framework.py 88.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import six
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
Q
qiaolongfei 已提交
28

M
minqiyang 已提交
29
from .. import compat as cpt
30
from .proto import framework_pb2
31
try:
P
peizhilin 已提交
32
    if os.name == 'nt':
P
peizhilin 已提交
33
        import sys
P
peizhilin 已提交
34 35 36 37 38
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

39
    from . import core
40
except ImportError as e:
P
peizhilin 已提交
41
    if os.name == 'nt':
42
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
43
        raise ImportError(
44 45 46 47 48
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
49 50 51 52 53 54
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
55
except Exception as e:
56
    raise e
57
from . import unique_name
Y
Yu Yang 已提交
58

59
__all__ = [
60 61 62 63
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
64
    'name_scope',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

73 74 75 76 77 78 79 80 81 82
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
123

124 125 126 127
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
128 129
          with name_scope("attention"):
             ...
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
149 150 151
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
152 153 154 155


def grad_var_name(var_name):
    """
156 157
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
158 159 160
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
161

162
def convert_np_dtype_to_dtype_(np_dtype):
163 164
    """
    Convert the data type in numpy to the data type in Paddle
165

166
    Args:
167
        np_dtype(np.dtype): the data type in numpy.
168

169 170
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
171 172

    """
173 174
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
175
        return core.VarDesc.VarType.FP32
176
    elif dtype == np.float64:
177
        return core.VarDesc.VarType.FP64
178
    elif dtype == np.float16:
179
        return core.VarDesc.VarType.FP16
180
    elif dtype == np.int32:
181
        return core.VarDesc.VarType.INT32
182
    elif dtype == np.int16:
183
        return core.VarDesc.VarType.INT16
184
    elif dtype == np.int64:
185
        return core.VarDesc.VarType.INT64
186
    elif dtype == np.bool:
187
        return core.VarDesc.VarType.BOOL
188 189
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
190 191
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
192 193
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
194
    else:
M
minqiyang 已提交
195
        raise ValueError("Not supported numpy dtype %s" % dtype)
196 197 198


def dtype_is_floating(dtype):
199 200 201
    """
    Check the data type is floating or not.
    Args:
202
        dtype(np.dtype|core.VarDesc.VarType): data type.
203 204 205 206 207
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
208
    if not isinstance(dtype, core.VarDesc.VarType):
209 210
        dtype = convert_np_dtype_to_dtype_(dtype)

211 212 213 214
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
215 216


Y
Yang Yang(Tony) 已提交
217
def _debug_string_(proto, throw_on_error=True):
218 219 220 221 222 223 224 225 226 227 228
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
229
    error_fields = list()
Y
Yang Yang(Tony) 已提交
230
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
231 232
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
233 234 235
    return proto.__str__()


X
Xin Pan 已提交
236
class Variable(object):
237
    """
238 239 240
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
241
    two variables in different blocks could have the same name.
242

243 244
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
245

246
    Most of a Variable's member variables can be setted to be None. It mean
247
    it is not available or will be specified later.
248 249

    Args:
250
        block(Block): The block that the variable belongs to.
251 252
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
253 254
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
255
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
256
            Some kinds of variable do not contain shape, just set it to None.
257 258 259
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
260
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
261
            series data.
262
            Default: None
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
285 286
    """

Y
Yu Yang 已提交
287 288
    def __init__(self,
                 block,
Y
Yu Yang 已提交
289
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
290 291 292 293
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
294
                 capacity=None,
Q
QI JUN 已提交
295
                 persistable=None,
F
fengjiayi 已提交
296
                 error_clip=None,
Y
Yu Yang 已提交
297
                 stop_gradient=False,
F
fengjiayi 已提交
298
                 is_data=False,
Y
Yu Yang 已提交
299
                 **kwargs):
Y
Yu Yang 已提交
300
        self.block = block
F
fengjiayi 已提交
301
        self.error_clip = error_clip
Y
Yu Yang 已提交
302 303

        if name is None:
Y
Yu Yang 已提交
304
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
305
        is_new_var = False
M
minqiyang 已提交
306
        name = cpt.to_text(name)
M
minqiyang 已提交
307
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
308 309

        if self.desc is None:
M
minqiyang 已提交
310
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
311
            is_new_var = True
Y
Yu Yang 已提交
312

Y
Yu Yang 已提交
313 314 315 316 317 318 319 320
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
321
        if shape is not None:
Y
Yu Yang 已提交
322
            if is_new_var:
323
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
324 325 326 327 328 329 330 331
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
332
        if dtype is not None:
333
            if not isinstance(dtype, core.VarDesc.VarType):
334
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
335
            if is_new_var:
F
fengjiayi 已提交
336
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
337
            else:
F
fengjiayi 已提交
338
                old_dtype = self.dtype
Q
QI JUN 已提交
339
                if dtype != old_dtype:
Y
Yu Yang 已提交
340 341 342 343 344
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
345 346

        if lod_level is not None:
Y
Yu Yang 已提交
347
            if is_new_var:
348
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
349 350 351 352 353 354 355
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
356 357 358 359 360 361 362 363 364 365 366
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

367 368 369 370 371 372 373 374
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
375
        self.block.vars[name] = self
Y
Yu Yang 已提交
376
        self.op = None
M
minqiyang 已提交
377
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
378
        self.is_data = is_data
X
Xin Pan 已提交
379
        if _in_imperative_mode():
M
minqiyang 已提交
380 381 382
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
383
            self._ivar.desc = self.desc
384
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
385

386
    def _numpy(self):
M
minqiyang 已提交
387
        tensor = self._ivar.value().get_tensor()
388 389 390
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
391
        self._ivar._run_backward()
392 393

    def _gradient(self):
M
minqiyang 已提交
394
        return np.array(self._ivar._grad_value())
395

X
Xin Pan 已提交
396 397
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
398

399
    def __str__(self):
Y
Yang Yang(Tony) 已提交
400 401
        return self.to_string(True)

F
update  
fengjiayi 已提交
402
    def to_string(self, throw_on_error, with_details=False):
403 404 405 406
        """
        Get debug string.

        Args:
407 408
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
409
            with_details(bool): more details about variables and parameters
410 411
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
412

413 414
        Returns:
            str: The debug string.
415
        """
F
update  
fengjiayi 已提交
416 417
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
418
        protostr = self.desc.serialize_to_string()
419
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
420 421 422 423
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
424 425
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
426
        return res_str
427 428 429

    __repr__ = __str__

W
Wu Yi 已提交
430
    def _set_desc(self, input):
431 432 433 434 435 436 437 438 439
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
440 441
        self.desc = input

442 443 444 445 446 447 448 449
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

450 451 452 453
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
454 455 456 457
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
458 459
    @property
    def name(self):
M
minqiyang 已提交
460
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
461

T
typhoonzero 已提交
462 463 464 465
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
466 467 468
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
469
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
470 471

    @property
F
fengjiayi 已提交
472 473
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
474 475 476

    @property
    def lod_level(self):
477
        return self.desc.lod_level()
Y
Yu Yang 已提交
478

Y
Yu Yang 已提交
479 480 481 482
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
483
    def _set_error_clip(self, error_clip):
484 485 486 487 488 489 490 491 492
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
493 494
        self.error_clip = error_clip

Y
Yu Yang 已提交
495

F
fengjiayi 已提交
496 497 498
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
499

500 501
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
502 503 504 505
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
506
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
507 508 509 510 511
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
512 513 514 515
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
516 517 518 519 520 521 522 523 524
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
525
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
526 527 528 529 530 531
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
532 533 534 535 536 537 538 539
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
540 541
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
542 543
        return self.op_proto_map[type]

544 545 546 547
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
548
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
549
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
550 551
        }

F
fengjiayi 已提交
552

X
Xin Pan 已提交
553
class Operator(object):
554
    """
555 556 557 558 559 560 561
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
562
        type(str): The type of operator. Default None.
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
583
        Block.append_op or Block._prepend_op instead.
584 585 586 587 588 589 590 591 592 593

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
594
    """
595 596 597
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
598 599
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
600
    }
601

Y
Yu Yang 已提交
602 603
    def __init__(self,
                 block,
Y
Yu Yang 已提交
604
                 desc,
Y
Yu Yang 已提交
605 606 607
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
608
                 attrs=None):
Y
Yu Yang 已提交
609
        self.block = block
Y
Yu Yang 已提交
610
        self.desc = desc
G
gongweibao 已提交
611 612 613 614 615
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
616 617 618 619
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
620 621
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
622 623 624

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
625 626
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
627

G
gongweibao 已提交
628 629
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
630

F
fengjiayi 已提交
631 632 633 634 635
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
636 637 638 639 640
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
641
        self.desc.set_type(type)
F
fengjiayi 已提交
642
        proto = OpProtoHolder.instance().get_op_proto(type)
643

644 645 646
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
647 648
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
649
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
650 651
                    return True
            return False
Q
QI JUN 已提交
652

Y
Yang Yang(Tony) 已提交
653 654 655 656 657 658 659
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
660 661 662 663
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
664 665
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
666 667 668
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
669
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
670
                            in_arg_names.append(arg)
671 672
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
673
                        else:
M
minqiyang 已提交
674
                            in_arg_names.append(cpt.to_text(arg.name))
675
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
676 677
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
678

Y
Yu Yang 已提交
679
        if outputs is not None:
680
            for m in proto.outputs:
Q
qingqing01 已提交
681 682 683 684 685 686
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
687
            for out_proto in proto.outputs:
Q
qingqing01 已提交
688 689
                if out_proto.name not in outputs:
                    continue
690 691 692 693
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
694 695
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
696 697 698
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
699
                    out_arg_names.append(cpt.to_text(arg.name))
700 701
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
702

G
gongweibao 已提交
703 704
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
705
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
706
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
707
                attr_name = attr.name
G
gongweibao 已提交
708
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
709
                    continue
G
gongweibao 已提交
710
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
711 712
                self._update_desc_attr(attr_name, attr_val)

713
        self.desc.check_attrs()
M
minqiyang 已提交
714

W
Wu Yi 已提交
715
        if self._has_kernel(type):
Q
QI JUN 已提交
716
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
717
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
718

X
Xin Pan 已提交
719 720 721
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
722
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
723
            if inputs is not None:
X
Xin Pan 已提交
724 725 726 727 728 729
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
730
            if outputs is not None:
X
Xin Pan 已提交
731 732 733 734 735
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
736

W
Wu Yi 已提交
737
    def _has_kernel(self, op_type):
738 739
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
740
    def to_string(self, throw_on_error):
741
        """
742 743
        Get debug string.

744
        Args:
745 746
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
747

748 749
        Returns:
            str: The debug string.
750 751

        """
752
        protostr = self.desc.serialize_to_string()
753
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
754 755 756 757
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
758 759 760

    __repr__ = __str__

F
fengjiayi 已提交
761 762 763 764 765
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
766
        """
767
        Get the input arguments according to the input parameter name.
768

769 770
        Args:
            name(str): The input parameter name.
771

772 773 774
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
775
        """
F
fengjiayi 已提交
776 777
        return self.desc.input(name)

W
Wu Yi 已提交
778
    def _rename_input(self, old_name, new_name):
779 780 781 782 783 784 785 786 787 788
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
789
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
790

W
Wu Yi 已提交
791
    def _rename_output(self, old_name, new_name):
792 793 794 795 796 797 798 799 800 801
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
802
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
803

F
fengjiayi 已提交
804 805 806 807
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
808 809 810 811 812 813 814 815
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
816
    def output(self, name):
817
        """
818
        Get output arguments by the output parameter name.
819

820 821
        Args:
            name(str): The output parameter name.
822

823 824 825
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
826
        """
F
fengjiayi 已提交
827 828 829 830 831 832
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

833 834 835 836 837 838 839 840
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
841
    def has_attr(self, name):
842
        """
843 844
        Whether this Operator has the attribute with name or not.

845
        Args:
846
            name(str): the attribute name.
847

848 849
        Returns:
            bool: True if has this attribute.
850 851

        """
F
fengjiayi 已提交
852 853 854
        return self.desc.has_attr(name)

    def attr_type(self, name):
855
        """
856
        Get the type of attribute by attribute's name.
857

858 859
        Args:
            name(str): the attribute name.
860

861 862
        Returns:
            core.AttrType: the attribute type.
863
        """
F
fengjiayi 已提交
864 865
        return self.desc.attr_type(name)

W
Wu Yi 已提交
866
    def _set_attr(self, name, val):
867 868 869 870 871 872 873 874 875 876
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
890 891
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
892 893
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
894
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
895 896 897 898
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
899
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
900

F
fengjiayi 已提交
901 902 903 904 905
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
906
        """
907 908
        Get the attribute by name.

909
        Args:
910
            name(str): the attribute name.
911

912 913
        Returns:
            bool|int|str|float|list: The attribute value. The return value
914 915
            can be any valid attribute type.
        """
F
fengjiayi 已提交
916
        return self.desc.attr(name)
Y
Yu Yang 已提交
917

W
Wu Yi 已提交
918
    def _block_attr_id(self, name):
919
        """
G
gongweibao 已提交
920
        Get the block attribute's id by name.
921

922 923
        Args:
            name(str): the attribute name.
924

925 926
        Returns:
            int: the block index.
927
        """
W
Wu Yi 已提交
928
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
929

W
Wu Yi 已提交
930
    def _block_attr(self, name):
G
gongweibao 已提交
931 932 933 934 935 936 937 938 939 940
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
941
        id = self._block_attr_id(name)
G
gongweibao 已提交
942 943 944
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
945
    def _blocks_attr(self, name):
G
gongweibao 已提交
946 947 948 949 950 951 952 953 954 955
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
956
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
957 958 959 960 961
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
962
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
963 964 965 966 967 968 969 970 971 972
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
973
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
974

J
JiayiFeng 已提交
975
    def all_attrs(self):
F
fengjiayi 已提交
976
        """
977 978 979
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
980
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
981 982 983 984
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
985 986
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
987
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
988 989 990
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
991
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
992 993 994 995
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
996 997
        return attr_map

Y
Yu Yang 已提交
998

Y
Yu Yang 已提交
999
class Block(object):
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1014
        use `Program._create_block()` to create a block.
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1029
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1030
        self.desc = program.desc.block(idx)
1031
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1032
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1033
        self.program = program
1034
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1035

1036
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1037 1038
        return self.to_string(True)

F
fengjiayi 已提交
1039 1040
    def to_string(self, throw_on_error, with_details=False):
        """
1041 1042
        Get debug string.

F
fengjiayi 已提交
1043 1044
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1045
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1046
            with_details(bool): more details about variables and parameters
1047 1048
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1049

1050 1051
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1052 1053 1054 1055
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1056
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1057 1058
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1059
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1060
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1061
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1062
            for op in self.ops:
F
fengjiayi 已提交
1063 1064
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1065 1066 1067
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1068 1069
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1070 1071
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1072 1073 1074

    __repr__ = __str__

Y
Yu Yang 已提交
1075 1076
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1077
        return self.desc.parent
Y
Yu Yang 已提交
1078

Y
Yu Yang 已提交
1079 1080 1081 1082
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1083
    def _set_forward_block_idx(self, idx):
1084 1085 1086 1087 1088 1089 1090 1091 1092
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1093
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1094

Y
Yu Yang 已提交
1095 1096
    @property
    def idx(self):
Y
Yu Yang 已提交
1097
        return self.desc.id
Y
Yu Yang 已提交
1098

Q
Qiao Longfei 已提交
1099
    def var(self, name):
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1113
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1114 1115 1116
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1117 1118
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1119
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1120
        return v
Q
Qiao Longfei 已提交
1121

X
Xin Pan 已提交
1122
    def _find_var_recursive(self, name):
1123 1124 1125 1126 1127 1128 1129
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1130
            Variable: the Variable with the giving name. Or None if not found.
1131
        """
Y
Yu Yang 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1156
        return None
Y
Yu Yang 已提交
1157

X
Xin Pan 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1177

Q
Qiao Longfei 已提交
1178
    def all_parameters(self):
1179
        return list(self.iter_parameters())
1180

1181
    def iter_parameters(self):
M
minqiyang 已提交
1182
        return (item[1] for item in six.iteritems(self.vars)
1183
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1184

Y
Yu Yang 已提交
1185
    def create_var(self, *args, **kwargs):
1186
        var = Variable(block=self, *args, **kwargs)
1187 1188
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1189
        return var
Y
Yu Yang 已提交
1190

Q
Qiao Longfei 已提交
1191 1192 1193
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1194
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1195 1196
        """
        Rename variable in vars and ops' inputs and outputs
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1209
        """
M
minqiyang 已提交
1210 1211
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1212

T
typhoonzero 已提交
1213
        if not self.has_var(name):
1214
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1215 1216
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1217
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1218 1219 1220 1221 1222 1223 1224
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1225
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1226 1227 1228 1229
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1230
        orig_var_type = v.type
M
minqiyang 已提交
1231
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1232
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1233
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1234
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1235 1236 1237 1238
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1239
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1240 1241 1242 1243 1244 1245 1246
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1247
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1248 1249
            var = Variable(
                self,
T
typhoonzero 已提交
1250
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1251 1252 1253 1254
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1255
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1256 1257 1258
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1259
        self._sync_with_cpp()
1260
        return var
T
typhoonzero 已提交
1261

W
Wu Yi 已提交
1262 1263
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1264
        self.desc._remove_var(cpt.to_bytes(name))
1265 1266
        del self.vars[name]

Y
Yu Yang 已提交
1267 1268
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1269
        param = Parameter(global_block, *args, **kwargs)
1270
        if 'initializer' in kwargs:
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1291
        return param
Y
Yu Yang 已提交
1292

Y
Yu Yang 已提交
1293
    def append_op(self, *args, **kwargs):
1294 1295 1296 1297 1298 1299
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1300
        op_desc = self.desc.append_op()
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1313
        if _in_imperative_mode():
1314
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
1315
                                       stop_gradient)
Y
Yu Yang 已提交
1316

W
Wu Yi 已提交
1317
    def _insert_op(self, index, *args, **kwargs):
1318 1319 1320 1321 1322 1323 1324 1325 1326
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1327 1328
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1329 1330 1331 1332
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1333
    def _remove_op(self, index):
1334 1335 1336 1337 1338 1339 1340 1341 1342
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1343 1344
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1345 1346
        del self.ops[index]

W
Wu Yi 已提交
1347
    def _slice_ops(self, start, end):
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1358
        return self.ops[start:end]
Y
Yancey1989 已提交
1359

W
Wu Yi 已提交
1360 1361
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1362 1363 1364 1365 1366 1367 1368
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1369
        self.ops.insert(0, op)
1370
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1371 1372
        return op

W
Wu Yi 已提交
1373
    def _sync_with_cpp(self):
1374
        """
1375 1376
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1377
        """
Q
Qiao Longfei 已提交
1378 1379 1380 1381 1382
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1383
        # sync variables removed from c++ end
1384
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1385
            if not self.desc.find_var(cpt.to_bytes(var)):
1386 1387
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1388
        # sync operators from cpp
1389 1390 1391 1392
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1409 1410 1411 1412 1413

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1414
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1415 1416 1417 1418 1419 1420 1421

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1435 1436 1437 1438
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1439
    def _copy_param_info_from(self, other):
1440
        """
1441 1442
        Copy the information of parameters from the other block.

1443
        Args:
1444 1445 1446 1447 1448
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1449 1450 1451 1452 1453

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1454 1455
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1456
        for p in other.iter_parameters():
1457 1458 1459
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1460
                raise ValueError("_copy_param_info_from should be invoked with "
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1473
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1474
                error_clip=p.error_clip,
1475 1476 1477
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1478
    def _clone_variable(self, var):
1479 1480
        """
        Clone a variable into current block.
1481

1482 1483 1484 1485
        Args:
            var: the variable to be cloned.

        Returns:
1486
            Variable: the new  variable cloned from 'var' in current block.
1487 1488
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1489 1490 1491 1492 1493
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1494 1495
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1496
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1497 1498 1499 1500 1501 1502
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1503 1504
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1505 1506 1507 1508 1509 1510 1511
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1512 1513
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1514
        return ret_var
1515

Y
Yu Yang 已提交
1516

1517 1518
class IrGraph(object):
    """
1519 1520 1521 1522
    Python IrGraph. Beneath it is a core.Graph, which is used for
    create a c++ Ir Pass Graph. An IrGraph is just a graph view of
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1523 1524 1525 1526
    """

    def __init__(self, graph, for_test=False):
        """
1527 1528
        Construct an IrGraph using core.Graph.

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1539 1540 1541
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1542 1543
        return self._for_test

W
WangZhen 已提交
1544
    def all_nodes(self):
1545 1546 1547
        """
        Return all nodes included in the graph as a set.
        """
W
WangZhen 已提交
1548
        return {node for node in self.graph.nodes()}
1549 1550

    def all_vars(self):
1551 1552 1553
        """
        Return all variable nodes included in the graph as a set.
        """
1554 1555
        return {node for node in self.graph.nodes() if node.is_var()}

W
WangZhen 已提交
1556
    def all_persistable_vars(self):
1557 1558 1559
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1560 1561 1562 1563 1564 1565 1566
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
        return persistable_nodes

1567
    def all_ops(self):
1568 1569 1570
        """
        Return all operator nodes included in the graph as a set.
        """
1571 1572
        return {node for node in self.graph.nodes() if node.is_op()}

W
WangZhen 已提交
1573 1574
    def var_node(self, name):
        """
1575 1576
        Get a variable node by name from the graph.

W
WangZhen 已提交
1577 1578
        Args:
            name(str): the name of the variable node.
1579

W
WangZhen 已提交
1580 1581 1582
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1583

W
WangZhen 已提交
1584
        Returns:
1585
            core.Node: the variable node with the giving name.
W
WangZhen 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
        var_nodes = self.all_vars()
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1600
    def create_param_node(self, name, var_type, shape, var_dtype):
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
            core.Node: the created persistable variable node.
        """
1614 1615 1616 1617 1618 1619 1620 1621
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
            core.Node: the created variable node.
        """

1636 1637 1638 1639 1640 1641 1642
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
            core.Node: the created variable node.
        """
1653 1654 1655
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
            core.Node: the created operator node.
        """
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
        for attr, value in attrs.iteritems():
            self._update_desc_attr(op_desc, attr, value)
        for input_name, var_nodes in inputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
        for output_name, var_nodes in outputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
1685 1686 1687 1688 1689 1690 1691 1692 1693
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
            core.Node: the created operator node.
        """
1694 1695 1696
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
1697 1698 1699 1700 1701 1702 1703 1704
        """
        Update the input's link of a operator node.

        Args:
            old_input_node(core.Node): the old input node of the giving op_node.
            new_input_node(core.Node): the new input node of the giving op_node.
            op_node(core.Node): the operator node that is needed to update input's link.
        """
W
WangZhen 已提交
1705 1706 1707
        assert old_input_node in self.graph.nodes() and new_input_node in \
        self.graph.nodes() and op_node in self.graph.nodes(), \
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
1708 1709 1710 1711 1712 1713 1714
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
1715 1716 1717 1718 1719 1720 1721
        """
        Connect two nodes.

        Args:
            node_in(core.Node): the input node.
            node_out(core.Node): the output node.
        """
1722
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
W
WangZhen 已提交
1723
            'The two arguments(node_in&node_out) must be in the graph nodes.'
1724 1725 1726 1727
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
1728 1729 1730 1731 1732 1733 1734
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
1735
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
1736 1737 1738 1739
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
1740 1741
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

W
WangZhen 已提交
1742
    def has_circle(self):
1743 1744 1745 1746 1747 1748
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
1749 1750 1751
        return core.has_circle(self.graph)

    def graph_num(self):
1752 1753 1754 1755 1756 1757
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
1758 1759 1760
        return core.graph_num(self.graph)

    def topology_sort(self):
1761 1762 1763 1764 1765 1766 1767 1768
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
            set(core.Node): nodes in topology order.
        """
W
WangZhen 已提交
1769 1770 1771
        return core.topology_sort(self.graph)

    def build_adjacency_list(self):
1772 1773 1774 1775 1776 1777
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
            dict{core.Node: set(core.Node)}: the adjacency list.
        """
W
WangZhen 已提交
1778 1779
        return core.build_adjacency_list(self.graph)

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
            marked_nodes(set(core.Node)): nodes that are needed to be marked.
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

1794 1795 1796 1797 1798 1799 1800 1801 1802
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

1803 1804 1805 1806 1807 1808
        if remove_ctr_var:
            remove_ctr_vars = set()
            for node in self.graph.nodes():
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
1809 1810
        ops_num = 0
        for node in self.graph.nodes():
1811
            if node.is_op():
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
1838
        convert_pass = core.get_pass('graph_to_program_pass')
1839 1840
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1861
class Program(object):
D
dzhwinter 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1873
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1874 1875

    Returns:
Y
yuyang18 已提交
1876
        A empty program.
D
dzhwinter 已提交
1877 1878

    Examples:
Y
yuyang18 已提交
1879 1880 1881 1882 1883 1884
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1885 1886 1887

    """

1888 1889
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1890 1891
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1892
        self._seed = 0
Y
yuyang18 已提交
1893
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1894
        self._op_role_var = []
T
tangwei12 已提交
1895 1896 1897 1898

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1899
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1900
        self._endpoints = []
1901
        self._trainers_endpoints = []
T
tangwei12 已提交
1902
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1903 1904 1905

    @property
    def op_role(self):
Y
yuyang18 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1919 1920 1921 1922 1923 1924 1925 1926
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1927 1928 1929 1930 1931 1932 1933
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1934 1935 1936 1937
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1938
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1939 1940

    @contextlib.contextmanager
W
Wu Yi 已提交
1941
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1942 1943 1944 1945 1946 1947 1948
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1949
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1950 1951 1952 1953

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1954
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1955 1956
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1957 1958 1959
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1960 1961
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1962 1963 1964 1965
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1966
        yield
X
Xin Pan 已提交
1967 1968
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1969

1970
    @contextlib.contextmanager
X
Xin Pan 已提交
1971
    def _lr_schedule_guard(self, is_with_opt=False):
1972 1973 1974 1975 1976 1977 1978
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1979 1980 1981 1982
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1983 1984 1985 1986 1987 1988 1989

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1990 1991 1992 1993

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1994 1995
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1996 1997
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1998 1999 2000
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2001 2002
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2003

2004
    def __str__(self):
Y
yuyang18 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2014 2015
        return self.to_string(True)

F
fengjiayi 已提交
2016 2017 2018
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2019

F
fengjiayi 已提交
2020
        Args:
Y
yuyang18 已提交
2021 2022
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2023

Y
yuyang18 已提交
2024 2025 2026 2027
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2028 2029
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2030 2031 2032 2033

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2044 2045
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2046 2047
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2048

W
Wu Yi 已提交
2049
    def _get_desc(self):
Y
yuyang18 已提交
2050 2051 2052 2053 2054 2055 2056
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2057 2058
        return self.desc

X
version  
Xin Pan 已提交
2059 2060 2061
    def _version(self):
        return self.desc._version()

2062
    def clone(self, for_test=False):
Y
yuyang18 已提交
2063 2064 2065
        """
        Create a new, duplicated program.

2066

Y
yuyang18 已提交
2067 2068 2069 2070
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2071

Y
yuyang18 已提交
2072 2073 2074 2075
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2076 2077 2078 2079 2080
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2081 2082

        Args:
Y
yuyang18 已提交
2083 2084
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2085

D
dzhwinter 已提交
2086
        Returns:
Y
yuyang18 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2140 2141
        """
        if for_test:
X
Xin Pan 已提交
2142
            p = self._inference_optimize(prune_read_op=False)
2143
        else:
2144
            p = Program()
G
gongweibao 已提交
2145 2146
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2147
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2148 2149 2150
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2151 2152 2153 2154

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2155
            p._sync_with_cpp()
2156

W
Wu Yi 已提交
2157
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2158
        p._copy_data_info_from(self)
2159
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2160
        return p
2161

W
Wu Yi 已提交
2162
    def _prune(self, targets):
Y
yuyang18 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2178 2179 2180 2181 2182 2183
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2184 2185
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2186
                    # and we need to find the current op that generate this
2187 2188 2189 2190 2191 2192 2193 2194
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2195
                    t = t.op
2196 2197 2198 2199
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2200
                else:
2201 2202
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2203 2204 2205 2206

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2207 2208 2209
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2210
        res._sync_with_cpp()
2211 2212
        return res

X
Xin Pan 已提交
2213
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2214
        """
F
fengjiayi 已提交
2215 2216 2217 2218 2219
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2220
        3. change the :code:`is_test`
Y
yuyang18 已提交
2221 2222 2223
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2224
        Args:
X
Xin Pan 已提交
2225 2226
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2227

Y
yuyang18 已提交
2228 2229 2230 2231 2232 2233
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2234
        res = Program()
2235
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2236 2237 2238 2239

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2240
        if prune_read_op:
2241 2242 2243 2244 2245 2246 2247 2248 2249
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2250
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2251 2252

        # change all `is_test` attributes to True
M
minqiyang 已提交
2253
        for i in six.moves.range(res.desc.num_blocks()):
2254
            block = res.desc.block(i)
M
minqiyang 已提交
2255
            for j in six.moves.range(block.op_size()):
2256 2257
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2258
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2259 2260 2261
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2262
        res._sync_with_cpp()
2263 2264
        return res

2265 2266
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2267 2268 2269 2270 2271 2272 2273
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2274
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2275 2276 2277 2278

        Returns:
            Program: A deserialized program desc.
        """
2279 2280
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2281
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2282
        p._sync_with_cpp()
2283
        return p
Y
Yu Yang 已提交
2284

2285
    @staticmethod
2286
    def _construct_from_desc(desc):
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2302 2303
    @property
    def random_seed(self):
Y
yuyang18 已提交
2304 2305 2306 2307 2308 2309
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2310 2311
        return self._seed

Q
qiaolongfei 已提交
2312 2313
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2314 2315 2316
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2317 2318
        return self.desc.num_blocks()

D
dzhwinter 已提交
2319 2320 2321 2322 2323 2324
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2325
    def __repr__(self):
2326
        return self.__str__()
2327

Y
Yu Yang 已提交
2328
    def global_block(self):
Y
yuyang18 已提交
2329 2330 2331
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2332 2333
        return self.blocks[0]

Q
Qiao Longfei 已提交
2334
    def block(self, index):
Y
yuyang18 已提交
2335 2336 2337 2338 2339 2340 2341 2342
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2343 2344
        return self.blocks[index]

Y
Yu Yang 已提交
2345
    def current_block(self):
Y
yuyang18 已提交
2346 2347 2348 2349
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2350 2351
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2352
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2363
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2364 2365 2366
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2367 2368 2369 2370
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2371
    def _rollback(self):
Y
yuyang18 已提交
2372 2373 2374 2375 2376
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2377 2378
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2379
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2390 2391 2392
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2393
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2394

W
Wu Yi 已提交
2395
    def _copy_param_info_from(self, other):
2396
        """
2397
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2398

Y
yuyang18 已提交
2399 2400 2401
        Notes: This is a very low level API. Users should not invoke it
        directly.

2402 2403 2404 2405 2406 2407 2408
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2409
            raise TypeError("_copy_param_info_from should be invoked with "
2410 2411 2412
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2413
            raise ValueError("_copy_param_info_from should be invoked with two "
2414
                             "program, with represent the same topology")
W
Wu Yi 已提交
2415
        self.global_block()._copy_param_info_from(other.global_block())
2416

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2436
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2437 2438
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2439

Y
yuyang18 已提交
2440 2441 2442
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2443 2444 2445 2446 2447 2448 2449
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2450
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2451 2452 2453
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2454
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2455
                             "program, with represent the same topology")
2456
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2457 2458 2459
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2460
    def list_vars(self):
Y
yuyang18 已提交
2461 2462 2463 2464 2465 2466
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2467
        for each_block in self.blocks:
2468
            for each_var in list(each_block.vars.values()):
2469 2470
                yield each_var

Y
Yu Yang 已提交
2471

Y
Yu Yang 已提交
2472
class Parameter(Variable):
2473
    """
2474
    Parameter is derived from Variable. A parameter is a persistable
2475
    Variable, and will be updated by optimizers after each iteration.
2476
    The training of a neural network is essentially the updating of
2477 2478
    its parameters.

2479
    Relative to a general Variable, a Parameter has several its own
2480 2481
    member variables:

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2494 2495
    """

Y
Yu Yang 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2506 2507 2508

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2509 2510 2511 2512
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2513 2514
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2515
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2516

W
wanghaoshuang 已提交
2517
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2518

F
fengjiayi 已提交
2519 2520 2521
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2522 2523 2524
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2525

F
update  
fengjiayi 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2540
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2541
            for attr_name in additional_attr:
2542 2543
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2544 2545
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2546 2547 2548 2549
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2550

Y
Yu Yang 已提交
2551
# program is a global instance.
Y
Yu Yang 已提交
2552 2553
_main_program_ = Program()
_startup_program_ = Program()
2554

2555

2556
def default_startup_program():
Y
Yu Yang 已提交
2557
    """
Y
yuyang18 已提交
2558 2559 2560 2561 2562 2563 2564 2565 2566
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2567

Y
Yu Yang 已提交
2568 2569 2570
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2571
    return _startup_program_
2572

2573

2574
def default_main_program():
Y
Yu Yang 已提交
2575
    """
Y
yuyang18 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2585

Y
Yu Yang 已提交
2586 2587 2588
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2589
    return _main_program_
Y
Yu Yang 已提交
2590 2591 2592 2593 2594


def switch_main_program(program):
    """
    Switch the main program to a new program.
2595

Y
Yu Yang 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2610
    Switch the startup program to a new program
Y
Yu Yang 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2626 2627 2628
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2629

Y
Yu Yang 已提交
2630
    Examples:
Y
yuyang18 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2641

Y
Yu Yang 已提交
2642
    Examples:
Y
yuyang18 已提交
2643 2644 2645 2646 2647 2648

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2649

Y
Yu Yang 已提交
2650
    Args:
Y
yuyang18 已提交
2651
        main_program(Program): New main program inside `with` statement.
2652
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2666 2667


W
Wu Yi 已提交
2668
def _get_var(name, program=None):
X
xuwei06 已提交
2669
    """
Y
yuyang18 已提交
2670
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2671

X
xuwei06 已提交
2672 2673 2674
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2675
        If None, default_global_program() will be used.
X
xuwei06 已提交
2676 2677 2678 2679 2680 2681 2682

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2683
    assert isinstance(program, Program)
X
xuwei06 已提交
2684 2685

    return program.global_block().var(name)
2686 2687 2688 2689 2690 2691 2692 2693 2694


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace