device_context.h 25.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36 37 38 39 40 41 42
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

43 44 45 46
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
47
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
48
#include "mkldnn.hpp"
49
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
50 51
#endif

52
#include <map>
W
wanghuancoder 已提交
53

54
#include "glog/logging.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
57
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
58
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
59
#endif
60 61 62
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
63
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
64

W
wanghuancoder 已提交
65 66 67 68 69
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

70 71
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
72
#include "paddle/fluid/platform/xpu_info.h"
73 74
#endif

75 76 77 78 79
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
80 81 82
namespace paddle {
namespace platform {

83
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
84 85 86 87
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
88
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
89 90 91 92
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
93 94
#endif  // PADDLE_WITH_CUDA

95 96 97 98
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
99
  NPU = 3,
100 101 102 103 104
};

constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
105
constexpr DeviceType kNPU = DeviceType::NPU;
106

Q
QI JUN 已提交
107 108
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
109
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
110
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
111

112
  virtual void Wait() const {}
Q
QI JUN 已提交
113 114
};

Q
qijun 已提交
115 116
class CPUDeviceContext : public DeviceContext {
 public:
117
  CPUDeviceContext();
Q
qijun 已提交
118
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
119

120
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
121

L
liaogang 已提交
122
  Place GetPlace() const override;
Y
Yu Yang 已提交
123

Q
qijun 已提交
124
 private:
D
dzhwinter 已提交
125
  CPUPlace place_;
Q
qijun 已提交
126
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
127 128
};

Y
Yang Yu 已提交
129 130 131 132 133 134 135 136
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

137 138 139 140 141 142 143 144 145 146 147 148 149
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

150
#ifdef PADDLE_WITH_XPU_BKCL
151
  /*! \brief  Return bkcl context. */
152 153 154 155 156 157
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

158 159 160
 private:
  XPUPlace place_;
  xpu::Context* context_;
161 162 163
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
164 165 166 167 168 169 170 171 172 173 174 175 176

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

177 178 179 180 181 182 183 184
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
185

186 187 188 189 190 191
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

192 193 194 195 196 197 198
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

214 215 216
 private:
  NPUPlace place_;
  aclrtContext context_;
217 218 219 220

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
239
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
240
class EigenCudaStreamDevice;
S
sneaxiy 已提交
241

242 243 244 245 246
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
247
      const stream::Priority& priority = stream::Priority::kNormal);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

263
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
264

265 266 267
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
268
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
269
#endif
270

271
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
272 273 274
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
275
#endif
G
Guo Sheng 已提交
276

277 278 279 280 281 282 283 284 285 286 287
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
288 289 290 291 292
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

312 313 314 315 316
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
317 318 319 320 321 322 323
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
324 325 326 327 328
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
329 330
    }
  }
331
#endif
332 333 334

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
335 336 337 338 339
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
340 341
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
342 343 344 345
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
346 347
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
348
            << ", but MIOPEN version in your machine is "
349
            << local_miopen_version / 100 << "." << local_miopen_version % 100
350 351 352 353 354 355 356 357
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
358 359 360 361 362 363 364 365 366 367 368 369 370
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
371 372
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
373
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
374
#endif
375 376 377 378 379
    } else {
      cudnn_handle_ = nullptr;
    }
  }

380
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
381
  void InitCuSolverContext() {
382 383
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
384 385
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
386
#endif
G
Guo Sheng 已提交
387

388 389
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
390 391 392
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
393
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
394
#endif
395 396 397 398 399 400 401
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
402
    cublas_tf32_tensor_core_handle_.reset();
403 404
  }

405
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
406 407 408 409 410 411
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
412
#endif
G
Guo Sheng 已提交
413

414 415 416 417
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
418 419 420
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
421
  cudnnHandle_t cudnn_handle_;
422
#endif
423 424
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
425
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
426
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
427
  cusolverDnHandle_t cusolver_dn_handle_;
428
#endif
429 430 431
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

432
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
433
 public:
D
dzhwinter 已提交
434
  explicit CUDADeviceContext(CUDAPlace place);
435
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
436

437
  /*! \brief  Wait for all operations completion in the stream. */
438
  void Wait() const override;
Q
QI JUN 已提交
439

440
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
441
  Place GetPlace() const override;
442

K
Kexin Zhao 已提交
443
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
444 445
  int GetComputeCapability() const;

446 447 448
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

449 450 451 452 453 454
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

455 456 457
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

458 459 460
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

461 462 463
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
464
    return context()->CublasCall(callback);
465 466 467 468 469 470 471 472 473
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
474
    return context()->TensorCoreCublasCallIfAvailable(callback);
475
  }
S
sneaxiy 已提交
476

477 478 479 480
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
481
  cudnnHandle_t cudnn_handle() const;
482
#endif
483

484 485 486 487
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
488
  cublasHandle_t cublas_handle() const;
489
#endif
490

S
sneaxiy 已提交
491 492 493 494 495 496 497 498 499
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

500
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
501
  cusolverDnHandle_t cusolver_dn_handle() const;
502
#endif
G
Guo Sheng 已提交
503

Q
init  
qijun 已提交
504
  /*! \brief  Return cuda stream in the device context. */
505
  gpuStream_t stream() const;
Q
QI JUN 已提交
506

507
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
508 509 510 511 512
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
513
#endif
Q
qingqing01 已提交
514

Y
Yu Yang 已提交
515
  template <typename Callback>
516
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
517
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
518 519
  }

S
sneaxiy 已提交
520 521
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
522 523 524 525 526
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
527 528
  }

529
  void ResetDefaultContext(const stream::Priority& priority) {
530 531 532
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

533
  void ResetThreadContext(const stream::Priority& priority) {
534 535 536 537 538 539 540 541 542 543
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
544

Q
QI JUN 已提交
545
 private:
D
dzhwinter 已提交
546
  CUDAPlace place_;
547
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
548

549 550 551 552 553 554
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
555

556 557
  mutable std::mutex cudnn_handle_mtx_;

558
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
559 560 561 562 563 564
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
565
#endif
Q
qingqing01 已提交
566

C
chengduo 已提交
567 568 569 570 571
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
572
  int max_threads_per_block_;
573
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
574

575
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
576
};
Q
qijun 已提交
577

578 579
class CudnnWorkspaceHandle {
 public:
580 581
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
582 583 584 585 586 587 588 589

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
590 591 592 593
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
594 595 596 597 598 599 600 601 602 603 604 605 606
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

607
  void ReallocWorkspace(size_t required_workspace_bytes);
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
624
  std::mutex* mtx_;
625 626
};

Y
Yang Yu 已提交
627 628
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
629
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
630 631
};

C
chengduoZH 已提交
632
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
633 634 635 636 637 638
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
639

C
chengduoZH 已提交
640 641 642 643 644 645 646 647 648 649 650
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
651
#endif
Q
qijun 已提交
652

T
tensor-tang 已提交
653
#ifdef PADDLE_WITH_MKLDNN
654 655 656 657 658 659

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
660
    bool said_once = false;
661 662 663 664 665 666 667 668 669 670 671
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
672 673 674
    // MKL-DNN stream used for execution of primitives (per-thread)
    mkldnn::engine cur_engine;
    mkldnn::stream cur_stream;
J
Jacek Czaja 已提交
675 676
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
677
    void* exec_ptr_ = nullptr;
678 679

    Body();
680
    ~Body();
681 682 683 684 685 686
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
687
    void log_lib_version(void);
688 689
    const mkldnn::engine& get_engine(void);
    mkldnn::stream& get_stream(void);
J
Jacek Czaja 已提交
690 691 692 693
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
694 695
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
711

T
tensor-tang 已提交
712 713
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

731 732 733
  using ExecMap = std::unordered_map<
      void*, std::vector<std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>>>;

T
tensor-tang 已提交
734 735 736
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
737
  const mkldnn::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
738

739 740 741
  // Register object to currently used executor's map
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;

742
  // Remove all entries from the blob map
743
  void ResetBlobMap(void* ptr);
744 745 746

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
747

748 749 750
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

751 752
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
753

754 755 756
  // Calculate number of oneDNN objects cached
  unsigned int GetCachedObjectsNumber(void);

757 758
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
759

760 761 762 763
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
764
 private:
765
  std::shared_ptr<BlobMap> p_blobmap_;
766 767 768
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
  std::shared_ptr<ExecMap> p_exec_items_;
769
  std::shared_ptr<std::mutex> p_mutex_;
770
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
771 772 773
};
#endif

D
dzhwinter 已提交
774 775 776 777 778
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
779
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
780 781 782
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
783 784 785 786
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
787
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
788 789 790 791 792 793
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

794 795
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
796
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
797
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
798

Y
Yang Yu 已提交
799 800 801 802 803 804 805
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

806 807
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
808 809
 private:
  static DeviceContextPool* pool;
810 811
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
812 813 814
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
815 816
}  // namespace platform
}  // namespace paddle