framework.py 101.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


Q
Qiao Longfei 已提交
90 91 92 93 94 95 96 97 98
def is_pserver_mode(main_program):
    main = main_program if main_program \
        else default_main_program()
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
125
@signature_safe_contextmanager
126 127 128 129 130 131 132 133 134 135 136 137
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
138

139 140 141 142
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
143 144
          with name_scope("attention"):
             ...
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
164 165 166
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
167 168 169 170


def grad_var_name(var_name):
    """
171 172
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
173 174 175
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
176

177
def convert_np_dtype_to_dtype_(np_dtype):
178 179
    """
    Convert the data type in numpy to the data type in Paddle
180

181
    Args:
182
        np_dtype(np.dtype): the data type in numpy.
183

184 185
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
186 187

    """
188 189
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
190
        return core.VarDesc.VarType.FP32
191
    elif dtype == np.float64:
192
        return core.VarDesc.VarType.FP64
193
    elif dtype == np.float16:
194
        return core.VarDesc.VarType.FP16
195
    elif dtype == np.int32:
196
        return core.VarDesc.VarType.INT32
197
    elif dtype == np.int16:
198
        return core.VarDesc.VarType.INT16
199
    elif dtype == np.int64:
200
        return core.VarDesc.VarType.INT64
201
    elif dtype == np.bool:
202
        return core.VarDesc.VarType.BOOL
203 204
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
205 206
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
207 208
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
209
    else:
M
minqiyang 已提交
210
        raise ValueError("Not supported numpy dtype %s" % dtype)
211 212 213


def dtype_is_floating(dtype):
214 215 216
    """
    Check the data type is floating or not.
    Args:
217
        dtype(np.dtype|core.VarDesc.VarType): data type.
218 219 220 221 222
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
223
    if not isinstance(dtype, core.VarDesc.VarType):
224 225
        dtype = convert_np_dtype_to_dtype_(dtype)

226 227 228 229
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
230 231


Y
Yang Yang(Tony) 已提交
232
def _debug_string_(proto, throw_on_error=True):
233 234 235 236 237 238 239 240 241 242 243
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
244
    error_fields = list()
Y
Yang Yang(Tony) 已提交
245
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
246 247
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
248 249 250
    return proto.__str__()


X
Xin Pan 已提交
251
class Variable(object):
252
    """
253 254 255
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
256
    two variables in different blocks could have the same name.
257

258 259
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
260

261
    Most of a Variable's member variables can be setted to be None. It mean
262
    it is not available or will be specified later.
263 264

    Args:
265
        block(Block): The block that the variable belongs to.
266 267
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
268 269
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
270
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
271
            Some kinds of variable do not contain shape, just set it to None.
272 273 274
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
275
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
276
            series data.
277
            Default: None
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
300 301
    """

Y
Yu Yang 已提交
302 303
    def __init__(self,
                 block,
Y
Yu Yang 已提交
304
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
305 306 307 308
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
309
                 capacity=None,
Q
QI JUN 已提交
310
                 persistable=None,
F
fengjiayi 已提交
311
                 error_clip=None,
Y
Yu Yang 已提交
312
                 stop_gradient=False,
F
fengjiayi 已提交
313
                 is_data=False,
Y
Yu Yang 已提交
314
                 **kwargs):
Y
Yu Yang 已提交
315
        self.block = block
F
fengjiayi 已提交
316
        self.error_clip = error_clip
Y
Yu Yang 已提交
317 318

        if name is None:
Y
Yu Yang 已提交
319
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
320
        is_new_var = False
M
minqiyang 已提交
321
        name = cpt.to_text(name)
M
minqiyang 已提交
322
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
323 324

        if self.desc is None:
M
minqiyang 已提交
325
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
326
            is_new_var = True
Y
Yu Yang 已提交
327

Y
Yu Yang 已提交
328 329 330 331 332 333 334 335
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
336
        if shape is not None:
Y
Yu Yang 已提交
337
            if is_new_var:
338
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
339 340 341 342 343 344 345 346
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
347
        if dtype is not None:
348
            if not isinstance(dtype, core.VarDesc.VarType):
349
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
350
            if is_new_var:
F
fengjiayi 已提交
351
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
352
            else:
F
fengjiayi 已提交
353
                old_dtype = self.dtype
Q
QI JUN 已提交
354
                if dtype != old_dtype:
Y
Yu Yang 已提交
355 356 357 358 359
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
360 361

        if lod_level is not None:
Y
Yu Yang 已提交
362
            if is_new_var:
363
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
364 365 366 367 368 369 370
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
371 372 373 374 375 376 377 378 379 380 381
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

382 383 384 385 386 387 388 389
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

X
Xin Pan 已提交
390
        if _in_imperative_mode():
M
minqiyang 已提交
391
            # record vars in tracer rather than blocks
M
minqiyang 已提交
392 393
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
M
minqiyang 已提交
394
                self._ivar = core.VarBase(stop_gradient)
X
Xin Pan 已提交
395
            self._ivar.desc = self.desc
396 397
            self._ivar.block = block.desc
            self._ivar.name = name
M
minqiyang 已提交
398 399
            if persistable:
                self.block.vars[name] = self
M
minqiyang 已提交
400 401 402 403 404
        else:
            self.block.vars[name] = self
        self.op = None
        self.stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
405

406
    def _numpy(self):
M
minqiyang 已提交
407
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
408
        return np.array(new_ivar.value().get_tensor())
409 410

    def _backward(self):
X
Xin Pan 已提交
411
        self._ivar._run_backward()
412 413

    def _gradient(self):
M
minqiyang 已提交
414
        return np.array(self._ivar._grad_value())
415

X
Xin Pan 已提交
416 417
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
418

419
    def __str__(self):
Y
Yang Yang(Tony) 已提交
420 421
        return self.to_string(True)

F
update  
fengjiayi 已提交
422
    def to_string(self, throw_on_error, with_details=False):
423 424 425 426
        """
        Get debug string.

        Args:
427 428
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
429
            with_details(bool): more details about variables and parameters
430 431
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
432

433 434
        Returns:
            str: The debug string.
435
        """
F
update  
fengjiayi 已提交
436 437
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
438
        protostr = self.desc.serialize_to_string()
439
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
440 441 442 443
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
444 445
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
446
        return res_str
447 448 449

    __repr__ = __str__

W
Wu Yi 已提交
450
    def _set_desc(self, input):
451 452 453 454 455 456 457 458 459
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
460 461
        self.desc = input

462 463
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
464 465 466 467
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
468 469 470

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
471 472 473
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
474

475 476 477 478
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
479 480 481 482
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
483 484
    @property
    def name(self):
M
minqiyang 已提交
485
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
486

T
typhoonzero 已提交
487 488 489 490
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
491 492 493
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
494
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
495 496

    @property
F
fengjiayi 已提交
497 498
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
499 500 501

    @property
    def lod_level(self):
502
        return self.desc.lod_level()
Y
Yu Yang 已提交
503

Y
Yu Yang 已提交
504 505 506 507
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
508
    def _set_error_clip(self, error_clip):
509 510 511 512 513 514 515 516 517
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
518 519
        self.error_clip = error_clip

Y
Yu Yang 已提交
520

F
fengjiayi 已提交
521 522 523
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
524

525 526
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
527 528 529 530
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
531
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
532 533 534 535 536
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
537 538 539 540
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
541 542 543 544 545 546 547 548 549
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
550
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
551 552 553 554 555 556
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
557 558 559 560 561 562 563 564
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
565 566
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
567 568
        return self.op_proto_map[type]

569 570 571 572
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
573
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
574 575
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
576 577
        }

F
fengjiayi 已提交
578

X
Xin Pan 已提交
579
class Operator(object):
580
    """
581 582 583 584 585 586 587
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
588
        type(str): The type of operator. Default None.
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
609
        Block.append_op or Block._prepend_op instead.
610 611 612 613 614 615 616 617 618 619

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
620
    """
621 622 623
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
624 625
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
626
    }
627

Y
Yu Yang 已提交
628 629
    def __init__(self,
                 block,
Y
Yu Yang 已提交
630
                 desc,
Y
Yu Yang 已提交
631 632 633
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
634
                 attrs=None):
Y
Yu Yang 已提交
635
        self.block = block
Y
Yu Yang 已提交
636
        self.desc = desc
G
gongweibao 已提交
637 638 639 640 641
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
642 643 644 645
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
646 647
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
648 649 650

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
651 652
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
653

G
gongweibao 已提交
654 655
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
656

F
fengjiayi 已提交
657 658 659 660 661
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
662 663 664 665 666
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
667
        self.desc.set_type(type)
F
fengjiayi 已提交
668
        proto = OpProtoHolder.instance().get_op_proto(type)
669

670 671 672
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
673 674
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
675
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
676 677
                    return True
            return False
Q
QI JUN 已提交
678

Y
Yang Yang(Tony) 已提交
679 680 681 682 683 684 685
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
686 687 688 689
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
690 691
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
692 693 694
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
695
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
696
                            in_arg_names.append(arg)
697 698
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
699
                        else:
M
minqiyang 已提交
700
                            in_arg_names.append(cpt.to_text(arg.name))
701
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
702 703
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
704

Y
Yu Yang 已提交
705
        if outputs is not None:
706
            for m in proto.outputs:
Q
qingqing01 已提交
707 708 709 710 711 712
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
713
            for out_proto in proto.outputs:
Q
qingqing01 已提交
714 715
                if out_proto.name not in outputs:
                    continue
716 717 718 719
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
720 721
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
722 723 724
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
725
                    out_arg_names.append(cpt.to_text(arg.name))
726 727 728
                    # TODO(minqiyang): could we remove variable's op in static mode?
                    if not _in_imperative_mode():
                        arg.op = self
729
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
730

G
gongweibao 已提交
731 732
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
733
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
734
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
735
                attr_name = attr.name
G
gongweibao 已提交
736
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
737
                    continue
G
gongweibao 已提交
738
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
739 740
                self._update_desc_attr(attr_name, attr_val)

741
        self.desc.check_attrs()
W
Wu Yi 已提交
742
        if self._has_kernel(type):
Q
QI JUN 已提交
743
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
744
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
745

X
Xin Pan 已提交
746 747 748
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
M
minqiyang 已提交
749

X
Xin Pan 已提交
750
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
751
            if inputs is not None:
X
Xin Pan 已提交
752 753 754 755 756
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
757

X
Xin Pan 已提交
758
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
759
            if outputs is not None:
X
Xin Pan 已提交
760 761 762 763 764
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
765

W
Wu Yi 已提交
766
    def _has_kernel(self, op_type):
767 768
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
769
    def to_string(self, throw_on_error):
770
        """
771 772
        Get debug string.

773
        Args:
774 775
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
776

777 778
        Returns:
            str: The debug string.
779 780

        """
781
        protostr = self.desc.serialize_to_string()
782
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
783 784 785 786
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
787 788 789

    __repr__ = __str__

F
fengjiayi 已提交
790 791 792 793 794
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
795
        """
796
        Get the input arguments according to the input parameter name.
797

798 799
        Args:
            name(str): The input parameter name.
800

801 802 803
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
804
        """
F
fengjiayi 已提交
805 806
        return self.desc.input(name)

W
Wu Yi 已提交
807
    def _rename_input(self, old_name, new_name):
808 809 810 811 812 813 814 815 816 817
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
818
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
819

W
Wu Yi 已提交
820
    def _rename_output(self, old_name, new_name):
821 822 823 824 825 826 827 828 829 830
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
831
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
832

F
fengjiayi 已提交
833 834 835 836
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
837 838 839 840 841 842 843 844
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
845
    def output(self, name):
846
        """
847
        Get output arguments by the output parameter name.
848

849 850
        Args:
            name(str): The output parameter name.
851

852 853 854
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
855
        """
F
fengjiayi 已提交
856 857 858 859 860 861
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

862 863 864 865 866 867 868 869
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
870
    def has_attr(self, name):
871
        """
872 873
        Whether this Operator has the attribute with name or not.

874
        Args:
875
            name(str): the attribute name.
876

877 878
        Returns:
            bool: True if has this attribute.
879 880

        """
F
fengjiayi 已提交
881 882 883
        return self.desc.has_attr(name)

    def attr_type(self, name):
884
        """
885
        Get the type of attribute by attribute's name.
886

887 888
        Args:
            name(str): the attribute name.
889

890 891
        Returns:
            core.AttrType: the attribute type.
892
        """
F
fengjiayi 已提交
893 894
        return self.desc.attr_type(name)

W
Wu Yi 已提交
895
    def _set_attr(self, name, val):
896 897 898 899 900 901 902 903 904 905
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
919 920
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
921 922
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
923
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
924 925 926 927
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
928
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
929

F
fengjiayi 已提交
930 931 932 933 934
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
935
        """
936 937
        Get the attribute by name.

938
        Args:
939
            name(str): the attribute name.
940

941 942
        Returns:
            bool|int|str|float|list: The attribute value. The return value
943 944
            can be any valid attribute type.
        """
F
fengjiayi 已提交
945
        return self.desc.attr(name)
Y
Yu Yang 已提交
946

W
Wu Yi 已提交
947
    def _block_attr_id(self, name):
948
        """
G
gongweibao 已提交
949
        Get the block attribute's id by name.
950

951 952
        Args:
            name(str): the attribute name.
953

954 955
        Returns:
            int: the block index.
956
        """
W
Wu Yi 已提交
957
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
958

W
Wu Yi 已提交
959
    def _block_attr(self, name):
G
gongweibao 已提交
960 961 962 963 964 965 966 967 968 969
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
970
        id = self._block_attr_id(name)
G
gongweibao 已提交
971 972 973
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
974
    def _blocks_attr(self, name):
G
gongweibao 已提交
975 976 977 978 979 980 981 982 983 984
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
985
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
986 987 988 989 990
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
991
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
992 993 994 995 996 997 998 999 1000 1001
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1002
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1003

J
JiayiFeng 已提交
1004
    def all_attrs(self):
F
fengjiayi 已提交
1005
        """
1006 1007 1008
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1009
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1010 1011 1012 1013
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1014 1015
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1016
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1017 1018 1019
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1020
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1021 1022 1023 1024
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1025 1026
        return attr_map

Y
Yu Yang 已提交
1027

Y
Yu Yang 已提交
1028
class Block(object):
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1043
        use `Program._create_block()` to create a block.
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1058
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1059
        self.desc = program.desc.block(idx)
1060
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1061
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1062
        self.program = program
1063
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1064

1065
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1066 1067
        return self.to_string(True)

F
fengjiayi 已提交
1068 1069
    def to_string(self, throw_on_error, with_details=False):
        """
1070 1071
        Get debug string.

F
fengjiayi 已提交
1072 1073
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1074
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1075
            with_details(bool): more details about variables and parameters
1076 1077
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1078

1079 1080
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1081 1082 1083 1084
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1085
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1086 1087
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1088
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1089
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1090
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1091
            for op in self.ops:
F
fengjiayi 已提交
1092 1093
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1094 1095 1096
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1097 1098
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1099 1100
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1101 1102 1103

    __repr__ = __str__

Y
Yu Yang 已提交
1104 1105
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1106
        return self.desc.parent
Y
Yu Yang 已提交
1107

Y
Yu Yang 已提交
1108 1109 1110 1111
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1112
    def _set_forward_block_idx(self, idx):
1113 1114 1115 1116 1117 1118 1119 1120 1121
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1122
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1123

Y
Yu Yang 已提交
1124 1125
    @property
    def idx(self):
Y
Yu Yang 已提交
1126
        return self.desc.id
Y
Yu Yang 已提交
1127

Q
Qiao Longfei 已提交
1128
    def var(self, name):
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1142
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1143 1144 1145
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1146 1147
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1148
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1149
        return v
Q
Qiao Longfei 已提交
1150

X
Xin Pan 已提交
1151
    def _find_var_recursive(self, name):
1152 1153 1154 1155 1156 1157 1158
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1159
            Variable: the Variable with the giving name. Or None if not found.
1160
        """
Y
Yu Yang 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1185
        return None
Y
Yu Yang 已提交
1186

X
Xin Pan 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1206

Q
Qiao Longfei 已提交
1207
    def all_parameters(self):
1208
        return list(self.iter_parameters())
1209

1210
    def iter_parameters(self):
M
minqiyang 已提交
1211
        return (item[1] for item in six.iteritems(self.vars)
1212
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1213

Y
Yu Yang 已提交
1214
    def create_var(self, *args, **kwargs):
1215
        var = Variable(block=self, *args, **kwargs)
1216 1217
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1218
        return var
Y
Yu Yang 已提交
1219

Q
Qiao Longfei 已提交
1220 1221 1222
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1223
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1224 1225
        """
        Rename variable in vars and ops' inputs and outputs
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1238
        """
M
minqiyang 已提交
1239 1240
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1241

T
typhoonzero 已提交
1242
        if not self.has_var(name):
1243
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1244 1245
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1246
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1247 1248 1249 1250 1251 1252 1253
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1254
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1255 1256 1257 1258
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1259
        orig_var_type = v.type
M
minqiyang 已提交
1260
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1261
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1262
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1263
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1264 1265 1266 1267
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1268
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1269 1270 1271 1272 1273 1274 1275
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1276
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1277 1278
            var = Variable(
                self,
T
typhoonzero 已提交
1279
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1280 1281 1282 1283
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1284
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1285 1286 1287
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1288
        self._sync_with_cpp()
1289
        return var
T
typhoonzero 已提交
1290

W
Wu Yi 已提交
1291 1292
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1293
        self.desc._remove_var(cpt.to_bytes(name))
1294 1295
        del self.vars[name]

Y
Yu Yang 已提交
1296 1297
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1298
        param = Parameter(global_block, *args, **kwargs)
1299
        if 'initializer' in kwargs:
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1320
        return param
Y
Yu Yang 已提交
1321

Y
Yu Yang 已提交
1322
    def append_op(self, *args, **kwargs):
1323 1324 1325 1326 1327 1328
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1329
        op_desc = self.desc.append_op()
1330 1331 1332 1333 1334 1335 1336
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1337 1338 1339 1340 1341 1342

        if _in_imperative_mode():
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1343 1344 1345 1346
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.append(op)
M
minqiyang 已提交
1347

1348 1349
        return op

W
Wu Yi 已提交
1350
    def _insert_op(self, index, *args, **kwargs):
1351 1352 1353 1354 1355 1356 1357 1358 1359
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1360 1361
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1362 1363 1364 1365
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1366
    def _remove_op(self, index):
1367 1368 1369 1370 1371 1372 1373 1374 1375
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1376 1377
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1378 1379
        del self.ops[index]

W
Wu Yi 已提交
1380
    def _slice_ops(self, start, end):
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1391
        return self.ops[start:end]
Y
Yancey1989 已提交
1392

W
Wu Yi 已提交
1393 1394
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1395 1396 1397 1398 1399 1400 1401
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1402
        if _in_imperative_mode():
M
minqiyang 已提交
1403 1404 1405 1406
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.insert(0, op)
Y
Yu Yang 已提交
1407 1408
        return op

W
Wu Yi 已提交
1409
    def _sync_with_cpp(self):
1410
        """
1411 1412
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1413
        """
Q
Qiao Longfei 已提交
1414 1415 1416 1417 1418
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1419
        # sync variables removed from c++ end
1420
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1421
            if not self.desc.find_var(cpt.to_bytes(var)):
1422 1423
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1424
        # sync operators from cpp
1425 1426 1427 1428
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1445 1446 1447 1448 1449

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1450
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1451 1452 1453 1454 1455 1456 1457

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1471 1472 1473 1474
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1475
    def _copy_param_info_from(self, other):
1476
        """
1477 1478
        Copy the information of parameters from the other block.

1479
        Args:
1480 1481 1482 1483 1484
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1485 1486 1487 1488 1489

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1490 1491
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1492
        for p in other.iter_parameters():
1493 1494 1495
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1496
                raise ValueError("_copy_param_info_from should be invoked with "
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1509
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1510
                error_clip=p.error_clip,
1511 1512 1513
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1514
    def _clone_variable(self, var):
1515 1516
        """
        Clone a variable into current block.
1517

1518 1519 1520 1521
        Args:
            var: the variable to be cloned.

        Returns:
1522
            Variable: the new  variable cloned from 'var' in current block.
1523 1524
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1525 1526 1527 1528 1529
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1530 1531
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1532
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1533 1534 1535 1536 1537 1538
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1539 1540
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1541 1542 1543 1544 1545 1546 1547
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1548 1549
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1550
        return ret_var
1551

Y
Yu Yang 已提交
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

1648
    def remove_input_by_id(self, node_id):
1649 1650 1651 1652 1653 1654
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1655
        self.node.remove_input(node_id)
1656

1657
    def remove_input(self, node):
1658 1659 1660 1661
        """
        Remove a node from inputs.

        Args:
1662
            node(IrNode): the node being removed.
1663
        """
1664
        self.node.remove_input(node.node)
1665

1666
    def append_input(self, node):
1667 1668 1669 1670
        """
        Append a node in inputs.

        Args:
1671
            node(IrNode): the node being appended.
1672
        """
1673
        self.node.append_input(node.node)
1674 1675 1676 1677 1678 1679 1680 1681

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

1682
    def remove_output_by_id(self, node_id):
1683 1684 1685 1686 1687 1688
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1689
        self.node.remove_output(node_id)
1690

1691
    def remove_output(self, node):
1692 1693 1694 1695
        """
        Remove a node from outputs.

        Args:
1696
            node(IrNode): the node being removed.
1697
        """
1698
        self.node.remove_output(node.node)
1699

1700
    def append_output(self, node):
1701 1702 1703 1704
        """
        Append a node in outputs.

        Args:
1705
            node(IrNode): the node being appended.
1706
        """
1707
        self.node.append_output(node.node)
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


1940 1941
class IrGraph(object):
    """
1942
    Python IrGraph. Beneath it is a core.Graph, which is used for
1943
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
1944 1945
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1946 1947 1948 1949
    """

    def __init__(self, graph, for_test=False):
        """
1950 1951
        Construct an IrGraph using core.Graph.

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1962 1963 1964
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1965 1966
        return self._for_test

W
WangZhen 已提交
1967
    def all_nodes(self):
1968 1969 1970
        """
        Return all nodes included in the graph as a set.
        """
1971
        return {IrNode(node) for node in self.graph.nodes()}
1972

1973
    def all_var_nodes(self):
1974 1975 1976
        """
        Return all variable nodes included in the graph as a set.
        """
1977
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
1978

1979
    def all_persistable_nodes(self):
1980 1981 1982
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1983 1984 1985 1986 1987
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
1988
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
1989

1990
    def all_op_nodes(self):
1991 1992 1993
        """
        Return all operator nodes included in the graph as a set.
        """
1994
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
1995

W
WangZhen 已提交
1996 1997
    def var_node(self, name):
        """
1998 1999
        Get a variable node by name from the graph.

W
WangZhen 已提交
2000 2001
        Args:
            name(str): the name of the variable node.
2002

W
WangZhen 已提交
2003 2004 2005
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
2006

W
WangZhen 已提交
2007
        Returns:
2008
            IrVarNode: the variable node with the giving name.
W
WangZhen 已提交
2009 2010 2011 2012 2013 2014
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
2015
        var_nodes = self.all_var_nodes()
W
WangZhen 已提交
2016 2017 2018 2019 2020 2021 2022
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

2023
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2035
            IrVarNode: the created persistable variable node.
2036
        """
2037 2038 2039 2040 2041
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2042
        return IrVarNode(self.graph.create_var_node(var_desc))
2043 2044

    def create_var_node(self, name, var_type, shape, var_dtype):
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2056
            IrVarNode: the created variable node.
2057 2058
        """

2059 2060 2061 2062
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2063
        return IrVarNode(self.graph.create_var_node(var_desc))
2064 2065

    def create_var_node_from_desc(self, var_desc):
2066 2067 2068 2069 2070 2071 2072 2073
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2074
            IrVarNode: the created variable node.
2075
        """
2076
        return IrVarNode(self.graph.create_var_node(var_desc))
2077 2078

    def create_op_node(self, op_type, attrs, inputs, outputs):
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2089
            IrOpNode: the created operator node.
2090
        """
2091 2092
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2093
        for attr, value in six.iteritems(attrs):
2094
            self._update_desc_attr(op_desc, attr, value)
2095
        for input_name, var_nodes in six.iteritems(inputs):
2096 2097 2098 2099
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2100
        for output_name, var_nodes in six.iteritems(outputs):
2101 2102 2103 2104
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2105
        return IrOpNode(self.graph.create_op_node(op_desc))
2106 2107

    def create_op_node_from_desc(self, op_desc):
2108 2109 2110 2111 2112 2113 2114
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2115
            IrOpNode: the created operator node.
2116
        """
2117
        return IrOpNode(self.graph.create_op_node(op_desc))
2118 2119

    def update_input_link(self, old_input_node, new_input_node, op_node):
2120 2121 2122 2123
        """
        Update the input's link of a operator node.

        Args:
2124 2125 2126
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2127
        """
2128 2129
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2130
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2131 2132 2133 2134
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2135
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2136 2137

    def link_to(self, node_in, node_out):
2138 2139 2140 2141
        """
        Connect two nodes.

        Args:
2142 2143
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2144
        """
2145
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2146
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2147 2148
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2149 2150

    def safe_remove_nodes(self, remove_nodes):
2151 2152 2153 2154 2155 2156 2157
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2158
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2159 2160 2161 2162
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2163 2164
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2165

W
WangZhen 已提交
2166
    def has_circle(self):
2167 2168 2169 2170 2171 2172
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2173 2174 2175
        return core.has_circle(self.graph)

    def graph_num(self):
2176 2177 2178 2179 2180 2181
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2182 2183 2184
        return core.graph_num(self.graph)

    def topology_sort(self):
2185 2186 2187 2188 2189 2190
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
2191
            set(IrNode): nodes in topology order.
2192
        """
2193 2194
        ordered_nodes = core.topology_sort(self.graph)
        return {IrNode(n) for n in ordered_nodes}
W
WangZhen 已提交
2195 2196

    def build_adjacency_list(self):
2197 2198 2199 2200
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2201
            dict{IrNode: set(IrNode)}: the adjacency list.
2202
        """
2203 2204 2205 2206 2207
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2208

2209 2210 2211 2212 2213 2214 2215 2216
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2217
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2218 2219 2220 2221 2222
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2223 2224 2225 2226 2227 2228 2229 2230 2231
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2232
        remove_ctr_vars = set()
2233
        if remove_ctr_var:
2234
            for node in self.all_var_nodes():
2235 2236 2237
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2238 2239
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2240 2241
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2242 2243 2244 2245 2246 2247
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2269
        convert_pass = core.get_pass('graph_to_program_pass')
2270 2271
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2292
class Program(object):
D
dzhwinter 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2304
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2305 2306

    Returns:
Y
yuyang18 已提交
2307
        A empty program.
D
dzhwinter 已提交
2308 2309

    Examples:
Y
yuyang18 已提交
2310 2311 2312 2313 2314 2315
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2316 2317 2318

    """

2319 2320
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2321 2322
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2323
        self._seed = 0
Y
yuyang18 已提交
2324
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2325
        self._op_role_var = []
T
tangwei12 已提交
2326

2327 2328
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2329
        self._is_distributed = False
2330
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2331
        self._is_chief = False
2332 2333 2334
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2335
        self._endpoints = []
2336 2337 2338
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2339
        self._trainers_endpoints = []
2340
        # the distributed lookup table names
T
tangwei12 已提交
2341
        self._distributed_lookup_table = None
D
dzhwinter 已提交
2342
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2343
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2344
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2345 2346

    @property
D
dzhwinter 已提交
2347
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2348 2349
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2350
        return self.__is_mem_optimized
D
dzhwinter 已提交
2351

D
dzhwinter 已提交
2352 2353 2354
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2355 2356 2357

    @property
    def op_role(self):
Y
yuyang18 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2371 2372 2373
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2374
    def op_role(self, role):
Y
yuyang18 已提交
2375 2376 2377 2378
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2379 2380 2381 2382 2383 2384 2385
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2386 2387 2388 2389
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2390
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2391

S
rename  
sneaxiy 已提交
2392
    @signature_safe_contextmanager
W
Wu Yi 已提交
2393
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2394 2395 2396 2397 2398 2399 2400
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2401
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2402 2403 2404 2405

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2406
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2407 2408
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2409 2410 2411
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2412 2413
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2414 2415 2416 2417
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2418
        yield
X
Xin Pan 已提交
2419 2420
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2421

S
rename  
sneaxiy 已提交
2422
    @signature_safe_contextmanager
X
Xin Pan 已提交
2423
    def _lr_schedule_guard(self, is_with_opt=False):
2424 2425 2426 2427 2428 2429 2430
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2431 2432 2433 2434
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2435 2436 2437 2438 2439 2440 2441

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2442 2443 2444 2445

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2446 2447
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2448 2449
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2450 2451 2452
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2453 2454
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2455

2456
    def __str__(self):
Y
yuyang18 已提交
2457 2458 2459 2460 2461 2462 2463 2464 2465
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2466 2467
        return self.to_string(True)

F
fengjiayi 已提交
2468 2469 2470
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2471

F
fengjiayi 已提交
2472
        Args:
Y
yuyang18 已提交
2473 2474
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2475

Y
yuyang18 已提交
2476 2477 2478 2479
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2480 2481
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2482 2483 2484 2485

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2496 2497
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2498 2499
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2500

W
Wu Yi 已提交
2501
    def _get_desc(self):
Y
yuyang18 已提交
2502 2503 2504 2505 2506 2507 2508
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2509 2510
        return self.desc

X
version  
Xin Pan 已提交
2511 2512 2513
    def _version(self):
        return self.desc._version()

2514
    def clone(self, for_test=False):
Y
yuyang18 已提交
2515 2516 2517
        """
        Create a new, duplicated program.

2518

Y
yuyang18 已提交
2519 2520 2521 2522
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2523

Y
yuyang18 已提交
2524 2525 2526 2527
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2528 2529 2530 2531 2532
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2533 2534

        Args:
Y
yuyang18 已提交
2535 2536
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2537

D
dzhwinter 已提交
2538
        Returns:
Y
yuyang18 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2592 2593
        """
        if for_test:
X
Xin Pan 已提交
2594
            p = self._inference_optimize(prune_read_op=False)
2595
        else:
2596
            p = Program()
G
gongweibao 已提交
2597 2598
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2599
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2600 2601 2602
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2603 2604 2605 2606

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2607
            p._sync_with_cpp()
2608

W
Wu Yi 已提交
2609
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2610
        p._copy_data_info_from(self)
2611
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2612
        return p
2613

W
Wu Yi 已提交
2614
    def _prune(self, targets):
Y
yuyang18 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2630 2631 2632 2633 2634 2635
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2636 2637
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2638
                    # and we need to find the current op that generate this
2639 2640 2641 2642 2643 2644 2645 2646
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2647
                    t = t.op
2648 2649 2650 2651
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2652
                else:
2653 2654
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2655 2656 2657 2658

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2659 2660 2661
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2662
        res._sync_with_cpp()
2663 2664
        return res

X
Xin Pan 已提交
2665
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2666
        """
F
fengjiayi 已提交
2667 2668 2669 2670 2671
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2672
        3. change the :code:`is_test`
Y
yuyang18 已提交
2673 2674 2675
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2676
        Args:
X
Xin Pan 已提交
2677 2678
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2679

Y
yuyang18 已提交
2680 2681 2682 2683 2684 2685
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2686
        res = Program()
2687
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2688 2689 2690 2691

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2692
        if prune_read_op:
2693 2694 2695 2696 2697 2698 2699 2700 2701
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2702
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2703 2704

        # change all `is_test` attributes to True
M
minqiyang 已提交
2705
        for i in six.moves.range(res.desc.num_blocks()):
2706
            block = res.desc.block(i)
M
minqiyang 已提交
2707
            for j in six.moves.range(block.op_size()):
2708 2709
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2710
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2711 2712 2713
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2714
        res._sync_with_cpp()
2715 2716
        return res

2717 2718
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2719 2720 2721 2722 2723 2724 2725
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2726
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2727 2728 2729 2730

        Returns:
            Program: A deserialized program desc.
        """
2731 2732
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2733
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2734
        p._sync_with_cpp()
2735
        return p
Y
Yu Yang 已提交
2736

2737
    @staticmethod
2738
    def _construct_from_desc(desc):
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2754 2755
    @property
    def random_seed(self):
Y
yuyang18 已提交
2756 2757 2758 2759 2760 2761
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2762 2763
        return self._seed

Q
qiaolongfei 已提交
2764 2765
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2766 2767 2768
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2769 2770
        return self.desc.num_blocks()

D
dzhwinter 已提交
2771 2772 2773 2774 2775 2776
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2777
    def __repr__(self):
2778
        return self.__str__()
2779

Y
Yu Yang 已提交
2780
    def global_block(self):
Y
yuyang18 已提交
2781 2782 2783
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2784 2785
        return self.blocks[0]

Q
Qiao Longfei 已提交
2786
    def block(self, index):
Y
yuyang18 已提交
2787 2788 2789 2790 2791 2792 2793 2794
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2795 2796
        return self.blocks[index]

Y
Yu Yang 已提交
2797
    def current_block(self):
Y
yuyang18 已提交
2798 2799 2800 2801
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2802 2803
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2804
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2815
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2816 2817 2818
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2819 2820 2821 2822
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2823
    def _rollback(self):
Y
yuyang18 已提交
2824 2825 2826 2827 2828
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2829 2830
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2831
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2842 2843 2844
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2845
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2846

W
Wu Yi 已提交
2847
    def _copy_param_info_from(self, other):
2848
        """
2849
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2850

Y
yuyang18 已提交
2851 2852 2853
        Notes: This is a very low level API. Users should not invoke it
        directly.

2854 2855 2856 2857 2858 2859 2860
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2861
            raise TypeError("_copy_param_info_from should be invoked with "
2862 2863 2864
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2865
            raise ValueError("_copy_param_info_from should be invoked with two "
2866
                             "program, with represent the same topology")
W
Wu Yi 已提交
2867
        self.global_block()._copy_param_info_from(other.global_block())
2868

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2884
        self._parameters_on_pservers = other._parameters_on_pservers
2885
        self._endpoints = other._endpoints
2886
        self._ps_endpoint = other._ps_endpoint
2887 2888
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2889
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2890 2891
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2892

Y
yuyang18 已提交
2893 2894 2895
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2896 2897 2898 2899 2900 2901 2902
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2903
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2904 2905 2906
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2907
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2908
                             "program, with represent the same topology")
2909
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2910 2911 2912
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2913
    def list_vars(self):
Y
yuyang18 已提交
2914 2915 2916 2917 2918 2919
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2920
        for each_block in self.blocks:
2921
            for each_var in list(each_block.vars.values()):
2922 2923
                yield each_var

Y
Yu Yang 已提交
2924

Y
Yu Yang 已提交
2925
class Parameter(Variable):
2926
    """
2927
    Parameter is derived from Variable. A parameter is a persistable
2928
    Variable, and will be updated by optimizers after each iteration.
2929
    The training of a neural network is essentially the updating of
2930 2931
    its parameters.

2932
    Relative to a general Variable, a Parameter has several its own
2933 2934
    member variables:

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2947 2948
    """

Y
Yu Yang 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2959 2960 2961

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2962 2963 2964 2965
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2966 2967
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2968
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2969

W
wanghaoshuang 已提交
2970
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2971

F
fengjiayi 已提交
2972 2973 2974
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2975 2976 2977
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2978

F
update  
fengjiayi 已提交
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2993
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2994
            for attr_name in additional_attr:
2995 2996
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2997 2998
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2999 3000 3001 3002
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3003

Y
Yu Yang 已提交
3004
# program is a global instance.
Y
Yu Yang 已提交
3005 3006
_main_program_ = Program()
_startup_program_ = Program()
3007

3008

3009
def default_startup_program():
Y
Yu Yang 已提交
3010
    """
Y
yuyang18 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3020

Y
Yu Yang 已提交
3021 3022 3023
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
3024
    return _startup_program_
3025

3026

3027
def default_main_program():
Y
Yu Yang 已提交
3028
    """
Y
yuyang18 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3038

Y
Yu Yang 已提交
3039 3040 3041
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3042
    return _main_program_
Y
Yu Yang 已提交
3043 3044 3045 3046 3047


def switch_main_program(program):
    """
    Switch the main program to a new program.
3048

Y
Yu Yang 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3063
    Switch the startup program to a new program
Y
Yu Yang 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3076
@signature_safe_contextmanager
Y
Yu Yang 已提交
3077 3078
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3079 3080 3081
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3082

Y
Yu Yang 已提交
3083
    Examples:
Y
yuyang18 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3094

Y
Yu Yang 已提交
3095
    Examples:
Y
yuyang18 已提交
3096 3097 3098 3099 3100 3101

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
3102

Y
Yu Yang 已提交
3103
    Args:
Y
yuyang18 已提交
3104
        main_program(Program): New main program inside `with` statement.
3105
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3119 3120


W
Wu Yi 已提交
3121
def _get_var(name, program=None):
X
xuwei06 已提交
3122
    """
Y
yuyang18 已提交
3123
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3124

X
xuwei06 已提交
3125 3126 3127
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3128
        If None, default_global_program() will be used.
X
xuwei06 已提交
3129 3130 3131 3132 3133 3134 3135

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3136
    assert isinstance(program, Program)
X
xuwei06 已提交
3137 3138

    return program.global_block().var(name)
3139 3140


S
rename  
sneaxiy 已提交
3141
@signature_safe_contextmanager
3142 3143 3144 3145
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
3146

3147
    yield
P
Paddle CI 已提交
3148

3149
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
3150 3151


S
rename  
sneaxiy 已提交
3152
@signature_safe_contextmanager
P
Paddle CI 已提交
3153
def _imperative_place_guard(place):
M
minqiyang 已提交
3154 3155 3156
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
3157

3158
    yield
M
minqiyang 已提交
3159

M
minqiyang 已提交
3160
    _imperative_current_expected_place_ = tmp_place