device_context.h 10.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
W
Wu Yi 已提交
25
#if !defined(__APPLE__) && !defined(_WIN32)
W
Wu Yi 已提交
26
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
27
#endif
Y
Yi Wang 已提交
28
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
29
#endif
D
dzhwinter 已提交
30

T
tensor-tang 已提交
31
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
32
#include "mkldnn.hpp"
T
tensor-tang 已提交
33 34
#endif

35 36
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
37 38
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
39 40 41
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
Q
qijun 已提交
42
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
43 44 45 46 47 48 49

namespace paddle {
namespace platform {

class DeviceContext {
 public:
  virtual ~DeviceContext() {}
L
liaogang 已提交
50
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
51

52
  virtual void Wait() const {}
Q
QI JUN 已提交
53 54
};

Q
qijun 已提交
55 56
class CPUDeviceContext : public DeviceContext {
 public:
57
  CPUDeviceContext();
Q
qijun 已提交
58
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
59

60
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
61

L
liaogang 已提交
62
  Place GetPlace() const override;
Y
Yu Yang 已提交
63

Q
qijun 已提交
64
 private:
D
dzhwinter 已提交
65
  CPUPlace place_;
Q
qijun 已提交
66
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
67 68
};

Y
Yang Yu 已提交
69 70 71 72 73 74 75 76
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

77
#ifdef PADDLE_WITH_CUDA
78

Q
qijun 已提交
79
class EigenCudaStreamDevice;
80
class CudnnWorkspaceHandle;
S
sneaxiy 已提交
81

82
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
83
 public:
D
dzhwinter 已提交
84
  explicit CUDADeviceContext(CUDAPlace place);
85
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
86

87
  /*! \brief  Wait for all operations completion in the stream. */
88
  void Wait() const override;
Q
QI JUN 已提交
89

90
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
91
  Place GetPlace() const override;
92

K
Kexin Zhao 已提交
93
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
94 95
  int GetComputeCapability() const;

96 97 98
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

99 100 101
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }
S
sneaxiy 已提交
121

122
  /*! \brief  Return cudnn  handle in the device context. */
123
  cudnnHandle_t cudnn_handle() const;
124

S
sneaxiy 已提交
125 126 127 128 129 130 131 132 133
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
134
  /*! \brief  Return cuda stream in the device context. */
135
  cudaStream_t stream() const;
Q
QI JUN 已提交
136

Q
qingqing01 已提交
137
#if !defined(_WIN32)
Q
qingqing01 已提交
138 139 140 141 142
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
143
#endif
Q
qingqing01 已提交
144

Y
Yu Yang 已提交
145 146 147
  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
    callback();
148
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(ev, stream_));
Y
Yu Yang 已提交
149 150
  }

S
sneaxiy 已提交
151 152 153 154 155
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    callback_manager_->AddCallback(callback);
  }

S
fix bug  
sneaxiy 已提交
156
  void WaitStreamCallback() const { callback_manager_->Wait(); }
S
sneaxiy 已提交
157

Q
QI JUN 已提交
158
 private:
D
dzhwinter 已提交
159
  CUDAPlace place_;
Q
QI JUN 已提交
160

N
nhzlx 已提交
161
  mutable std::once_flag init_cudnn_;
162

Q
qijun 已提交
163
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
Q
init  
qijun 已提交
164
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
165
  cudaStream_t stream_;
166

167
  cudnnHandle_t cudnn_handle_;
168 169
  mutable std::mutex cudnn_handle_mtx_;

170 171
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
172

Q
qingqing01 已提交
173
#if !defined(_WIN32)
Q
qingqing01 已提交
174 175 176 177 178 179
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
180
#endif
Q
qingqing01 已提交
181

C
chengduo 已提交
182 183 184 185 186
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
Y
yuyang18 已提交
187

S
fix bug  
sneaxiy 已提交
188
  // StreamCallbackManager is thread-safe
S
sneaxiy 已提交
189
  std::unique_ptr<StreamCallbackManager> callback_manager_;
190

191
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
192
};
Q
qijun 已提交
193

194 195
class CudnnWorkspaceHandle {
 public:
196 197
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
198 199 200 201 202 203 204 205

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
206 207 208 209
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

  inline void ReallocWorkspace(size_t required_workspace_bytes) {
    if (required_workspace_bytes <= WorkspaceSize()) {
      return;
    }
227 228
    // reset allocation first before re-allocate to save memory
    allocation_.reset();
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
  }

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
247
  std::mutex* mtx_;
248 249
};

Y
Yang Yu 已提交
250 251
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
252
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
253 254
};

C
chengduoZH 已提交
255
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
256 257 258 259 260 261
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
262

C
chengduoZH 已提交
263 264 265 266 267 268 269 270 271 272 273
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
274
#endif
Q
qijun 已提交
275

T
tensor-tang 已提交
276
#ifdef PADDLE_WITH_MKLDNN
277 278 279 280 281 282
// Following three maps are used to cache MKLDNN primitives.
// There relations are:
// - BlobMap = Map<cur_thread_id, ShapeBlob>
// - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
// - KeyBlob  = Map<blob_name, blob>
// Where:
S
Sylwester Fraczek 已提交
283
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
284 285
using ShapeBlob = std::unordered_map<std::string, std::shared_ptr<KeyBlob>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<ShapeBlob>>;
S
Sylwester Fraczek 已提交
286

287 288 289 290 291 292 293
// default mkldnn session id
constexpr size_t kMKLDNNSessionID_Default = 0;
// mkldnn session id for cache clearing mode
constexpr size_t kMKLDNNSessionID_CacheClearing = -1;

void set_cur_mkldnn_session_id(size_t);
size_t get_cur_mkldnn_session_id(void);
294
void set_cur_input_shape_str(std::string input_shape_str);
295
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
S
Sylwester Fraczek 已提交
296

T
tensor-tang 已提交
297 298 299 300 301
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
302
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
303

304 305 306
  // Remove all entries from the blob map
  void ResetBlobMap() const;

307 308 309
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

310 311
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
312

313 314
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
315 316

 private:
317
  mkldnn::engine engine_;
318 319
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
320 321 322
};
#endif

D
dzhwinter 已提交
323 324 325 326 327
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
328
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
329 330 331 332 333
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
334
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
335 336 337 338 339 340 341
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
342
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
343

Y
Yang Yu 已提交
344 345 346 347 348 349 350
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

351 352
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
353 354
 private:
  static DeviceContextPool* pool;
355 356
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
357 358 359
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
360 361
}  // namespace platform
}  // namespace paddle