494 495

    def _gradient(self):
M
minqiyang 已提交
496
        return np.array(self._ivar._grad_value())
497

X
Xin Pan 已提交
498 499
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
500

501
    def __str__(self):
Y
Yang Yang(Tony) 已提交
502 503
        return self.to_string(True)

F
update  
fengjiayi 已提交
504
    def to_string(self, throw_on_error, with_details=False):
505 506 507 508
        """
        Get debug string.

        Args:
509 510
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
511
            with_details(bool): more details about variables and parameters
512 513
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
514

515 516
        Returns:
            str: The debug string.
517
        """
518
        if _in_imperative_mode():
X
polish  
Xin Pan 已提交
519
            # TODO(panyx0718): add more imperative debug info.
520 521 522
            return 'name %s, dtype: %s shape: %s' % (self.name, self.dtype,
                                                     self.shape)

F
update  
fengjiayi 已提交
523 524
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
525
        protostr = self.desc.serialize_to_string()
526
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
527 528 529 530
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
531 532
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
533
        return res_str
534 535 536

    __repr__ = __str__

W
Wu Yi 已提交
537
    def _set_desc(self, input):
538 539 540 541 542 543 544 545 546
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
547 548
        self.desc = input

549 550
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
551 552 553 554
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
555 556 557

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
558 559
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
560 561
        else:
            self.stop_gradient = s
562

563 564
    @property
    def persistable(self):
565 566 567 568
        if _in_imperative_mode():
            return self._ivar.persistable
        else:
            return self.desc.persistable()
569

Y
Yu Yang 已提交
570 571
    @persistable.setter
    def persistable(self, p):
572 573 574 575
        if _in_imperative_mode():
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
576

Y
Yu Yang 已提交
577 578
    @property
    def name(self):
579 580 581 582
        if _in_imperative_mode():
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
583

T
typhoonzero 已提交
584 585
    @name.setter
    def name(self, new_name):
586 587 588 589
        if _in_imperative_mode():
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
590

Y
Yu Yang 已提交
591 592 593
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
594 595 596 597
        if _in_imperative_mode():
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
598 599

    @property
F
fengjiayi 已提交
600
    def dtype(self):
601 602 603 604
        if _in_imperative_mode():
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
605 606 607

    @property
    def lod_level(self):
608
        # TODO(minqiyang): Support lod_level in imperative mode
609
        return self.desc.lod_level()
Y
Yu Yang 已提交
610

Y
Yu Yang 已提交
611 612
    @property
    def type(self):
613 614 615 616
        if _in_imperative_mode():
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
617

W
Wu Yi 已提交
618
    def _set_error_clip(self, error_clip):
619 620 621 622 623 624 625 626 627
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
628 629
        self.error_clip = error_clip

W
wopeizl 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

    def _cloneVar(self, copy=False):
        if not copy:
            return self.block.create_var(
                name=unique_name.generate(".".join(self.name)),
                dtype=self.dtype,
                persistable=self.persistable,
                stop_gradient=self._stop_gradient, )
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
        new_var = self._cloneVar()
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
        new_var = self._cloneVar()
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
                return self._cloneVar(True)
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
                return self._cloneVar(True)
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
        new_var = None
        if isinstance(item, tuple):
            if len(item) > len(self.shape):
                raise IndexError("Too many indexes")
            newitem = self._reconstructSliceinfo(item) or item
            check, info = self._detectContinuesSlice(newitem)
            if check:
                starts = info[0]
                ends = info[1]
                axes = [i for i in range(len(starts))]
                return self._sliceVar(axes, starts, ends)
            else:
                new_var = self
                for index, o in enumerate(newitem):
                    new_var = new_var._sliceAndConcatVar(o, index)
        else:
            new_var = self._sliceAndConcatVar(item, 0)
        return new_var

Y
Yu Yang 已提交
807

F
fengjiayi 已提交
808 809 810
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
811

812 813
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
814 815 816 817
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
818
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
819 820 821 822 823
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
824 825 826 827
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
828 829 830 831 832 833 834 835 836
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
837
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
838 839 840 841 842 843
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
844 845 846 847 848 849 850 851
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
852 853
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
854 855
        return self.op_proto_map[type]

856 857 858 859
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
860
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
861 862
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
863 864
        }

F
fengjiayi 已提交
865

X
Xin Pan 已提交
866
class Operator(object):
867
    """
868 869 870 871 872 873 874
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
875
        type(str): The type of operator. Default None.
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
896
        Block.append_op or Block._prepend_op instead.
897 898 899 900 901 902 903 904 905 906

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
907
    """
908
    OP_WITHOUT_KERNEL_SET = {
909 910 911
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
912
    }
913

Y
Yu Yang 已提交
914 915
    def __init__(self,
                 block,
Y
Yu Yang 已提交
916
                 desc,
Y
Yu Yang 已提交
917 918 919
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
920
                 attrs=None):
X
Xin Pan 已提交
921
        if _in_imperative_mode():
922 923
            if type is None:
                raise ValueError(
X
Xin Pan 已提交
924
                    "`type` to initialized an Operator can not be None.")
925
            self.iop = core.OpBase(type)
M
minqiyang 已提交
926

927 928
            # TODO(minqiyang): remove these lines after we take apart all
            # backward grads and forward variables
X
Xin Pan 已提交
929
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
930
            if inputs is not None:
X
Xin Pan 已提交
931 932 933 934 935
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
936

X
Xin Pan 已提交
937
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
938
            if outputs is not None:
X
Xin Pan 已提交
939 940 941 942 943
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
944

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
            self.attrs = attrs if attrs else {}
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
                )] = self.block.program.op_role

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
                   op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program.op_role_var

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
                    "`type` to initilized an Operator can not be None.")
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)

                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
                        for arg in in_args:
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
                            else:
                                in_arg_names.append(cpt.to_text(arg.name))
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
                        if not _in_imperative_mode():
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1060
    def _has_kernel(self, op_type):
1061 1062
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1063
    def to_string(self, throw_on_error):
1064
        """
1065 1066
        Get debug string.

1067
        Args:
1068 1069
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1070

1071 1072
        Returns:
            str: The debug string.
1073 1074

        """
1075
        protostr = self.desc.serialize_to_string()
1076
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1077 1078 1079 1080
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1081 1082 1083

    __repr__ = __str__

F
fengjiayi 已提交
1084 1085
    @property
    def type(self):
X
polish  
Xin Pan 已提交
1086 1087 1088 1089
        if _in_imperative_mode():
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1090 1091

    def input(self, name):
1092
        """
1093
        Get the input arguments according to the input parameter name.
1094

1095 1096
        Args:
            name(str): The input parameter name.
1097

1098 1099 1100
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1101
        """
F
fengjiayi 已提交
1102 1103
        return self.desc.input(name)

W
Wu Yi 已提交
1104
    def _rename_input(self, old_name, new_name):
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1115
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1116

W
Wu Yi 已提交
1117
    def _rename_output(self, old_name, new_name):
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1128
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1129

F
fengjiayi 已提交
1130 1131 1132 1133
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1134 1135 1136 1137 1138 1139 1140 1141
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1142
    def output(self, name):
1143
        """
1144
        Get output arguments by the output parameter name.
1145

1146 1147
        Args:
            name(str): The output parameter name.
1148

1149 1150 1151
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1152
        """
F
fengjiayi 已提交
1153 1154 1155 1156 1157 1158
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1159 1160 1161 1162 1163 1164 1165 1166
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1167
    def has_attr(self, name):
1168
        """
1169 1170
        Whether this Operator has the attribute with name or not.

1171
        Args:
1172
            name(str): the attribute name.
1173

1174 1175
        Returns:
            bool: True if has this attribute.
1176 1177

        """
F
fengjiayi 已提交
1178 1179 1180
        return self.desc.has_attr(name)

    def attr_type(self, name):
1181
        """
1182
        Get the type of attribute by attribute's name.
1183

1184 1185
        Args:
            name(str): the attribute name.
1186

1187 1188
        Returns:
            core.AttrType: the attribute type.
1189
        """
F
fengjiayi 已提交
1190 1191
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1192
    def _set_attr(self, name, val):
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1216 1217
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1218 1219
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1220
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1221 1222 1223 1224
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1225
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1226

F
fengjiayi 已提交
1227 1228 1229 1230 1231
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1232
        """
1233 1234
        Get the attribute by name.

1235
        Args:
1236
            name(str): the attribute name.
1237

1238 1239
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1240 1241
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1242
        return self.desc.attr(name)
Y
Yu Yang 已提交
1243

W
Wu Yi 已提交
1244
    def _block_attr_id(self, name):
1245
        """
G
gongweibao 已提交
1246
        Get the block attribute's id by name.
1247

1248 1249
        Args:
            name(str): the attribute name.
1250

1251 1252
        Returns:
            int: the block index.
1253
        """
W
Wu Yi 已提交
1254
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1255

W
Wu Yi 已提交
1256
    def _block_attr(self, name):
G
gongweibao 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1267
        id = self._block_attr_id(name)
G
gongweibao 已提交
1268 1269 1270
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1271
    def _blocks_attr(self, name):
G
gongweibao 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1282
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1283 1284 1285 1286 1287
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1288
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1299
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1300

J
JiayiFeng 已提交
1301
    def all_attrs(self):
F
fengjiayi 已提交
1302
        """
1303 1304 1305
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1306
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1307 1308 1309 1310
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1311 1312
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1313
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1314 1315 1316
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1317
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1318 1319 1320 1321
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1322 1323
        return attr_map

Y
Yu Yang 已提交
1324

Y
Yu Yang 已提交
1325
class Block(object):
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1340
        use `Program._create_block()` to create a block.
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1355
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1356
        self.desc = program.desc.block(idx)
1357
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1358
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1359
        self.program = program
1360
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1361

1362
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1363 1364
        return self.to_string(True)

F
fengjiayi 已提交
1365 1366
    def to_string(self, throw_on_error, with_details=False):
        """
1367 1368
        Get debug string.

F
fengjiayi 已提交
1369 1370
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1371
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1372
            with_details(bool): more details about variables and parameters
1373 1374
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1375

1376 1377
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1378 1379 1380 1381
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1382
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1383 1384
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1385
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1386
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1387
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1388
            for op in self.ops:
F
fengjiayi 已提交
1389 1390
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1391 1392 1393
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1394 1395
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1396 1397
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1398 1399 1400

    __repr__ = __str__

Y
Yu Yang 已提交
1401 1402
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1403
        return self.desc.parent
Y
Yu Yang 已提交
1404

Y
Yu Yang 已提交
1405 1406 1407 1408
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1409
    def _set_forward_block_idx(self, idx):
1410 1411 1412 1413 1414 1415 1416 1417 1418
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1419
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1420

Y
Yu Yang 已提交
1421 1422
    @property
    def idx(self):
Y
Yu Yang 已提交
1423
        return self.desc.id
Y
Yu Yang 已提交
1424

Q
Qiao Longfei 已提交
1425
    def var(self, name):
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1439
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1440 1441 1442
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1443 1444
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1445
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1446
        return v
Q
Qiao Longfei 已提交
1447

X
Xin Pan 已提交
1448
    def _find_var_recursive(self, name):
1449 1450 1451 1452 1453 1454 1455
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1456
            Variable: the Variable with the giving name. Or None if not found.
1457
        """
Y
Yu Yang 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1482
        return None
Y
Yu Yang 已提交
1483

X
Xin Pan 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1503

Q
Qiao Longfei 已提交
1504
    def all_parameters(self):
1505
        return list(self.iter_parameters())
1506

1507
    def iter_parameters(self):
M
minqiyang 已提交
1508
        return (item[1] for item in six.iteritems(self.vars)
1509
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1510

Y
Yu Yang 已提交
1511
    def create_var(self, *args, **kwargs):
1512
        var = Variable(block=self, *args, **kwargs)
1513 1514
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1515
        return var
Y
Yu Yang 已提交
1516

Q
Qiao Longfei 已提交
1517 1518 1519
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1520
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1521 1522
        """
        Rename variable in vars and ops' inputs and outputs
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1535
        """
M
minqiyang 已提交
1536 1537
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1538

T
typhoonzero 已提交
1539
        if not self.has_var(name):
1540
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1541 1542
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1543
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1544 1545 1546 1547 1548 1549 1550
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1551
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1552 1553 1554 1555
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1556
        orig_var_type = v.type
M
minqiyang 已提交
1557
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1558
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1559
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1560
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1561 1562 1563 1564
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1565
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1566 1567 1568 1569 1570 1571 1572
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1573
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1574 1575
            var = Variable(
                self,
T
typhoonzero 已提交
1576
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1577 1578 1579 1580
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1581
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1582 1583 1584
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1585
        self._sync_with_cpp()
1586
        return var
T
typhoonzero 已提交
1587

W
Wu Yi 已提交
1588 1589
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1590
        self.desc._remove_var(cpt.to_bytes(name))
1591 1592
        del self.vars[name]

Y
Yu Yang 已提交
1593 1594
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1595
        param = Parameter(global_block, *args, **kwargs)
1596
        if 'initializer' in kwargs:
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1617
        return param
Y
Yu Yang 已提交
1618

Y
Yu Yang 已提交
1619
    def append_op(self, *args, **kwargs):
1620 1621 1622 1623 1624 1625
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
M
minqiyang 已提交
1626
        if _in_imperative_mode():
1627 1628 1629 1630 1631 1632 1633 1634
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1635 1636 1637 1638
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1639 1640 1641
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
1642 1643 1644 1645 1646 1647 1648 1649 1650
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1651
            self.ops.append(op)
M
minqiyang 已提交
1652

1653 1654
        return op

W
Wu Yi 已提交
1655
    def _insert_op(self, index, *args, **kwargs):
1656 1657 1658 1659 1660 1661 1662 1663 1664
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1665 1666
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1667 1668 1669 1670
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1671
    def _remove_op(self, index):
1672 1673 1674 1675 1676 1677 1678 1679 1680
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1681 1682
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1683 1684
        del self.ops[index]

W
Wu Yi 已提交
1685
    def _slice_ops(self, start, end):
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1696
        return self.ops[start:end]
Y
Yancey1989 已提交
1697

W
Wu Yi 已提交
1698
    def _prepend_op(self, *args, **kwargs):
M
minqiyang 已提交
1699
        if _in_imperative_mode():
1700 1701 1702 1703 1704 1705 1706
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1707 1708 1709
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
1710 1711 1712 1713 1714 1715 1716 1717
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1718
            self.ops.insert(0, op)
1719

Y
Yu Yang 已提交
1720 1721
        return op

W
Wu Yi 已提交
1722
    def _sync_with_cpp(self):
1723
        """
1724 1725
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1726
        """
Q
Qiao Longfei 已提交
1727 1728 1729 1730 1731
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1732
        # sync variables removed from c++ end
1733
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1734
            if not self.desc.find_var(cpt.to_bytes(var)):
1735 1736
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1737
        # sync operators from cpp
1738 1739 1740 1741
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1758 1759 1760 1761 1762

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1763
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1764 1765 1766 1767 1768 1769 1770

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1784 1785 1786 1787
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1788
    def _copy_param_info_from(self, other):
1789
        """
1790 1791
        Copy the information of parameters from the other block.

1792
        Args:
1793 1794 1795 1796 1797
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1798 1799 1800 1801 1802

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1803 1804
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1805
        for p in other.iter_parameters():
1806 1807 1808
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1809
                raise ValueError("_copy_param_info_from should be invoked with "
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1822
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1823
                error_clip=p.error_clip,
1824 1825 1826
                name=v.name)
            self.vars[new_p.name] = new_p

1827
    def _clone_variable(self, var, force_persistable=True):
1828 1829
        """
        Clone a variable into current block.
1830

1831 1832
        Args:
            var: the variable to be cloned.
1833 1834 1835
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1836 1837

        Returns:
1838
            Variable: the new  variable cloned from 'var' in current block.
1839 1840
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1841 1842 1843 1844 1845
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1846 1847
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1848
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1849 1850 1851 1852 1853 1854
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1855
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1856
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1857 1858 1859 1860 1861 1862 1863
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1864
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1865
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1866
        return ret_var
1867

Y
Yu Yang 已提交
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

1964
    def remove_input_by_id(self, node_id):
1965 1966 1967 1968 1969 1970
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1971
        self.node.remove_input(node_id)
1972

1973
    def remove_input(self, node):
1974 1975 1976 1977
        """
        Remove a node from inputs.

        Args:
1978
            node(IrNode): the node being removed.
1979
        """
1980
        self.node.remove_input(node.node)
1981

1982
    def append_input(self, node):
1983 1984 1985 1986
        """
        Append a node in inputs.

        Args:
1987
            node(IrNode): the node being appended.
1988
        """
1989
        self.node.append_input(node.node)
1990 1991 1992 1993 1994 1995 1996 1997

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

1998
    def remove_output_by_id(self, node_id):
1999 2000 2001 2002 2003 2004
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2005
        self.node.remove_output(node_id)
2006

2007
    def remove_output(self, node):
2008 2009 2010 2011
        """
        Remove a node from outputs.

        Args:
2012
            node(IrNode): the node being removed.
2013
        """
2014
        self.node.remove_output(node.node)
2015

2016
    def append_output(self, node):
2017 2018 2019 2020
        """
        Append a node in outputs.

        Args:
2021
            node(IrNode): the node being appended.
2022
        """
2023
        self.node.append_output(node.node)
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2278 2279
class IrGraph(object):
    """
2280
    Python IrGraph. Beneath it is a core.Graph, which is used for
2281
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2282 2283
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2284 2285 2286 2287
    """

    def __init__(self, graph, for_test=False):
        """
2288 2289
        Construct an IrGraph using core.Graph.

2290 2291 2292 2293 2294 2295 2296 2297 2298
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2299 2300 2301 2302
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2303 2304 2305
        Warns:
            The method only clones the graph structure, not its attributes.

2306 2307 2308
        Returns:
            IrGraph: A new and duplicated graph.
        """
2309
        g = self.graph.clone()
2310 2311
        return IrGraph(g, self._for_test)

2312
    def is_test(self):
2313 2314 2315
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2316 2317
        return self._for_test

W
WangZhen 已提交
2318
    def all_nodes(self):
2319 2320 2321
        """
        Return all nodes included in the graph as a set.
        """
2322
        return {IrNode(node) for node in self.graph.nodes()}
2323

2324
    def all_var_nodes(self):
2325 2326 2327
        """
        Return all variable nodes included in the graph as a set.
        """
2328
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2329

2330
    def all_persistable_nodes(self):
2331 2332 2333
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2334 2335 2336 2337 2338
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2339
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2340

2341
    def all_op_nodes(self):
2342 2343 2344
        """
        Return all operator nodes included in the graph as a set.
        """
2345
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2346

2347
    def _find_var_node(self, key):
W
WangZhen 已提交
2348
        """
2349 2350 2351 2352 2353 2354 2355
        Get a variable node by the `key` from this graph. The key
        can be a node name or a node id.

        WARNS:
            There are some nodes may have the same name. So, be
            cautious about using this method when you find the
            target var node by its name.
2356

W
WangZhen 已提交
2357
        Args:
2358 2359
            key(str|int): The str type denotes that the target variable node's name.
            And the int type denotes that the target variable node's id.
2360

W
WangZhen 已提交
2361
        Raises:
2362
            ValueError: If this graph doesn't have a variable with the giving name or id.
2363

W
WangZhen 已提交
2364
        Returns:
2365
            IrVarNode: the variable node with the giving name or id.
W
WangZhen 已提交
2366 2367
        """
        target_var_node = None
2368
        var_nodes = self.all_var_nodes()
2369 2370 2371 2372 2373 2374 2375 2376
        if isinstance(key, six.string_types):
            for var_node in var_nodes:
                if var_node.name() == key:
                    target_var_node = var_node
        elif isinstance(key, int):
            for var_node in var_nodes:
                if var_node.id() == key:
                    target_var_node = var_node
W
WangZhen 已提交
2377
        if target_var_node is None:
2378
            raise ValueError("var_node %s not in this graph" % key)
W
WangZhen 已提交
2379 2380
        return target_var_node

2381
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2393
            IrVarNode: the created persistable variable node.
2394
        """
2395 2396 2397 2398 2399
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2400
        return IrVarNode(self.graph.create_var_node(var_desc))
2401 2402

    def create_var_node(self, name, var_type, shape, var_dtype):
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2414
            IrVarNode: the created variable node.
2415 2416
        """

2417 2418 2419 2420
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2421
        return IrVarNode(self.graph.create_var_node(var_desc))
2422 2423

    def create_var_node_from_desc(self, var_desc):
2424 2425 2426 2427 2428 2429 2430 2431
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2432
            IrVarNode: the created variable node.
2433
        """
2434
        return IrVarNode(self.graph.create_var_node(var_desc))
2435 2436

    def create_op_node(self, op_type, attrs, inputs, outputs):
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2447
            IrOpNode: the created operator node.
2448
        """
2449 2450
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2451
        for attr, value in six.iteritems(attrs):
2452
            self._update_desc_attr(op_desc, attr, value)
2453
        for input_name, var_nodes in six.iteritems(inputs):
2454 2455 2456 2457
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2458
        for output_name, var_nodes in six.iteritems(outputs):
2459 2460 2461 2462
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2463
        return IrOpNode(self.graph.create_op_node(op_desc))
2464 2465

    def create_op_node_from_desc(self, op_desc):
2466 2467 2468 2469 2470 2471 2472
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2473
            IrOpNode: the created operator node.
2474
        """
2475
        return IrOpNode(self.graph.create_op_node(op_desc))
2476 2477

    def update_input_link(self, old_input_node, new_input_node, op_node):
2478 2479 2480 2481
        """
        Update the input's link of a operator node.

        Args:
2482 2483 2484
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2485
        """
2486 2487
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2488
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2489 2490 2491 2492
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2493
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2494 2495

    def link_to(self, node_in, node_out):
2496 2497 2498 2499
        """
        Connect two nodes.

        Args:
2500 2501
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2502
        """
2503
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2504
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2505 2506
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2507 2508

    def safe_remove_nodes(self, remove_nodes):
2509 2510 2511 2512 2513 2514 2515
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2516
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2517 2518 2519 2520
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2521 2522
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2523

Z
Zhen Wang 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
    def resolve_hazard(self):
        def _to_node(nodes, node_name):
            target_node = None
            for n in nodes:
                if n.name() == node_name:
                    target_node = n
            assert target_node is not None, "Cannot find the target node in the giving set."
            return target_node

        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
                            _to_node(node.inputs, each_var_name)
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
                            _to_node(node.outputs, each_var_name)
                        ]
                    else:
                        var_nodes[each_var_name].append(
                            _to_node(node.outputs, each_var_name))
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2552
    def has_circle(self):
2553 2554 2555 2556 2557 2558
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2559 2560 2561
        return core.has_circle(self.graph)

    def graph_num(self):
2562 2563 2564 2565 2566 2567
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2568 2569 2570
        return core.graph_num(self.graph)

    def topology_sort(self):
2571 2572 2573 2574 2575 2576
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2577
            list(IrNode): nodes in topology order.
2578
        """
2579
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2580
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2581 2582

    def build_adjacency_list(self):
2583 2584 2585 2586
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2587
            dict{IrNode: set(IrNode)}: the adjacency list.
2588
        """
2589 2590 2591 2592 2593
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2594

2595 2596 2597 2598 2599 2600 2601 2602
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2603
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2604 2605 2606 2607 2608
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2609 2610 2611 2612 2613 2614 2615 2616 2617
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2618
        remove_ctr_vars = set()
2619
        if remove_ctr_var:
2620
            for node in self.all_var_nodes():
2621 2622 2623
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2624 2625
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2626 2627
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2628 2629 2630 2631 2632 2633
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2645 2646 2647
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2648
        WARN: When the graph includes backward operator nodes, the
2649 2650 2651 2652 2653 2654
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2655
        convert_pass = core.get_pass('graph_to_program_pass')
2656 2657
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2678
class Program(object):
D
dzhwinter 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2690
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2691 2692

    Returns:
Y
yuyang18 已提交
2693
        A empty program.
D
dzhwinter 已提交
2694 2695

    Examples:
Y
yuyang18 已提交
2696 2697 2698 2699 2700 2701
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2702 2703 2704

    """

2705 2706
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2707 2708
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2709
        self._seed = 0
Y
yuyang18 已提交
2710
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2711
        self._op_role_var = []
T
tangwei12 已提交
2712

2713 2714
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2715
        self._is_distributed = False
2716
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2717
        self._is_chief = False
2718 2719 2720
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2721
        self._endpoints = []
2722 2723 2724
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2725
        self._trainers_endpoints = []
2726
        # the distributed lookup table names
T
tangwei12 已提交
2727
        self._distributed_lookup_table = None
D
dzhwinter 已提交
2728
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2729
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2730
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2731 2732

    @property
D
dzhwinter 已提交
2733
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2734 2735
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2736
        return self.__is_mem_optimized
D
dzhwinter 已提交
2737

D
dzhwinter 已提交
2738 2739 2740
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2741 2742 2743

    @property
    def op_role(self):
Y
yuyang18 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2757 2758 2759
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2760
    def op_role(self, role):
Y
yuyang18 已提交
2761 2762 2763 2764
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2765 2766 2767 2768 2769 2770 2771
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2772 2773 2774 2775
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2776
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2777

S
rename  
sneaxiy 已提交
2778
    @signature_safe_contextmanager
W
Wu Yi 已提交
2779
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2780 2781 2782 2783 2784 2785 2786
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2787
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2788 2789 2790 2791

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2792
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2793 2794
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2795 2796 2797
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2798 2799
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2800 2801 2802 2803
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2804
        yield
X
Xin Pan 已提交
2805 2806
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2807

S
rename  
sneaxiy 已提交
2808
    @signature_safe_contextmanager
X
Xin Pan 已提交
2809
    def _lr_schedule_guard(self, is_with_opt=False):
2810 2811 2812 2813 2814 2815 2816
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2817 2818 2819 2820
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2821 2822 2823 2824 2825 2826 2827

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2828 2829 2830 2831

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2832 2833
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2834 2835
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2836 2837 2838
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2839 2840
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2841

2842
    def __str__(self):
Y
yuyang18 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2852 2853
        return self.to_string(True)

F
fengjiayi 已提交
2854 2855 2856
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2857

F
fengjiayi 已提交
2858
        Args:
Y
yuyang18 已提交
2859 2860
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2861

Y
yuyang18 已提交
2862 2863 2864 2865
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2866 2867
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2868 2869 2870 2871

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2882 2883
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2884 2885
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2886

W
Wu Yi 已提交
2887
    def _get_desc(self):
Y
yuyang18 已提交
2888 2889 2890 2891 2892 2893 2894
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2895 2896
        return self.desc

X
version  
Xin Pan 已提交
2897 2898 2899
    def _version(self):
        return self.desc._version()

2900
    def clone(self, for_test=False):
Y
yuyang18 已提交
2901 2902 2903
        """
        Create a new, duplicated program.

2904

Y
yuyang18 已提交
2905 2906 2907 2908
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2909

Y
yuyang18 已提交
2910 2911 2912 2913
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2914 2915 2916 2917 2918
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2919 2920

        Args:
Y
yuyang18 已提交
2921 2922
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2923

D
dzhwinter 已提交
2924
        Returns:
Y
yuyang18 已提交
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2978 2979
        """
        if for_test:
X
Xin Pan 已提交
2980
            p = self._inference_optimize(prune_read_op=False)
2981
        else:
2982
            p = Program()
G
gongweibao 已提交
2983 2984
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2985
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2986 2987 2988
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2989 2990 2991 2992

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2993
            p._sync_with_cpp()
2994

W
Wu Yi 已提交
2995
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2996
        p._copy_data_info_from(self)
2997
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2998
        return p
2999

W
Wu Yi 已提交
3000
    def _prune(self, targets):
Y
yuyang18 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3016 3017 3018 3019 3020 3021
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3022 3023
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3024
                    # and we need to find the current op that generate this
3025 3026 3027 3028 3029 3030 3031 3032
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3033
                    t = t.op
3034 3035 3036 3037
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3038
                else:
3039 3040
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3041 3042 3043 3044

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3045 3046 3047
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3048
        res._sync_with_cpp()
3049 3050
        return res

X
Xin Pan 已提交
3051
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3052
        """
F
fengjiayi 已提交
3053 3054 3055 3056 3057
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3058
        3. change the :code:`is_test`
Y
yuyang18 已提交
3059 3060 3061
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3062
        Args:
X
Xin Pan 已提交
3063 3064
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3065

Y
yuyang18 已提交
3066 3067 3068 3069 3070 3071
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3072
        res = Program()
3073
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3074 3075 3076 3077

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3078
        if prune_read_op:
3079 3080 3081 3082 3083 3084 3085 3086 3087
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3088
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3089 3090

        # change all `is_test` attributes to True
M
minqiyang 已提交
3091
        for i in six.moves.range(res.desc.num_blocks()):
3092
            block = res.desc.block(i)
M
minqiyang 已提交
3093
            for j in six.moves.range(block.op_size()):
3094 3095
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3096
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3097 3098 3099
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3100
        res._sync_with_cpp()
3101 3102
        return res

3103 3104
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3105 3106 3107 3108 3109 3110 3111
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3112
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3113 3114 3115 3116

        Returns:
            Program: A deserialized program desc.
        """
3117 3118
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3119
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3120
        p._sync_with_cpp()
3121
        return p
Y
Yu Yang 已提交
3122

3123
    @staticmethod
3124
    def _construct_from_desc(desc):
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3140 3141
    @property
    def random_seed(self):
Y
yuyang18 已提交
3142 3143 3144 3145 3146 3147
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
3148 3149
        return self._seed

Q
qiaolongfei 已提交
3150 3151
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3152 3153 3154
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
3155 3156
        return self.desc.num_blocks()

D
dzhwinter 已提交
3157 3158 3159 3160 3161 3162
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3163
    def __repr__(self):
3164
        return self.__str__()
3165

Y
Yu Yang 已提交
3166
    def global_block(self):
Y
yuyang18 已提交
3167 3168 3169
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
3170 3171
        return self.blocks[0]

Q
Qiao Longfei 已提交
3172
    def block(self, index):
Y
yuyang18 已提交
3173 3174 3175 3176 3177 3178 3179 3180
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
3181 3182
        return self.blocks[index]

Y
Yu Yang 已提交
3183
    def current_block(self):
Y
yuyang18 已提交
3184 3185 3186 3187
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
3188 3189
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3190
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3201
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3202 3203 3204
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3205 3206 3207 3208
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3209
    def _rollback(self):
Y
yuyang18 已提交
3210 3211 3212 3213 3214
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3215 3216
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3217
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3228 3229 3230
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3231
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3232

W
Wu Yi 已提交
3233
    def _copy_param_info_from(self, other):
3234
        """
3235
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3236

Y
yuyang18 已提交
3237 3238 3239
        Notes: This is a very low level API. Users should not invoke it
        directly.

3240 3241 3242 3243 3244 3245 3246
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3247
            raise TypeError("_copy_param_info_from should be invoked with "
3248 3249 3250
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3251
            raise ValueError("_copy_param_info_from should be invoked with two "
3252
                             "program, with represent the same topology")
W
Wu Yi 已提交
3253
        self.global_block()._copy_param_info_from(other.global_block())
3254

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3270
        self._parameters_on_pservers = other._parameters_on_pservers
3271
        self._endpoints = other._endpoints
3272
        self._ps_endpoint = other._ps_endpoint
3273 3274
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3275
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3276 3277
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3278

Y
yuyang18 已提交
3279 3280 3281
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3282 3283 3284 3285 3286 3287 3288
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3289
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3290 3291 3292
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3293
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3294
                             "program, with represent the same topology")
3295
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3296 3297 3298
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3299
    def list_vars(self):
Y
yuyang18 已提交
3300 3301 3302 3303 3304 3305
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
3306
        for each_block in self.blocks:
3307
            for each_var in list(each_block.vars.values()):
3308 3309
                yield each_var

Y
Yu Yang 已提交
3310

Y
Yu Yang 已提交
3311
class Parameter(Variable):
3312
    """
3313
    Parameter is derived from Variable. A parameter is a persistable
3314
    Variable, and will be updated by optimizers after each iteration.
3315
    The training of a neural network is essentially the updating of
3316 3317
    its parameters.

3318
    Relative to a general Variable, a Parameter has several its own
3319 3320
    member variables:

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3333 3334
    """

Y
Yu Yang 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3345 3346 3347

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3348 3349 3350 3351
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3352 3353
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3354
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3355

W
wanghaoshuang 已提交
3356
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3357

F
fengjiayi 已提交
3358 3359 3360
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3361 3362 3363
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3364

F
update  
fengjiayi 已提交
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3379
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3380
            for attr_name in additional_attr:
3381 3382
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3383 3384
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3385 3386 3387 3388
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3389

Y
Yu Yang 已提交
3390
# program is a global instance.
Y
Yu Yang 已提交
3391 3392
_main_program_ = Program()
_startup_program_ = Program()
3393

3394

3395
def default_startup_program():
Y
Yu Yang 已提交
3396
    """
Y
yuyang18 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3406

Y
Yu Yang 已提交
3407 3408 3409
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
3410
    return _startup_program_
3411

3412

3413
def default_main_program():
Y
Yu Yang 已提交
3414
    """
Y
yuyang18 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3424

Y
Yu Yang 已提交
3425 3426 3427
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3428
    return _main_program_
Y
Yu Yang 已提交
3429 3430 3431 3432 3433


def switch_main_program(program):
    """
    Switch the main program to a new program.
3434

Y
Yu Yang 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3449
    Switch the startup program to a new program
Y
Yu Yang 已提交
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3462
@signature_safe_contextmanager
Y
Yu Yang 已提交
3463 3464
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3465 3466 3467
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3468

Y
Yu Yang 已提交
3469
    Examples:
Y
yuyang18 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3480

Y
Yu Yang 已提交
3481
    Examples:
Y
yuyang18 已提交
3482 3483 3484 3485 3486 3487

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
3488

Y
Yu Yang 已提交
3489
    Args:
Y
yuyang18 已提交
3490
        main_program(Program): New main program inside `with` statement.
3491
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3505 3506


W
Wu Yi 已提交
3507
def _get_var(name, program=None):
X
xuwei06 已提交
3508
    """
Y
yuyang18 已提交
3509
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3510

X
xuwei06 已提交
3511 3512 3513
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3514
        If None, default_global_program() will be used.
X
xuwei06 已提交
3515 3516 3517 3518 3519 3520 3521

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3522
    assert isinstance(program, Program)
X
xuwei06 已提交
3523 3524

    return program.global_block().var(name)
3525 3526


S
rename  
sneaxiy 已提交
3527
@signature_safe_contextmanager
3528 3529 3530 3531
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
3532

3533
    yield
P
Paddle CI 已提交
3534

3535
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
3536 3537


S
rename  
sneaxiy 已提交
3538
@signature_safe_contextmanager
P
Paddle CI 已提交
3539
def _imperative_place_guard(place):
M
minqiyang 已提交
3540 3541 3542
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
3543

3544
    yield
M
minqiyang 已提交
3545

M
minqiyang 已提交
3546
    _imperative_current_expected_place_ = tmp_place