device_context.h 19.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
37
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
38
#include "mkldnn.hpp"
39
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
40 41
#endif

42
#include <map>
W
wanghuancoder 已提交
43

44
#include "glog/logging.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
47
#ifdef PADDLE_WITH_CUDA
48
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
49
#endif
Q
qijun 已提交
50
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
51

W
wanghuancoder 已提交
52 53 54 55 56
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

57 58
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
59
#include "paddle/fluid/platform/xpu_info.h"
60 61
#endif

Q
QI JUN 已提交
62 63 64
namespace paddle {
namespace platform {

65 66 67 68 69 70 71
#ifdef PADDLE_WITH_CUDA
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
#endif  // PADDLE_WITH_CUDA

72 73 74 75 76 77 78 79 80 81
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
};

constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;

Q
QI JUN 已提交
82 83
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
84
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
85
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
86

87
  virtual void Wait() const {}
Q
QI JUN 已提交
88 89
};

Q
qijun 已提交
90 91
class CPUDeviceContext : public DeviceContext {
 public:
92
  CPUDeviceContext();
Q
qijun 已提交
93
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
94

95
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
96

L
liaogang 已提交
97
  Place GetPlace() const override;
Y
Yu Yang 已提交
98

Q
qijun 已提交
99
 private:
D
dzhwinter 已提交
100
  CPUPlace place_;
Q
qijun 已提交
101
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
102 103
};

Y
Yang Yu 已提交
104 105 106 107 108 109 110 111
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

112 113 114 115 116 117 118 119 120 121 122 123 124
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

125
#ifdef PADDLE_WITH_XPU_BKCL
126
  /*! \brief  Return bkcl context. */
127 128 129 130 131 132
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

133 134 135
 private:
  XPUPlace place_;
  xpu::Context* context_;
136 137 138
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
139 140 141 142 143 144 145 146 147 148 149 150 151

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

152
#ifdef PADDLE_WITH_CUDA
153

154
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
155
class EigenCudaStreamDevice;
S
sneaxiy 已提交
156

157 158 159 160 161
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
162
      const stream::Priority& priority = stream::Priority::kNormal);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

  const cudaStream_t& RawStream() { return stream_->raw_stream(); }

  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }

G
Guo Sheng 已提交
182 183 184 185
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }

186 187 188 189 190 191 192 193 194 195 196
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
197 198 199 200 201
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
228 229 230 231 232
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    }
  }

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
251 252
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
253
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
254 255 256 257 258
    } else {
      cudnn_handle_ = nullptr;
    }
  }

G
Guo Sheng 已提交
259
  void InitCuSolverContext() {
260 261
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
262 263 264
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }

265 266
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
267
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
268 269 270 271 272 273 274
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
275
    cublas_tf32_tensor_core_handle_.reset();
276 277
  }

G
Guo Sheng 已提交
278 279 280 281 282 283 284
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }

285 286 287 288 289 290 291
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
  cudnnHandle_t cudnn_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
292
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
G
Guo Sheng 已提交
293
  cusolverDnHandle_t cusolver_dn_handle_;
294 295 296
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

297
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
298
 public:
D
dzhwinter 已提交
299
  explicit CUDADeviceContext(CUDAPlace place);
300
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
301

302
  /*! \brief  Wait for all operations completion in the stream. */
303
  void Wait() const override;
Q
QI JUN 已提交
304

305
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
306
  Place GetPlace() const override;
307

K
Kexin Zhao 已提交
308
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
309 310
  int GetComputeCapability() const;

311 312 313
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

314 315 316 317 318 319
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

320 321 322
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

323 324 325
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

326 327 328
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
329
    return context()->CublasCall(callback);
330 331 332 333 334 335 336 337 338
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
339
    return context()->TensorCoreCublasCallIfAvailable(callback);
340
  }
S
sneaxiy 已提交
341

342
  /*! \brief  Return cudnn  handle in the device context. */
343
  cudnnHandle_t cudnn_handle() const;
344

S
sneaxiy 已提交
345 346 347 348 349 350 351 352 353
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

G
Guo Sheng 已提交
354 355
  cusolverDnHandle_t cusolver_dn_handle() const;

Q
init  
qijun 已提交
356
  /*! \brief  Return cuda stream in the device context. */
357
  cudaStream_t stream() const;
Q
QI JUN 已提交
358

359
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
360 361 362 363 364
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
365
#endif
Q
qingqing01 已提交
366

Y
Yu Yang 已提交
367
  template <typename Callback>
368 369
  void RecordEvent(cudaEvent_t ev, Callback callback) const {
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
370 371
  }

S
sneaxiy 已提交
372 373
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
374 375 376 377 378
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
379 380
  }

381
  void ResetDefaultContext(const stream::Priority& priority) {
382 383 384
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

385
  void ResetThreadContext(const stream::Priority& priority) {
386 387 388 389 390 391 392 393 394 395
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
396

Q
QI JUN 已提交
397
 private:
D
dzhwinter 已提交
398
  CUDAPlace place_;
399
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
400

401 402 403 404 405 406
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
407

408 409
  mutable std::mutex cudnn_handle_mtx_;

410
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
411 412 413 414 415 416
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
417
#endif
Q
qingqing01 已提交
418

C
chengduo 已提交
419 420 421 422 423
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
424
  int max_threads_per_block_;
425
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
426

427
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
428
};
Q
qijun 已提交
429

430 431
class CudnnWorkspaceHandle {
 public:
432 433
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
434 435 436 437 438 439 440 441

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
442 443 444 445
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
446 447 448 449 450 451 452 453 454 455 456 457 458
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

459
  void ReallocWorkspace(size_t required_workspace_bytes);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
476
  std::mutex* mtx_;
477 478
};

Y
Yang Yu 已提交
479 480
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
481
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
482 483
};

C
chengduoZH 已提交
484
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
485 486 487 488 489 490
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
491

C
chengduoZH 已提交
492 493 494 495 496 497 498 499 500 501 502
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
503
#endif
Q
qijun 已提交
504

T
tensor-tang 已提交
505
#ifdef PADDLE_WITH_MKLDNN
506 507 508 509 510 511

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
512
    bool said_once = false;
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;

    Body();
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
532
    void log_lib_version(void);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
548

T
tensor-tang 已提交
549 550
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
568 569 570
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
571
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
572

573
  // Remove all entries from the blob map
574 575
  void ResetBlobMap();

576 577 578 579
  // Set a suffix to be added to key
  void SetKeySuffix(const std::string& suffix) { key_suffix_ = suffix; }
  const std::string& GetKeySuffix(void) const { return key_suffix_; }

580
  // Disable adding  thread ID to the key
581 582
  void DisableThreadInfoInKey(void) { key_attach_thread_id_ = false; }
  bool IsThreadIdUsedInKey(void) const { return key_attach_thread_id_; }
583

584 585
  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
586

587 588 589
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

590 591
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
592

593 594 595
  // Calculate number of oneDNN objects cached
  unsigned int GetCachedObjectsNumber(void);

596 597
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
598

599 600 601 602
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
603
 private:
604
  mkldnn::engine engine_;
605 606
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
607
  bool block_next_cache_clearing_ = false;
608
  std::string key_suffix_;  // Key identifying current Executor
609
  bool key_attach_thread_id_ = true;
T
tensor-tang 已提交
610 611 612
};
#endif

D
dzhwinter 已提交
613 614 615 616 617
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
618
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
619 620 621
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
622 623 624 625
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
626
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
627 628 629 630 631 632
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

633 634
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
635
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
636
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
637

Y
Yang Yu 已提交
638 639 640 641 642 643 644
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

645 646
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
647 648
 private:
  static DeviceContextPool* pool;
649 650
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
651 652 653
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
654 655
}  // namespace platform
}  // namespace paddle