device_context.h 18.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

T
tensor-tang 已提交
33
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
34
#include "mkldnn.hpp"
35
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
36 37
#endif

38
#include <map>
W
wanghuancoder 已提交
39

40
#include "glog/logging.h"
Y
Yi Wang 已提交
41 42
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
43
#ifdef PADDLE_WITH_CUDA
44
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
45
#endif
46
#define EIGEN_USE_THREADS
Q
qijun 已提交
47
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
48

W
wanghuancoder 已提交
49 50 51 52 53
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

54 55 56 57
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
#endif

Q
QI JUN 已提交
58 59 60 61 62
namespace paddle {
namespace platform {

class DeviceContext {
 public:
Z
Zeng Jinle 已提交
63
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
64
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
65

66
  virtual void Wait() const {}
Q
QI JUN 已提交
67 68
};

Q
qijun 已提交
69 70
class CPUDeviceContext : public DeviceContext {
 public:
71
  CPUDeviceContext();
Q
qijun 已提交
72
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
73

74
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
75

76 77
  Eigen::ThreadPoolDevice* eigen_pool_device() const;

L
liaogang 已提交
78
  Place GetPlace() const override;
Y
Yu Yang 已提交
79

80 81
  inline void InitPoolDevice();

Q
qijun 已提交
82
 private:
D
dzhwinter 已提交
83
  CPUPlace place_;
Q
qijun 已提交
84
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
85 86
  std::unique_ptr<Eigen::ThreadPoolDevice> eigen_pool_device_;
  std::unique_ptr<Eigen::ThreadPool> eigen_threadpool_;
Q
QI JUN 已提交
87 88
};

Y
Yang Yu 已提交
89 90 91 92 93 94 95 96
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  XPUPlace place_;
  xpu::Context* context_;

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

126
#ifdef PADDLE_WITH_CUDA
127

128
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
129
class EigenCudaStreamDevice;
S
sneaxiy 已提交
130

131 132 133 134 135
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
136
      const stream::Priority& priority = stream::Priority::kNormal);
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

  const cudaStream_t& RawStream() { return stream_->raw_stream(); }

  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }

G
Guo Sheng 已提交
156 157 158 159
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
#endif
    }
  }

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
217
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
218
      PADDLE_ENFORCE_CUDA_SUCCESS(
219
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
220 221 222 223 224
    } else {
      cudnn_handle_ = nullptr;
    }
  }

G
Guo Sheng 已提交
225 226 227 228 229 230 231
  void InitCuSolverContext() {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }

232 233
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
234
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
235 236 237 238 239 240 241 242 243
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
  }

G
Guo Sheng 已提交
244 245 246 247 248 249 250
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }

251 252 253 254 255 256 257
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
  cudnnHandle_t cudnn_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
G
Guo Sheng 已提交
258
  cusolverDnHandle_t cusolver_dn_handle_;
259 260 261
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

262
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
263
 public:
D
dzhwinter 已提交
264
  explicit CUDADeviceContext(CUDAPlace place);
265
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
266

267
  /*! \brief  Wait for all operations completion in the stream. */
268
  void Wait() const override;
Q
QI JUN 已提交
269

270
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
271
  Place GetPlace() const override;
272

K
Kexin Zhao 已提交
273
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
274 275
  int GetComputeCapability() const;

276 277 278
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

279 280 281 282 283 284
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

285 286 287
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

288 289 290
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

291 292 293
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
294
    return context()->CublasCall(callback);
295 296 297 298 299 300 301 302 303
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
304
    return context()->TensorCoreCublasCallIfAvailable(callback);
305
  }
S
sneaxiy 已提交
306

307
  /*! \brief  Return cudnn  handle in the device context. */
308
  cudnnHandle_t cudnn_handle() const;
309

S
sneaxiy 已提交
310 311 312 313 314 315 316 317 318
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

G
Guo Sheng 已提交
319 320
  cusolverDnHandle_t cusolver_dn_handle() const;

Q
init  
qijun 已提交
321
  /*! \brief  Return cuda stream in the device context. */
322
  cudaStream_t stream() const;
Q
QI JUN 已提交
323

324
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
325 326 327 328 329
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
330
#endif
Q
qingqing01 已提交
331

Y
Yu Yang 已提交
332
  template <typename Callback>
333 334
  void RecordEvent(cudaEvent_t ev, Callback callback) const {
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
335 336
  }

S
sneaxiy 已提交
337 338
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
339 340 341 342 343
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
344 345
  }

346
  void ResetDefaultContext(const stream::Priority& priority) {
347 348 349
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

350
  void ResetThreadContext(const stream::Priority& priority) {
351 352 353 354 355 356 357 358 359 360
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
361

Q
QI JUN 已提交
362
 private:
D
dzhwinter 已提交
363
  CUDAPlace place_;
364
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
365

366 367 368 369 370 371
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
372

373 374
  mutable std::mutex cudnn_handle_mtx_;

375
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
376 377 378 379 380 381
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
382
#endif
Q
qingqing01 已提交
383

C
chengduo 已提交
384 385 386 387 388
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
389
  int max_threads_per_block_;
390
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
391

392
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
393
};
Q
qijun 已提交
394

395 396
class CudnnWorkspaceHandle {
 public:
397 398
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
399 400 401 402 403 404 405 406

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
407 408 409 410
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
411 412 413 414 415 416 417 418 419 420 421 422 423
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

424
  void ReallocWorkspace(size_t required_workspace_bytes);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
441
  std::mutex* mtx_;
442 443
};

Y
Yang Yu 已提交
444 445
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
446
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
447 448
};

C
chengduoZH 已提交
449
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
450 451 452 453 454 455
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
456

C
chengduoZH 已提交
457 458 459 460 461 462 463 464 465 466 467
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
468
#endif
Q
qijun 已提交
469

T
tensor-tang 已提交
470
#ifdef PADDLE_WITH_MKLDNN
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;

    Body();
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
511

T
tensor-tang 已提交
512 513
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
531 532 533
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
534
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
535

536
  // Remove all entries from the blob map
537 538 539 540
  void ResetBlobMap();

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
541

542 543 544
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

545 546
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
547

548 549
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
550

551 552 553 554
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
555
 private:
556
  mkldnn::engine engine_;
557 558
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
559
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
560 561 562
};
#endif

D
dzhwinter 已提交
563 564 565 566 567
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
568
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
569 570 571
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
572 573 574 575
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
576
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
577 578 579 580 581 582
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

583 584
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
585
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
586
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
587

Y
Yang Yu 已提交
588 589 590 591 592 593 594
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

595 596
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
597 598
 private:
  static DeviceContextPool* pool;
599 600
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
601 602 603
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
604 605
}  // namespace platform
}  // namespace paddle