device_context.h 19.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

T
tensor-tang 已提交
33
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
34
#include "mkldnn.hpp"
35
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
36 37
#endif

38
#include <map>
W
wanghuancoder 已提交
39

40
#include "glog/logging.h"
Y
Yi Wang 已提交
41 42
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
43
#ifdef PADDLE_WITH_CUDA
44
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
45
#endif
Q
qijun 已提交
46
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
47

W
wanghuancoder 已提交
48 49 50 51 52
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

53 54 55 56
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
#endif

Q
QI JUN 已提交
57 58 59
namespace paddle {
namespace platform {

60 61 62 63 64 65 66
#ifdef PADDLE_WITH_CUDA
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
#endif  // PADDLE_WITH_CUDA

Q
QI JUN 已提交
67 68
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
69
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
70
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
71

72
  virtual void Wait() const {}
Q
QI JUN 已提交
73 74
};

Q
qijun 已提交
75 76
class CPUDeviceContext : public DeviceContext {
 public:
77
  CPUDeviceContext();
Q
qijun 已提交
78
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
79

80
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
81

L
liaogang 已提交
82
  Place GetPlace() const override;
Y
Yu Yang 已提交
83

Q
qijun 已提交
84
 private:
D
dzhwinter 已提交
85
  CPUPlace place_;
Q
qijun 已提交
86
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
87 88
};

Y
Yang Yu 已提交
89 90 91 92 93 94 95 96
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  XPUPlace place_;
  xpu::Context* context_;

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

126
#ifdef PADDLE_WITH_CUDA
127

128
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
129
class EigenCudaStreamDevice;
S
sneaxiy 已提交
130

131 132 133 134 135
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
136
      const stream::Priority& priority = stream::Priority::kNormal);
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

  const cudaStream_t& RawStream() { return stream_->raw_stream(); }

  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }

G
Guo Sheng 已提交
156 157 158 159
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }

160 161 162 163 164 165 166 167 168 169 170
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
171 172 173 174 175
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
202 203 204 205 206
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    }
  }

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
225 226
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
227
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
228 229 230 231 232
    } else {
      cudnn_handle_ = nullptr;
    }
  }

G
Guo Sheng 已提交
233
  void InitCuSolverContext() {
234 235
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
236 237 238
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }

239 240
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
241
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
242 243 244 245 246 247 248
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
249
    cublas_tf32_tensor_core_handle_.reset();
250 251
  }

G
Guo Sheng 已提交
252 253 254 255 256 257 258
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }

259 260 261 262 263 264 265
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
  cudnnHandle_t cudnn_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
266
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
G
Guo Sheng 已提交
267
  cusolverDnHandle_t cusolver_dn_handle_;
268 269 270
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

271
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
272
 public:
D
dzhwinter 已提交
273
  explicit CUDADeviceContext(CUDAPlace place);
274
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
275

276
  /*! \brief  Wait for all operations completion in the stream. */
277
  void Wait() const override;
Q
QI JUN 已提交
278

279
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
280
  Place GetPlace() const override;
281

K
Kexin Zhao 已提交
282
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
283 284
  int GetComputeCapability() const;

285 286 287
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

288 289 290 291 292 293
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

294 295 296
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

297 298 299
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

300 301 302
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
303
    return context()->CublasCall(callback);
304 305 306 307 308 309 310 311 312
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
313
    return context()->TensorCoreCublasCallIfAvailable(callback);
314
  }
S
sneaxiy 已提交
315

316
  /*! \brief  Return cudnn  handle in the device context. */
317
  cudnnHandle_t cudnn_handle() const;
318

S
sneaxiy 已提交
319 320 321 322 323 324 325 326 327
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

G
Guo Sheng 已提交
328 329
  cusolverDnHandle_t cusolver_dn_handle() const;

Q
init  
qijun 已提交
330
  /*! \brief  Return cuda stream in the device context. */
331
  cudaStream_t stream() const;
Q
QI JUN 已提交
332

333
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
334 335 336 337 338
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
339
#endif
Q
qingqing01 已提交
340

Y
Yu Yang 已提交
341
  template <typename Callback>
342 343
  void RecordEvent(cudaEvent_t ev, Callback callback) const {
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
344 345
  }

S
sneaxiy 已提交
346 347
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
348 349 350 351 352
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
353 354
  }

355
  void ResetDefaultContext(const stream::Priority& priority) {
356 357 358
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

359
  void ResetThreadContext(const stream::Priority& priority) {
360 361 362 363 364 365 366 367 368 369
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
370

Q
QI JUN 已提交
371
 private:
D
dzhwinter 已提交
372
  CUDAPlace place_;
373
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
374

375 376 377 378 379 380
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
381

382 383
  mutable std::mutex cudnn_handle_mtx_;

384
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
385 386 387 388 389 390
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
391
#endif
Q
qingqing01 已提交
392

C
chengduo 已提交
393 394 395 396 397
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
398
  int max_threads_per_block_;
399
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
400

401
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
402
};
Q
qijun 已提交
403

404 405
class CudnnWorkspaceHandle {
 public:
406 407
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
408 409 410 411 412 413 414 415

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
416 417 418 419
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
420 421 422 423 424 425 426 427 428 429 430 431 432
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

433
  void ReallocWorkspace(size_t required_workspace_bytes);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
450
  std::mutex* mtx_;
451 452
};

Y
Yang Yu 已提交
453 454
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
455
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
456 457
};

C
chengduoZH 已提交
458
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
459 460 461 462 463 464
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
465

C
chengduoZH 已提交
466 467 468 469 470 471 472 473 474 475 476
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
477
#endif
Q
qijun 已提交
478

T
tensor-tang 已提交
479
#ifdef PADDLE_WITH_MKLDNN
480 481 482 483 484 485

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
486
    bool said_once = false;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;

    Body();
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
506
    void log_lib_version(void);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
522

T
tensor-tang 已提交
523 524
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
542 543 544
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
545
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
546

547
  // Remove all entries from the blob map
548 549
  void ResetBlobMap();

550 551 552 553
  // Set a suffix to be added to key
  void SetKeySuffix(const std::string& suffix) { key_suffix_ = suffix; }
  const std::string& GetKeySuffix(void) const { return key_suffix_; }

554 555 556 557
  // Disable adding  thread ID to the key
  void DisableThreadInfoInKey(void) { key_attach_thread_id_ = false; };
  bool IsThreadIdUsedInKey(void) const { return key_attach_thread_id_; };

558 559
  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
560

561 562 563
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

564 565
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
566

567 568 569
  // Calculate number of oneDNN objects cached
  unsigned int GetCachedObjectsNumber(void);

570 571
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
572

573 574 575 576
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
577
 private:
578
  mkldnn::engine engine_;
579 580
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
581
  bool block_next_cache_clearing_ = false;
582
  std::string key_suffix_;  // Key identifying current Executor
583
  bool key_attach_thread_id_ = true;
T
tensor-tang 已提交
584 585 586
};
#endif

D
dzhwinter 已提交
587 588 589 590 591
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
592
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
593 594 595
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
596 597 598 599
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
600
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
601 602 603 604 605 606
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

607 608
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
609
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
610
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
611

Y
Yang Yu 已提交
612 613 614 615 616 617 618
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

619 620
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
621 622
 private:
  static DeviceContextPool* pool;
623 624
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
625 626 627
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
628 629
}  // namespace platform
}  // namespace paddle