pool_op.cc 26.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16

17
#include <unordered_map>
18 19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
21 22 23
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif
24 25 26
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
27 28 29 30

namespace paddle {
namespace operators {

31 32
int PoolOutputSize(int input_size, int filter_size, int padding_1,
                   int padding_2, int stride, bool ceil_mode) {
33 34
  int output_size;
  if (!ceil_mode) {
35 36
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
37 38
  } else {
    output_size =
39 40 41
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
42
  }
43 44
  PADDLE_ENFORCE_GT(
      output_size, 0,
45 46 47 48 49 50
      platform::errors::InvalidArgument(
          "the output size must be greater than 0. But received: "
          "output_size = %d due to the settings of input_size(%d), "
          "padding(%d,%d), "
          "k_size(%d) and stride(%d). Please check again!",
          output_size, input_size, padding_1, padding_2, filter_size, stride));
51 52 53
  return output_size;
}

C
chengduo 已提交
54
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
55 56 57 58 59 60
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("X"), true,
      platform::errors::NotFound("Input(X) of Pool operator is not found."));
  PADDLE_ENFORCE_EQ(
      ctx->HasOutput("Out"), true,
      platform::errors::NotFound("Output(Out) of Pool operator is not found."));
61

C
chengduoZH 已提交
62
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
63 64 65
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
66
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
67
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
68 69 70 71
  bool global_pooling = ctx->Attrs().Get<bool>("global_pooling");
  std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
72

73
  auto in_x_dims = ctx->GetInputDim("X");
74 75
  PADDLE_ENFORCE_EQ(
      in_x_dims.size() == 4 || in_x_dims.size() == 5, true,
76 77 78 79
      platform::errors::InvalidArgument(
          "the input of Op(pool) should be 4-D or 5-D Tensor. But "
          "received: %u-D Tensor and it's shape is [%s].",
          in_x_dims.size(), in_x_dims));
80 81 82

  PADDLE_ENFORCE_EQ(
      in_x_dims.size() - ksize.size(), 2U,
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
      platform::errors::InvalidArgument(
          "the dimension of input minus the size of "
          "Attr(ksize) must be euqal to 2 in Op(pool). "
          "But received: the dimension of input minus the size "
          "of Attr(ksize) is %d, the "
          "input's dimension is %d, the shape of input "
          "is [%s], the Attr(ksize)'s size is %d, the Attr(ksize) is [%s].",
          in_x_dims.size() - ksize.size(), in_x_dims.size(), in_x_dims,
          ksize.size(), framework::make_ddim(ksize)));

  PADDLE_ENFORCE_EQ(
      ksize.size(), strides.size(),
      platform::errors::InvalidArgument(
          "the size of Attr(ksize) and Attr(strides) in "
          "Op(pool) must be equal. "
          "But received: Attr(ksize)'s size is %d, Attr(strides)'s "
          "size is %d, Attr(ksize) is [%s], Attr(strides)is [%s].",
          ksize.size(), strides.size(), framework::make_ddim(ksize),
          framework::make_ddim(strides)));
102

103 104 105 106
  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  // update paddings if "SAME" or global_pooling
  framework::DDim data_dims;
  if (channel_last) {
    data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
  } else {
    data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
  }
  UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                data_dims, strides, ksize);

  if (global_pooling) {
    UpdateKsize(&ksize, data_dims);
  }

  std::vector<int64_t> output_shape;
123 124 125
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
126
    for (int i = 0; i < data_dims.size(); ++i) {
127
      if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) {
128
        output_shape.push_back(data_dims[i]);
K
Kaipeng Deng 已提交
129
      } else {
130 131 132
        output_shape.push_back(
            PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i],
                           paddings[2 * i + 1], strides[i], ceil_mode));
K
Kaipeng Deng 已提交
133
      }
134
    }
135
  }
136 137 138 139 140 141 142 143 144 145

  // output_N = input_N
  output_shape.insert(output_shape.begin(), in_x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(in_x_dims[in_x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, in_x_dims[1]);
  }

146
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
147
  ctx->ShareLoD("X", "Out");
148 149
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
bool CanMKLDNNSupportPool(const framework::ExecutionContext& ctx) {
  if (ctx.Attr<bool>("adaptive") == false) return true;
  // (jczaja): oneDNN is supporting only unchangable in size pool window
  auto src_tz = paddle::framework::vectorize(ctx.Input<Tensor>("X")->dims());
  std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
  // Fast but not exhustive check
  if ((src_tz[src_tz.size() - 1] % ksize[1] == 0) &&
      (src_tz[src_tz.size() - 2] % ksize[0] == 0))
    return true;

  // Exhustive check
  auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
  auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
  auto OH = static_cast<double>(ksize[0]);
  auto OW = static_cast<double>(ksize[1]);

  auto SH = static_cast<int>(floor((IH * 2.0) / OH) - floor(IH / OH));
  auto SW = static_cast<int>(floor((IW * 2.0) / OW) - floor(IW / OW));
  auto KH = static_cast<int>(ceil((IH * 2.0) / OH) - floor(IH / OH));
  auto KW = static_cast<int>(ceil((IW * 2.0) / OW) - floor(IW / OW));

  auto PH = (SH * (static_cast<int>(OH) - 1) + KH - static_cast<int>(IH));
  auto PW = (SW * (static_cast<int>(OW) - 1) + KW - static_cast<int>(IW));
  // If there is additional padding needed then
  // this is situation that oneDNN cannot comply with
  // paddlepaddle reference implementation
  return (PH == 0) && (PW == 0);
}

179
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
180
    const framework::ExecutionContext& ctx) const {
181
  framework::LibraryType library_{framework::LibraryType::kPlain};
182
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
183
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
184
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
185

186
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
187 188
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
189 190
  }
#endif
191 192
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
193
      this->CanMKLDNNBeUsed(ctx, data_type) && CanMKLDNNSupportPool(ctx)) {
194
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
195
    layout_ = framework::DataLayout::kMKLDNN;
196
  }
197
#endif
198

199
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout_, library_);
200 201
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
framework::OpKernelType PoolOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

C
chengduo 已提交
224
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
225 226 227
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    platform::errors::NotFound(
                        "Input(X) of Pool Gradoperator is not found."));
228
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
229 230
                    platform::errors::NotFound(
                        "Input(X@GRAD) of Pool Gradoperator is not found."));
231 232 233
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

234
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
235
    const framework::ExecutionContext& ctx) const {
236
  framework::LibraryType library_{framework::LibraryType::kPlain};
237
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
238
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
239
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
240

241
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
242 243
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
244 245
  }
#endif
246 247
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
248 249
      this->CanMKLDNNBeUsed(ctx, input_data_type) &&
      CanMKLDNNSupportPool(ctx)) {
250
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
251
    layout_ = framework::DataLayout::kMKLDNN;
252
  }
253
#endif
254

K
Kexin Zhao 已提交
255 256
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
257 258
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
framework::OpKernelType PoolOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   framework::StringToDataLayout(data_format));
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
277
void Pool2dOpMaker::Make() {
278 279
  AddInput(
      "X",
C
chengduoZH 已提交
280
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
281 282 283
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
284
  AddOutput("Out",
K
kexinzhao 已提交
285 286 287 288
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
289
            "and W is the width of the feature.");
290

C
chengduoZH 已提交
291
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
292 293
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
294
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
295
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
296 297
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
298
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
299 300
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
301
  // TypedAttrChecker don't support vector type.)
302 303
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
304 305 306
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False.")
307
      .SetDefault(false);
K
kexinzhao 已提交
308 309 310
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
311 312
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
313 314 315
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
316 317
      "(vector<int>, default {0,0}), paddings(height_top, height_bottom, "
      "width_left, wifth_right) of pooling operator."
318
      "If global_pooling = true, paddings and kernel size will be ignored.")
319
      .SetDefault({0, 0});
320 321
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
322
      "(bool) When true, will exclude the zero-padding in the "
323
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
324 325
      "is only used when pooling_type is avg. The default is True. "
      "Default True.")
326
      .SetDefault(true);
327 328
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
329
      "(bool) When true, will perform adaptive pooling instead, "
330 331
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
332 333
      "pooling in each grid area to get output pooling value. "
      "Default False.")
334 335
      .SetDefault(false);

336 337
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
338
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
D
Double_V 已提交
339 340
      .SetDefault(false)
      .AsExtra();
341 342
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
343
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
344
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
345
      "the floor function will be used. Default False")
346
      .SetDefault(false);
347
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
348
                "(bool) Only used in mkldnn kernel. Default False")
D
Double_V 已提交
349 350
      .SetDefault(false)
      .AsExtra();
351 352 353 354
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
D
Double_V 已提交
355 356
      .SetDefault(false)
      .AsExtra();
357 358 359 360
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
D
Double_V 已提交
361 362
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
363 364 365 366 367 368
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
369
      .SetDefault("NCHW");
370 371 372
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
D
Double_V 已提交
373 374
      .SetDefault(false)
      .AsExtra();
375

376 377 378 379 380 381
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
382
  // TODO(dzhwinter): need to registered layout transform function
383 384

  AddComment(R"DOC(
K
Kaipeng Deng 已提交
385 386 387
This operation calculates the pooling output based on
the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
K
kexinzhao 已提交
388
number of channels, H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
389
Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
C
fix doc  
chengduoZH 已提交
390
These two elements represent height and width, respectively.
C
chengduoZH 已提交
391 392
The input(X) size and output(Out) size may be different.

393
Example:
F
fengjiayi 已提交
394

C
chengduoZH 已提交
395
  Input:
F
fengjiayi 已提交
396

K
kexinzhao 已提交
397
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
398

C
chengduoZH 已提交
399
  Output:
F
fengjiayi 已提交
400

K
kexinzhao 已提交
401
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
  For pool_padding = "SAME":
       $$
       H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]}
       $$

  For pool_padding = "VALID":
       $$
       H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]}
       $$

419 420
  For ceil_mode = false:
       $$
421
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1
F
fengjiayi 已提交
422 423
       $$
       $$
424
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1
K
kexinzhao 已提交
425
       $$
426

427 428
  For ceil_mode = true:
       $$
429
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
430 431
       $$
       $$
432
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1
433
       $$
K
kexinzhao 已提交
434

435
  For exclusive = false:
436
       $$
437
       hstart = i * strides[0] - pad_height_top
438 439 440 441 442
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
443
       wstart = j * strides[1] - pad_width_left
444 445 446 447 448 449 450
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
451

452
  For exclusive = true:
453
       $$
454
       hstart = max(0, i * strides[0] - pad_height_top)
455 456 457 458 459
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
460
       wstart = max(0, j * strides[1] - pad_width_left)
461 462 463 464 465 466 467
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
468

469
)DOC");
470 471
}

C
chengduo 已提交
472 473
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
474
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
475
      const override {
476 477
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
478 479 480
  }
};

Y
Yu Yang 已提交
481
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
482 483
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
484 485
           "The format of input tensor is NCDHW or NDHWC, where N is batch "
           "size, C is "
K
kexinzhao 已提交
486 487 488
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
489
  AddOutput("Out",
C
chengduoZH 已提交
490
            "(Tensor) The output tensor of pooling operator."
491
            "The format of output tensor is also NCDHW or NDHWC, "
K
kexinzhao 已提交
492 493
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
494
            "width of the feature, respectively.");
495

C
chengduoZH 已提交
496
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
497
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
498
                       "and \"avg\" for average-pooling.")
499
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
500 501 502 503
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
504
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
505 506
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
507
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
508 509
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
510 511 512
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False")
513
      .SetDefault(false);
K
kexinzhao 已提交
514 515 516 517
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
518 519
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
520 521
  AddAttr<std::vector<int>>(
      "paddings",
522 523 524 525
      "(vector<int>, default {0,0,0}), paddings(pad_depth_front, "
      "pad_depth_back, "
      "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right"
      ") of pooling operator. "
C
chengduoZH 已提交
526
      "If global_pooling = true, ksize and paddings will be ignored.")
527 528
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
529 530
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
531
      "(bool) When true, will exclude the zero-padding in the "
532
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
533 534
      "is only used when pooling_type is avg. The default is True. "
      "Default True")
535
      .SetDefault(true);
536 537
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
538
      "(bool) When true, will perform adaptive pooling instead, "
539 540
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
541 542
      "pooling in each grid area to get output pooling value. "
      "Default False")
543
      .SetDefault(false);
544

545 546
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
547
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
D
Double_V 已提交
548 549
      .SetDefault(false)
      .AsExtra();
550 551
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
552
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
553
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
554
      "the floor function will be used. Default False")
555
      .SetDefault(false);
556
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
557
                "(bool) Only used in mkldnn kernel. Default False")
D
Double_V 已提交
558 559
      .SetDefault(false)
      .AsExtra();
560 561
  AddAttr<std::string>(
      "data_format",
562 563 564
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
565
      "the input will be transformed automatically. ")
566 567 568 569 570 571 572
      .SetDefault("NCDHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
573 574
  // TODO(dzhwinter): need to registered layout transform function

575
  AddComment(R"DOC(
K
Kaipeng Deng 已提交
576 577
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
578
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
K
kexinzhao 已提交
579
size, C is the number of channels, and D, H and W are the depth, height and
K
Kaipeng Deng 已提交
580 581
width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
hold three integer elements. These three elements represent depth, height and
K
kexinzhao 已提交
582
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
583 584 585

Example:
  Input:
K
kexinzhao 已提交
586
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
587
  Output:
K
kexinzhao 已提交
588
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

  For pool_padding = "SAME":
       $$
       D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]}
       $$

  For pool_padding = "VALID":
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]}
       $$

612
  For ceil_mode = false:
613
       $$
614
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1
615 616
       $$
       $$
617
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1
618 619
       $$
       $$
620
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1
621
       $$
622
  For ceil_mode = true:
623
       $$
624
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1
625 626
       $$
       $$
627
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1
628 629
       $$
       $$
630
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1
631
       $$
D
dengkaipeng 已提交
632

633
  For exclusive = false:
634
       $$
635
       dstart = i * strides[0] - pad_depth_front
636 637 638 639 640
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
641
       hstart = j * strides[1] - pad_height_top
642 643 644 645 646
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
647
       wstart = k * strides[2] -  pad_width_left
648 649 650 651 652 653 654
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
655

656
  For exclusive = true:
657
       $$
658
       dstart = max(0, i * strides[0] - pad_depth_front)
659 660 661 662 663
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
664 665 666
       hstart = max(0, j * strides[1] - pad_height_top)
       $$
       $$
667 668 669
       hend = min(H, hstart + ksize[1])
       $$
       $$
670
       wstart = max(0, k * strides[2] - pad_width_left)
671 672 673 674 675 676 677
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
678

679
)DOC");
680
}
681 682 683 684 685
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
686 687 688 689
REGISTER_OPERATOR(
    pool2d, ops::PoolOp, ops::Pool2dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
690
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
691

Q
QI JUN 已提交
692 693 694 695 696
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
697
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
698

H
hong 已提交
699 700 701 702
REGISTER_OPERATOR(
    pool3d, ops::PoolOp, ops::Pool3dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
703
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
704

Q
QI JUN 已提交
705 706 707 708 709 710
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);