/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include // NOLINT #include #include // NOLINT #include #include #include #include #include "paddle/fluid/memory/malloc.h" #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/platform/cuda_helper.h" #include "paddle/fluid/platform/dynload/cublas.h" #include "paddle/fluid/platform/dynload/cudnn.h" #include "paddle/fluid/platform/dynload/cusolver.h" #if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL) #include "paddle/fluid/platform/dynload/nccl.h" #endif #include "paddle/fluid/platform/gpu_info.h" #endif #ifdef PADDLE_WITH_HIP #include "paddle/fluid/platform/cuda_helper.h" // NOLINT #include "paddle/fluid/platform/dynload/miopen.h" #include "paddle/fluid/platform/dynload/rocblas.h" #if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL) #include "paddle/fluid/platform/dynload/rccl.h" #endif #include "paddle/fluid/platform/gpu_info.h" // NOLINT #endif #if defined(PADDLE_WITH_XPU_BKCL) #include "xpu/bkcl.h" #endif #ifdef PADDLE_WITH_MKLDNN #include "mkldnn.hpp" #include "paddle/fluid/framework/data_layout.h" #endif #include #include "glog/logging.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/place.h" #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #include "paddle/fluid/platform/stream/cuda_stream.h" #endif #ifdef PADDLE_WITH_ASCEND_CL #include "paddle/fluid/platform/stream/npu_stream.h" #endif #include "unsupported/Eigen/CXX11/Tensor" namespace Eigen { struct DefaultDevice; struct GpuDevice; } // namespace Eigen #ifdef PADDLE_WITH_XPU #include "paddle/fluid/platform/xpu_header.h" #include "paddle/fluid/platform/xpu_info.h" #endif #ifdef PADDLE_WITH_ASCEND_CL #include "acl/acl.h" #include "paddle/fluid/platform/npu_info.h" #endif namespace paddle { namespace platform { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) /*Set the value of the global variable allow_tf32_cublas*/ void SetAllowTF32Cublas(bool active); /*Get the global variable allow_tf32_cublas value*/ bool AllowTF32Cublas(); extern bool allow_tf32_cudnn; /*Set the value of the global variable allow_tf32_cudnn*/ void SetAllowTF32Cudnn(bool active); /*Get the global variable allow_tf32_cudnn value*/ bool AllowTF32Cudnn(); #endif // PADDLE_WITH_CUDA enum DeviceType { CPU = 0, CUDA = 1, XPU = 2, NPU = 3, }; constexpr DeviceType kCPU = DeviceType::CPU; constexpr DeviceType kCUDA = DeviceType::CUDA; constexpr DeviceType kXPU = DeviceType::XPU; constexpr DeviceType kNPU = DeviceType::NPU; class DeviceContext { public: virtual ~DeviceContext() PADDLE_MAY_THROW {} virtual Place GetPlace() const = 0; virtual void Wait() const {} }; class CPUDeviceContext : public DeviceContext { public: CPUDeviceContext(); explicit CPUDeviceContext(CPUPlace place); Eigen::DefaultDevice* eigen_device() const; Place GetPlace() const override; private: CPUPlace place_; std::unique_ptr eigen_device_; }; template struct DefaultDeviceContextType; template <> struct DefaultDeviceContextType { using TYPE = CPUDeviceContext; }; #ifdef PADDLE_WITH_XPU class XPUDeviceContext : public DeviceContext { public: XPUDeviceContext(); explicit XPUDeviceContext(XPUPlace place); virtual ~XPUDeviceContext(); Eigen::DefaultDevice* eigen_device() const { return nullptr; } Place GetPlace() const override; xpu::Context* x_context() const; /*! \brief Wait for all operations completion in the stream. */ void Wait() const override; #ifdef PADDLE_WITH_XPU_BKCL /*! \brief Return bkcl context. */ BKCLContext_t bkcl_context() const { return bkcl_context_; } /*! \brief Set bkcl context. */ void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; } #endif private: XPUPlace place_; xpu::Context* context_; #ifdef PADDLE_WITH_XPU_BKCL BKCLContext_t bkcl_context_; #endif // Need to be the same with other DeviceContext, // Eventhough eigen_device_ is not used in XPU std::unique_ptr eigen_device_; DISABLE_COPY_AND_ASSIGN(XPUDeviceContext); }; template <> struct DefaultDeviceContextType { using TYPE = XPUDeviceContext; }; #endif #ifdef PADDLE_WITH_ASCEND_CL class NPUDeviceContext : public DeviceContext { public: explicit NPUDeviceContext(NPUPlace place); virtual ~NPUDeviceContext(); Eigen::DefaultDevice* eigen_device() const { return nullptr; } Place GetPlace() const override; aclrtContext context() const; /*! \brief Wait for all operations completion in the stream. */ void Wait() const override; /*! \brief Return npu stream in the device context. */ aclrtStream stream() const; template void AddStreamCallback(Callback&& callback) const { return stream_->AddCallback(callback); } void WaitStreamCallback() const { return stream_->WaitCallback(); } #if defined(PADDLE_WITH_ASCEND_CL) /*! \brief Return hccl communicators. */ HcclComm hccl_comm() const { return hccl_comm_; } /*! \brief Set hccl communicators. */ void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; } #endif // template // void AddStreamCallback(Callback&& callback) const { // return stream_->AddCallback(callback); // } // void WaitStreamCallback() const { return stream_->WaitCallback(); } private: NPUPlace place_; aclrtContext context_; #ifdef PADDLE_WITH_ASCEND_CL // HCCLContext_t hccl_context_; HcclComm hccl_comm_{nullptr}; #endif // Need to be the same with other DeviceContext, // Eventhough eigen_device_ is not used in NPU // NOTE(zhiqiu): why need? std::unique_ptr eigen_device_; std::shared_ptr stream_; DISABLE_COPY_AND_ASSIGN(NPUDeviceContext); }; template <> struct DefaultDeviceContextType { using TYPE = NPUDeviceContext; }; #endif #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) class CudnnWorkspaceHandle; class EigenCudaStreamDevice; class CUDAContext { public: CUDAContext() = default; explicit CUDAContext( const CUDAPlace& place, const stream::Priority& priority = stream::Priority::kNormal); ~CUDAContext(); const CUDAPlace& Place() const { return place_; } const std::unique_ptr& EigenDevice() const { return eigen_device_; } const std::unique_ptr& EigenStream() const { return eigen_stream_; } const std::unique_ptr& Stream() const { return stream_; } const gpuStream_t& RawStream() { return stream_->raw_stream(); } #ifdef PADDLE_WITH_HIP const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; } #else const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; } #endif #ifndef PADDLE_WITH_HIP const cusolverDnHandle_t& CusolverDnHandle() const { return cusolver_dn_handle_; } #endif const std::unique_ptr& CublasHandle() const { return cublas_handle_; } const std::unique_ptr& CublasTensorCoreHandle() const { return cublas_tensor_core_handle_; } /*! \brief Call cublas function safely. */ template inline void CublasCall(Callback&& callback) const { if (cublas_tf32_tensor_core_handle_) { cublas_tf32_tensor_core_handle_->Call(std::forward(callback)); } else { cublas_handle_->Call(std::forward(callback)); } } /*! \brief Check whether tensor core is supported */ bool tensor_core_available() const; /*! \brief Call cublas function with Tensor Core safely. If Tensor Core is not available, use DEFAULT_MATH instead. */ template inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const { if (cublas_tensor_core_handle_) { cublas_tensor_core_handle_->Call(std::forward(callback)); } else { cublas_handle_->Call(std::forward(callback)); } } private: void InitEigenContext(); #ifdef PADDLE_WITH_HIP void InitCuBlasContext() { cublas_handle_.reset(new CublasHandleHolder(RawStream())); } #else void InitCuBlasContext() { cublas_handle_.reset( new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH)); if (TensorCoreAvailable()) { #if CUDA_VERSION >= 9000 cublas_tensor_core_handle_.reset( new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH)); #if CUDA_VERSION >= 11000 cublas_tf32_tensor_core_handle_.reset( new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH)); #endif // CUDA_VERSION >= 11000 #endif // CUDA_VERSION >= 9000 } } #endif void InitCuDNNContext() { if (dynload::HasCUDNN()) { #ifdef PADDLE_WITH_HIP size_t miopen_major, miopen_minor, miopen_patch; PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion( &miopen_major, &miopen_minor, &miopen_patch)); auto local_miopen_version = (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10; auto compile_miopen_version = MIOPEN_VERSION / 10; if (local_miopen_version < static_cast(compile_miopen_version)) { LOG_FIRST_N(WARNING, 1) << "WARNING: device: " << place_.device << ". The installed Paddle is compiled with MIOPEN " << compile_miopen_version / 100 << "." << compile_miopen_version % 100 << ", but MIOPEN version in your machine is " << local_miopen_version / 100 << "." << local_miopen_version % 100 << ", which may cause serious incompatible bug. " << "Please recompile or reinstall Paddle with compatible MIOPEN " "version."; } PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_)); PADDLE_ENFORCE_CUDA_SUCCESS( dynload::miopenSetStream(cudnn_handle_, RawStream())); #else auto local_cudnn_version = dynload::cudnnGetVersion() / 100; auto compile_cudnn_version = CUDNN_VERSION / 100; if (local_cudnn_version < static_cast(compile_cudnn_version)) { LOG_FIRST_N(WARNING, 1) << "WARNING: device: " << place_.device << ". The installed Paddle is compiled with CUDNN " << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10 << ", but CUDNN version in your machine is " << local_cudnn_version / 10 << "." << local_cudnn_version % 10 << ", which may cause serious incompatible bug. " << "Please recompile or reinstall Paddle with compatible CUDNN " "version."; } PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_)); PADDLE_RETRY_CUDA_SUCCESS( dynload::cudnnSetStream(cudnn_handle_, RawStream())); #endif } else { cudnn_handle_ = nullptr; } } #ifndef PADDLE_WITH_HIP void InitCuSolverContext() { PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_)); PADDLE_RETRY_CUDA_SUCCESS( dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream())); } #endif void DestoryCuDNNContext() { if (cudnn_handle_) { #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_)); #else PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_)); #endif } cudnn_handle_ = nullptr; } void DestoryCuBlasContext() { cublas_handle_.reset(); cublas_tensor_core_handle_.reset(); cublas_tf32_tensor_core_handle_.reset(); } #ifndef PADDLE_WITH_HIP void DestoryCuSolverContext() { if (cusolver_dn_handle_) { PADDLE_ENFORCE_CUDA_SUCCESS( dynload::cusolverDnDestroy(cusolver_dn_handle_)); } } #endif CUDAPlace place_; std::unique_ptr eigen_device_; std::unique_ptr eigen_stream_; std::unique_ptr stream_; #ifdef PADDLE_WITH_HIP miopenHandle_t cudnn_handle_; #else cudnnHandle_t cudnn_handle_; #endif std::unique_ptr cublas_handle_; std::unique_ptr cublas_tensor_core_handle_; std::unique_ptr cublas_tf32_tensor_core_handle_; #ifndef PADDLE_WITH_HIP cusolverDnHandle_t cusolver_dn_handle_; #endif DISABLE_COPY_AND_ASSIGN(CUDAContext); }; class CUDADeviceContext : public DeviceContext { public: explicit CUDADeviceContext(CUDAPlace place); virtual ~CUDADeviceContext(); /*! \brief Wait for all operations completion in the stream. */ void Wait() const override; /*! \brief Return place in the device context. */ Place GetPlace() const override; /*! \brief Return compute capability in the device context. */ int GetComputeCapability() const; /*! \brief Return the max physical thread count in the device context */ int GetMaxPhysicalThreadCount() const; /*! \brief Return the SM count in the device context */ int GetSMCount() const; /*! \brief Return the Max thread num of block in the device context */ int GetMaxThreadsPerBlock() const; /*! \brief Return the max grid dim size in the device context */ dim3 GetCUDAMaxGridDimSize() const; /*! \brief Return eigen device in the device context. */ Eigen::GpuDevice* eigen_device() const; /*! \brief Call cublas function safely. */ template inline void CublasCall(Callback&& callback) const { return context()->CublasCall(callback); } /*! \brief Check whether tensor core is supported */ bool tensor_core_available() const; /*! \brief Call cublas function with Tensor Core safely. If Tensor Core is not available, use DEFAULT_MATH instead. */ template inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const { return context()->TensorCoreCublasCallIfAvailable(callback); } /*! \brief Return cudnn handle in the device context. */ #ifdef PADDLE_WITH_HIP miopenHandle_t cudnn_handle() const; #else cudnnHandle_t cudnn_handle() const; #endif /*! \brief Return cublas handle in the device context. */ #ifdef PADDLE_WITH_HIP rocblas_handle cublas_handle() const; #else cublasHandle_t cublas_handle() const; #endif /*! \brief Return a cudnn workspace handle to call multiple cudnn * functions without interrupting by other threads. * Once the first cudnn function is called by the handle, a lock * would be acquired to prevent other threads from accessing the * workspace. Once the handle is destructed, the lock would be released. * CudnnWorkspaceHandle is an RAII object to implement thread-safe * sequential cudnn function calls. */ CudnnWorkspaceHandle cudnn_workspace_handle() const; #ifndef PADDLE_WITH_HIP cusolverDnHandle_t cusolver_dn_handle() const; #endif /*! \brief Return cuda stream in the device context. */ gpuStream_t stream() const; #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) /*! \brief Return nccl communicators. */ ncclComm_t nccl_comm() const { return nccl_comm_; } /*! \brief Set nccl communicators. */ void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; } #endif template void RecordEvent(gpuEvent_t ev, Callback callback) const { return context()->Stream()->RecordEvent(ev, callback); } template void AddStreamCallback(Callback&& callback) const { return context()->Stream()->AddCallback(callback); } void WaitStreamCallback() const { return context()->Stream()->WaitCallback(); } void ResetDefaultContext(const stream::Priority& priority) { default_ctx_.reset(new CUDAContext(place_, priority)); } void ResetThreadContext(const stream::Priority& priority) { std::lock_guard guard(ctx_mtx_); thread_ctx_[this].reset(new CUDAContext(place_, priority)); } std::shared_ptr context() const { if (!thread_ctx_.count(this)) { return default_ctx_; } return thread_ctx_.at(this); } private: CUDAPlace place_; std::shared_ptr default_ctx_; // The thread_local static variable will be released before the // global static variable, so avoid using it in dtor. static thread_local std::unordered_map> thread_ctx_; static thread_local std::mutex ctx_mtx_; mutable std::mutex cudnn_handle_mtx_; #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) // NCCL communicator (single process version) for NCCL collective operations. // NCCL collective operations provides fast collectives over multiple GPUs // both within and across nodes. // But, this collectives is used for collectives over multiple GPUs within // nodes. ncclComm_t nccl_comm_{nullptr}; #endif int compute_capability_; int runtime_version_; int driver_version_; int multi_process_; int max_threads_per_mp_; int max_threads_per_block_; dim3 max_grid_dim_size_; DISABLE_COPY_AND_ASSIGN(CUDADeviceContext); }; class CudnnWorkspaceHandle { public: inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx) : device_context_(dev_ctx), mtx_(mtx) {} template inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) { if (required_workspace_bytes > WorkspaceSize()) { ReallocWorkspace(required_workspace_bytes); } VLOG(2) << "Cudnn workspace size at RunFunc: " << static_cast(WorkspaceSize()) / (1 << 20) << " MB"; { std::lock_guard guard(*mtx_); cudnn_func(allocation_ ? allocation_->ptr() : nullptr); } } /*! \brief Thread which call RunFuncSync() would release gpu memory after * running the function. Currently this function is only used when cudnn * exhaustive searching and callers have to guarantee that the input function * is host blocking */ template inline void RunFuncSync(Callback&& cudnn_func, size_t required_workspace_bytes) { RunFunc(cudnn_func, required_workspace_bytes); ResetWorkspace(); } void ReallocWorkspace(size_t required_workspace_bytes); inline void ResetWorkspace() { allocation_ = nullptr; } inline size_t WorkspaceSize() { if (allocation_ == nullptr) { return 0; } return allocation_->size(); } CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default; CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete; private: memory::allocation::AllocationPtr allocation_; const CUDADeviceContext& device_context_; std::mutex* mtx_; }; template <> struct DefaultDeviceContextType { using TYPE = CUDADeviceContext; }; // Currently, CUDAPinnedDeviceContext is only used to data copying. class CUDAPinnedDeviceContext : public DeviceContext { public: CUDAPinnedDeviceContext(); explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place); Place GetPlace() const override; Eigen::DefaultDevice* eigen_device() const; private: CUDAPinnedPlace place_; std::unique_ptr eigen_device_; }; template <> struct DefaultDeviceContextType { using TYPE = CUDAPinnedDeviceContext; }; #endif #ifdef PADDLE_WITH_MKLDNN class MKLDNNDeviceContextThreadLocals { // default mkldnn session id typedef MKLDNNDeviceContextThreadLocals self; struct Body { bool said_once = false; size_t cur_mkldnn_session_id; // Current data input shape string. // - For fixed-shape, it's a null string in default. // - For dynamic-shape, it's user specific. std::string cur_input_shape_str; // the cache capacity of different input shapes for MKLDNN. // Default 1 means fixed input shape, not dynamic shape. int cur_input_shape_cache_capacity; // Recently registered data_format. This is needed to // know for converting MKL-DNN Tensor to non MKL-DNN paddle::framework::DataLayout cur_paddle_data_layout; // MKL-DNN stream used for execution of primitives (per-thread) mkldnn::engine cur_engine; mkldnn::stream cur_stream; std::string key_suffix; // Key identifying current Executor bool key_attach_thread_id = true; void* exec_ptr_ = nullptr; Body(); ~Body(); void set_cur_mkldnn_session_id(size_t sid); size_t get_cur_mkldnn_session_id(void); void set_cur_input_shape_str(std::string input_shape_str); void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity); void set_cur_paddle_data_layout(framework::DataLayout dl); framework::DataLayout get_cur_paddle_data_layout(void); void log_lib_version(void); const mkldnn::engine& get_engine(void); mkldnn::stream& get_stream(void); void set_key_suffix(const std::string& suffix) { key_suffix = suffix; } const std::string& get_key_suffix(void) const { return key_suffix; } void disable_tid_in_key(void) { key_attach_thread_id = false; } bool is_tid_used_in_key(void) const { return key_attach_thread_id; } void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; } void* get_curr_exec(void) const { return exec_ptr_; } }; MKLDNNDeviceContextThreadLocals() = default; MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) = delete; public: // default mkldnn session id static constexpr size_t kMKLDNNSessionID_Default = 0; // mkldnn session id for cache clearing mode static constexpr size_t kMKLDNNSessionID_CacheClearing = -1; static Body& fetch() { thread_local Body b; return b; } }; class MKLDNNDeviceContext : public CPUDeviceContext { public: template using BlobPtr_t = std::shared_ptr; template using umap_value_smart_t = std::unordered_map>; template using umap_key_string_t = umap_value_smart_t; // Following three maps are used to cache MKLDNN primitives. // There relations are: // - BlobMap = Map // - ShapeBlob = Map // - KeyBlob = Map using KeyBlob = umap_key_string_t; using ShapeBlob = umap_key_string_t; using BlobMap = umap_value_smart_t; using ExecMap = std::unordered_map< void*, std::vector, KeyBlob::iterator>>>; explicit MKLDNNDeviceContext(CPUPlace place); /* \brief Get the active engine */ const mkldnn::engine& GetEngine() const { return tls().get_engine(); } // Register object to currently used executor's map void LinkEntryWithExecutor(BlobPtr_t, KeyBlob::iterator) const; // Remove all entries from the blob map void ResetBlobMap(void* ptr); // Prevent next ResetBlobMap() void BlockNextCacheClearing(); // Get the ShapeBlob size in cur_mkldnn_session_id. size_t GetShapeBlobSize() const; // Set data to blob (i.e. name/data pair). Create blob if not existing void SetBlob(const std::string& name, std::shared_ptr data) const; // Calculate number of oneDNN objects cached unsigned int GetCachedObjectsNumber(void); // Find a saved blob. Return nullptr if not found std::shared_ptr GetBlob(const std::string& name) const; static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) { return MKLDNNDeviceContextThreadLocals::fetch(); } private: std::shared_ptr p_blobmap_; // Map key is pointer of executor and value is a data(iterator in map) needed // to erase std::shared_ptr p_exec_items_; std::shared_ptr p_mutex_; bool block_next_cache_clearing_ = false; }; #endif /*! \brief device context pool singleton */ class DeviceContextPool { public: explicit DeviceContextPool(const std::vector& places); static DeviceContextPool& Instance() { PADDLE_ENFORCE_NOT_NULL(pool, platform::errors::PreconditionNotMet( "Need to Create DeviceContextPool firstly!")); return *pool; } /*! \brief Create should only called by Init function */ static DeviceContextPool& Init(const std::vector& places) { if (pool == nullptr) { pool = new DeviceContextPool(places); } return *pool; } static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; } /*! \brief Return handle of single device context. */ platform::DeviceContext* Get(const platform::Place& place); template const typename DefaultDeviceContextType::TYPE* GetByPlace( const Place& place) { return reinterpret_cast< const typename DefaultDeviceContextType::TYPE*>(Get(place)); } size_t size() const { return device_contexts_.size(); } private: static DeviceContextPool* pool; std::map>> device_contexts_; DISABLE_COPY_AND_ASSIGN(DeviceContextPool); }; } // namespace platform } // namespace paddle