device_context.h 12.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#include "paddle/fluid/platform/temporary_allocator.h"
22
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
23 24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
26
#endif
D
dzhwinter 已提交
27

T
tensor-tang 已提交
28
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
29
#include "mkldnn.hpp"
T
tensor-tang 已提交
30 31
#endif

32 33
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
34 35
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
36 37 38
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
Q
qijun 已提交
39
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
40 41 42 43

namespace paddle {
namespace platform {

C
chengduo 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
/*! \brief device temporary allocator singleton.
 *
 * Some operator needs temporary memory during computation, for example,
 * conv_gemm, which needs use col to store the result of im2col. If we
 * create a stack memory which is used by CUDA Kernel, before the
 * Computation(...) returns, we should add ctx->Wait(), because the
 * execution of CUDA is async, if there doesn't have ctx->Wait(),
 * the temporary memory will be released before the CUDA Kernel uses
 * it.
 *
 * DeviceTemporaryAllocator is a singleton, which contains a
 * `TemporaryAllocator` for each <Place, Stream>. And the TemporaryAllocator
 * contains a temp_allocation_queue which is used to store the temporary
 * allocations. The allocation, which is allocated by TemporaryAllocator,
 * is a unique_ptr,  and when it is not held by any variable, it will be
 * pushed into the temp_allocation_queue. There are two opportunities to free
 * the allocations of temp_allocation_queue:
 *  - when the Stream calls cudaStreamSynchronize;
 *  - when the allocation size of opportunities exceeds a certain threshold
 *    (defined by FLAGS_limit_of_temporary_allocation).
 *
 * */
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
class DeviceTemporaryAllocator {
 public:
  static DeviceTemporaryAllocator& Instance() {
    PADDLE_ENFORCE_NOT_NULL(allocators,
                            "Need to Create DeviceTemporaryAllocator first!");
    return *allocators;
  }

  static DeviceTemporaryAllocator& Init() {
    if (allocators == nullptr) {
      allocators = new DeviceTemporaryAllocator();
    }
    return *allocators;
  }

/*! \brief  Return handle of single temporary allocator. */
#ifdef PADDLE_WITH_CUDA
  platform::TemporaryAllocator& Get(const platform::Place& place,
                                    const cudaStream_t& stream);
#endif
  template <typename DeviceContext>
  platform::TemporaryAllocator& Get(const DeviceContext& dev_ctx);

  platform::TemporaryAllocator& Get(const platform::Place& place);

 private:
  DeviceTemporaryAllocator() : cpu_allocator_(platform::CPUPlace()) {}

  static DeviceTemporaryAllocator* allocators;

  platform::TemporaryAllocator cpu_allocator_;

#ifdef PADDLE_WITH_CUDA
  std::map<std::pair<platform::Place, cudaStream_t>,
           std::unique_ptr<platform::TemporaryAllocator>>
      device_allocator_;
#endif

  std::mutex mtx_;

  DISABLE_COPY_AND_ASSIGN(DeviceTemporaryAllocator);
};

Q
QI JUN 已提交
109 110 111
class DeviceContext {
 public:
  virtual ~DeviceContext() {}
L
liaogang 已提交
112
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
113

114
  virtual void Wait() const {}
Q
QI JUN 已提交
115 116
};

Q
qijun 已提交
117 118
class CPUDeviceContext : public DeviceContext {
 public:
119
  CPUDeviceContext();
Q
qijun 已提交
120
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
121

122
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
123

L
liaogang 已提交
124
  Place GetPlace() const override;
Y
Yu Yang 已提交
125

Q
qijun 已提交
126
 private:
D
dzhwinter 已提交
127
  CPUPlace place_;
Q
qijun 已提交
128
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
129 130
};

Y
Yang Yu 已提交
131 132 133 134 135 136 137 138
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

139
#ifdef PADDLE_WITH_CUDA
140

Q
qijun 已提交
141
class EigenCudaStreamDevice;
S
sneaxiy 已提交
142 143 144 145 146 147 148 149 150 151 152 153
class CudnnHolder {
 public:
  CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place);
  ~CudnnHolder();
  cudnnHandle_t cudnn_handle() const { return cudnn_handle_; }

 private:
  friend class CudnnWorkspaceHandle;
  void ReallocateWorkspace(size_t required_workspace_len);

  template <typename Callback>
  void RunFuncImpl(Callback&& cudnn_func, size_t required_workspace_len) {
Y
Yu Yang 已提交
154
    if (required_workspace_len > WorkspaceSize()) {
S
sneaxiy 已提交
155 156
      ReallocateWorkspace(required_workspace_len);
    }
Y
Yu Yang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    cudnn_func(WorkspacePtr());
  }

  inline void* WorkspacePtr() {
    if (workspace_) {
      return workspace_->ptr();
    } else {
      return nullptr;
    }
  }

  inline size_t WorkspaceSize() {
    if (workspace_) {
      return workspace_->size();
    } else {
      return 0;
    }
S
sneaxiy 已提交
174 175 176 177 178
  }

  std::mutex& Mutex() { return mtx_; }

  cudnnHandle_t cudnn_handle_;
Y
Yu Yang 已提交
179
  memory::AllocationPtr workspace_;
S
sneaxiy 已提交
180 181 182 183 184 185

  const cudaStream_t* stream_;  // not owned;
  const CUDAPlace place_;

  std::mutex mtx_;
};
D
dongzhihong 已提交
186

S
sneaxiy 已提交
187 188 189 190
class CudnnWorkspaceHandle {
 public:
  /*! \brief The lock would not be acquired when constructor calls.
   *  The lock would be acquired when RunFunc() is called first time. */
S
sneaxiy 已提交
191
  inline explicit CudnnWorkspaceHandle(CudnnHolder* holder) : holder_(holder) {}
S
sneaxiy 已提交
192 193 194

  /*! \brief Thread which call RunFunc() would acquire the lock first
   *  before invoking cudnn functions. */
S
sneaxiy 已提交
195 196 197 198 199 200 201 202
  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_len) {
    if (!guard_) {
      guard_.reset(new std::lock_guard<std::mutex>(holder_->Mutex()));
    }
    holder_->RunFuncImpl(std::forward<Callback>(cudnn_func),
                         required_workspace_len);
  }
S
sneaxiy 已提交
203

S
sneaxiy 已提交
204 205
  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;
S
sneaxiy 已提交
206 207 208 209 210 211

 private:
  CudnnHolder* holder_;  // not own
  std::unique_ptr<std::lock_guard<std::mutex>> guard_;
};

Z
Zeng Jinle 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
#if CUDA_VERSION >= 9000
class ScopedCublasMathMode {
 public:
  ScopedCublasMathMode(cublasHandle_t handle, cublasMath_t new_math_mode)
      : handle_(handle) {
    need_reset = false;
    PADDLE_ENFORCE(
        platform::dynload::cublasGetMathMode(handle_, &old_math_mode_),
        "Failed to get old cublas math mode");
    if (old_math_mode_ != new_math_mode) {
      PADDLE_ENFORCE(
          platform::dynload::cublasSetMathMode(handle_, new_math_mode),
          "Failed to set old cublas math mode");
      need_reset = true;
    }
  }

  ~ScopedCublasMathMode() {
    if (need_reset) {
      PADDLE_ENFORCE(
          platform::dynload::cublasSetMathMode(handle_, old_math_mode_),
          "Failed to set old cublas math mode");
    }
  }

 private:
  cublasHandle_t handle_;
  cublasMath_t old_math_mode_;
  bool need_reset;
};

#endif

245
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
246
 public:
D
dzhwinter 已提交
247
  explicit CUDADeviceContext(CUDAPlace place);
248
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
249

250
  /*! \brief  Wait for all operations completion in the stream. */
251
  void Wait() const override;
Q
QI JUN 已提交
252

253
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
254
  Place GetPlace() const override;
255

K
Kexin Zhao 已提交
256
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
257 258
  int GetComputeCapability() const;

259 260 261
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

262 263 264
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

Z
Zeng Jinle 已提交
265 266
  /*! \brief  Return cublas handle in the device context. */
  cublasHandle_t cublas_handle() const;
S
sneaxiy 已提交
267

268
  /*! \brief  Return cudnn  handle in the device context. */
269
  cudnnHandle_t cudnn_handle() const;
270

S
sneaxiy 已提交
271 272 273 274 275 276 277 278 279
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
280
  /*! \brief  Return cuda stream in the device context. */
281
  cudaStream_t stream() const;
Q
QI JUN 已提交
282

Y
Yu Yang 已提交
283 284
  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
Z
Zeng Jinle 已提交
285
    std::lock_guard<std::mutex> guard(mtx_);
Y
Yu Yang 已提交
286 287 288 289
    callback();
    PADDLE_ENFORCE(cudaEventRecord(ev, stream_));
  }

S
sneaxiy 已提交
290 291 292 293 294
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    callback_manager_->AddCallback(callback);
  }

S
fix bug  
sneaxiy 已提交
295
  void WaitStreamCallback() const { callback_manager_->Wait(); }
S
sneaxiy 已提交
296

Z
Zeng Jinle 已提交
297 298 299 300 301 302 303 304 305 306 307 308
#if CUDA_VERSION >= 9000
  /*! \brief CublasCall may need to change cublas's config,
   *  but the cublas may be hold by multi-thread, so we should
   *  add lock here. */
  template <typename Callback>
  void CublasCall(Callback callback, cublasMath_t new_math) {
    std::lock_guard<std::mutex> guard(cublas_mtx_);
    ScopedCublasMathMode scoped_cublas_math(cublas_handle_, new_math);
    callback();
  }
#endif

Q
QI JUN 已提交
309
 private:
D
dzhwinter 已提交
310
  CUDAPlace place_;
Q
QI JUN 已提交
311

Q
qijun 已提交
312
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
Q
init  
qijun 已提交
313
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
314
  std::unique_ptr<CudnnHolder> cudnn_holder_;
315
  cudaStream_t stream_;
Z
Zeng Jinle 已提交
316
  cublasHandle_t cublas_handle_;
317

C
chengduo 已提交
318 319 320 321 322
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
Y
yuyang18 已提交
323

Z
Zeng Jinle 已提交
324 325
  mutable std::mutex mtx_;

S
fix bug  
sneaxiy 已提交
326
  // StreamCallbackManager is thread-safe
S
sneaxiy 已提交
327
  std::unique_ptr<StreamCallbackManager> callback_manager_;
328

Z
Zeng Jinle 已提交
329
  mutable std::mutex cublas_mtx_;
Q
QI JUN 已提交
330
};
Q
qijun 已提交
331

Y
Yang Yu 已提交
332 333
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
334
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
335 336
};

C
chengduoZH 已提交
337
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
338 339 340 341 342 343
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
344

C
chengduoZH 已提交
345 346 347 348 349 350 351 352 353 354 355
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
356
#endif
Q
qijun 已提交
357

T
tensor-tang 已提交
358
#ifdef PADDLE_WITH_MKLDNN
S
Sylwester Fraczek 已提交
359 360 361 362 363 364
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<KeyBlob>>;

void set_cur_thread_id(int);
int get_cur_thread_id(void);

T
tensor-tang 已提交
365 366 367 368 369
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
370
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
371

372 373
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
374

375 376
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
377 378

 private:
379
  mkldnn::engine engine_;
380 381
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
382 383 384
};
#endif

D
dzhwinter 已提交
385 386 387 388 389
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
390
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
391 392 393 394 395
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
396
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
397 398 399 400 401 402 403
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
404
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
405

Y
Yang Yu 已提交
406 407 408 409 410 411 412
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

413 414
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
415 416
 private:
  static DeviceContextPool* pool;
417 418
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
419 420 421
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
422 423
}  // namespace platform
}  // namespace paddle