Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
a8477381
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a8477381
编写于
9月 20, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add pooling2d(max, ave) and pooling3d(max, ave) Op
上级
9e7c0b5e
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
372 addition
and
16 deletion
+372
-16
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+7
-0
paddle/operators/math/CMakeLists.txt
paddle/operators/math/CMakeLists.txt
+3
-4
paddle/operators/math/pooling.cc
paddle/operators/math/pooling.cc
+8
-7
paddle/operators/math/pooling.cu
paddle/operators/math/pooling.cu
+6
-5
paddle/operators/pool_op.cc
paddle/operators/pool_op.cc
+165
-0
paddle/operators/pool_op.cu
paddle/operators/pool_op.cu
+26
-0
paddle/operators/pool_op.h
paddle/operators/pool_op.h
+157
-0
未找到文件。
paddle/operators/CMakeLists.txt
浏览文件 @
a8477381
...
@@ -55,6 +55,13 @@ function(op_library TARGET)
...
@@ -55,6 +55,13 @@ function(op_library TARGET)
set
(
pybind_flag 1
)
set
(
pybind_flag 1
)
endif
()
endif
()
# activation_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"pool_op"
)
set
(
pybind_flag 1
)
# It's enough to just adding one operator to pybind
file
(
APPEND
${
pybind_file
}
"USE_OP(pool2d);
\n
"
)
endif
()
# pybind USE_NO_KERNEL_OP
# pybind USE_NO_KERNEL_OP
file
(
READ
${
TARGET
}
.cc TARGET_CONTENT
)
file
(
READ
${
TARGET
}
.cc TARGET_CONTENT
)
string
(
REGEX MATCH
"OperatorWithKernel"
regex_result
"
${
TARGET_CONTENT
}
"
)
string
(
REGEX MATCH
"OperatorWithKernel"
regex_result
"
${
TARGET_CONTENT
}
"
)
...
...
paddle/operators/math/CMakeLists.txt
浏览文件 @
a8477381
if
(
WITH_GPU
)
if
(
WITH_GPU
)
nv_library
(
math_function SRCS math_function.cc math_function.cu im2col.cc
nv_library
(
math_function SRCS math_function.cc math_function.cu im2col.cc
im2col
.cu DEPS cblas device_context
)
im2col.cu pooling.cc pooling
.cu DEPS cblas device_context
)
else
()
else
()
cc_library
(
math_function SRCS math_function.cc im2col.cc DEPS cblas device_context
)
cc_library
(
math_function SRCS math_function.cc im2col.cc
pooling.cc
DEPS cblas device_context
)
endif
()
endif
()
nv_test
(
math_function_test SRCS math_function_test.cc DEPS math_function tensor
)
nv_test
(
math_function_test SRCS math_function_test.cc DEPS math_function tensor
)
...
...
paddle/operators/math/pooling.cc
浏览文件 @
a8477381
...
@@ -111,6 +111,7 @@ class Pool2dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
...
@@ -111,6 +111,7 @@ class Pool2dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
wstart
=
std
::
max
(
wstart
,
0
);
int
pool_size
=
(
hend
-
hstart
)
*
(
wend
-
wstart
);
int
pool_size
=
(
hend
-
hstart
)
*
(
wend
-
wstart
);
float
scale
=
1.0
/
pool_size
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
pool_process
.
gradProcess
(
pool_process
.
gradProcess
(
...
@@ -118,7 +119,7 @@ class Pool2dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
...
@@ -118,7 +119,7 @@ class Pool2dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
output_data
[
ph
*
output_width
+
pw
],
output_data
[
ph
*
output_width
+
pw
],
output_grad_data
[
ph
*
output_width
+
pw
],
output_grad_data
[
ph
*
output_width
+
pw
],
input_grad_data
[
h
*
input_width
+
w
],
input_grad_data
[
h
*
input_width
+
w
],
static_cast
<
T
>
(
pool_siz
e
));
static_cast
<
T
>
(
scal
e
));
}
}
}
}
}
}
...
@@ -244,7 +245,6 @@ class Pool3dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
...
@@ -244,7 +245,6 @@ class Pool3dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
const
int
padding_depth
=
paddings
[
0
];
const
int
padding_depth
=
paddings
[
0
];
const
int
padding_height
=
paddings
[
1
];
const
int
padding_height
=
paddings
[
1
];
const
int
padding_width
=
paddings
[
2
];
const
int
padding_width
=
paddings
[
2
];
const
int
input_stride
=
input_depth
*
input_height
*
input_width
;
const
int
input_stride
=
input_depth
*
input_height
*
input_width
;
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
...
@@ -271,6 +271,7 @@ class Pool3dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
...
@@ -271,6 +271,7 @@ class Pool3dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
int
pool_size
=
int
pool_size
=
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
);
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
);
float
scale
=
1.0
/
pool_size
;
for
(
int
d
=
dstart
;
d
<
dend
;
++
d
)
{
for
(
int
d
=
dstart
;
d
<
dend
;
++
d
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
...
@@ -280,17 +281,17 @@ class Pool3dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
...
@@ -280,17 +281,17 @@ class Pool3dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
pool_process
.
gradProcess
(
pool_process
.
gradProcess
(
input_data
[
input_idx
],
output_data
[
output_idx
],
input_data
[
input_idx
],
output_data
[
output_idx
],
output_grad_data
[
output_idx
],
output_grad_data
[
output_idx
],
input_grad_data
[
input_idx
],
static_cast
<
T
>
(
pool_siz
e
));
input_grad_data
[
input_idx
],
static_cast
<
T
>
(
scal
e
));
}
}
}
}
}
}
}
}
}
}
input_data
+=
input_stride
;
output_data
+=
output_stride
;
input_grad_data
+=
input_stride
;
output_grad_data
+=
output_stride
;
}
}
input_data
+=
input_stride
;
output_data
+=
output_stride
;
input_grad_data
+=
input_stride
;
output_grad_data
+=
output_stride
;
}
}
}
}
}
}
...
...
paddle/operators/math/pooling.cu
浏览文件 @
a8477381
...
@@ -95,7 +95,7 @@ __global__ void KernelPool2dBackward(
...
@@ -95,7 +95,7 @@ __global__ void KernelPool2dBackward(
int
output_sub_idx
=
ph
*
output_width
+
pw
;
int
output_sub_idx
=
ph
*
output_width
+
pw
;
pool_process
.
gradProcess
(
input
,
output_data
[
output_sub_idx
],
pool_process
.
gradProcess
(
input
,
output_data
[
output_sub_idx
],
output_grad
[
output_sub_idx
],
gradient
,
output_grad
[
output_sub_idx
],
gradient
,
static_cast
<
T
>
(
pool_size
));
static_cast
<
T
>
(
1.0
/
pool_size
));
}
}
}
}
input_grad
[
index
]
=
gradient
;
input_grad
[
index
]
=
gradient
;
...
@@ -264,7 +264,7 @@ __global__ void KernelPool3DBackward(
...
@@ -264,7 +264,7 @@ __global__ void KernelPool3DBackward(
int
pdstart
=
(
offsetD
<
ksize_depth
)
int
pdstart
=
(
offsetD
<
ksize_depth
)
?
0
?
0
:
(
offsetD
+
ksize_depth
)
/
stride_depth
+
1
;
:
(
offsetD
-
ksize_depth
)
/
stride_depth
+
1
;
int
phstart
=
(
offsetH
<
ksize_height
)
int
phstart
=
(
offsetH
<
ksize_height
)
?
0
?
0
:
(
offsetH
-
ksize_height
)
/
stride_height
+
1
;
:
(
offsetH
-
ksize_height
)
/
stride_height
+
1
;
...
@@ -296,10 +296,10 @@ __global__ void KernelPool3DBackward(
...
@@ -296,10 +296,10 @@ __global__ void KernelPool3DBackward(
hstart
=
max
(
hstart
,
0
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
wstart
=
max
(
wstart
,
0
);
int
pool_size
=
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
);
int
pool_size
=
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
);
int
output_sub_idx
=
ph
*
output_width
+
pw
;
int
output_sub_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
pool_process
.
gradProcess
(
input
,
output_data
[
output_sub_idx
],
pool_process
.
gradProcess
(
input
,
output_data
[
output_sub_idx
],
output_grad
[
output_sub_idx
],
gradient
,
output_grad
[
output_sub_idx
],
gradient
,
static_cast
<
T
>
(
pool_size
));
static_cast
<
T
>
(
1.0
/
pool_size
));
}
}
}
}
}
}
...
@@ -385,7 +385,8 @@ class Pool3dBackwardFunctor<platform::GPUPlace, PoolProcess, T> {
...
@@ -385,7 +385,8 @@ class Pool3dBackwardFunctor<platform::GPUPlace, PoolProcess, T> {
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
->
GetPlace
());
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
->
GetPlace
());
int
nthreads
=
batch_size
*
input_channels
*
input_height
*
input_width
;
int
nthreads
=
batch_size
*
input_channels
*
input_depth
*
input_height
*
input_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
dim3
grid
(
blocks
,
1
);
...
...
paddle/operators/pool_op.cc
0 → 100644
浏览文件 @
a8477381
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/pool_op.h"
namespace
paddle
{
namespace
operators
{
int
outputSize
(
int
input_size
,
int
filter_size
,
int
padding
,
int
stride
)
{
int
output_size
=
(
input_size
-
filter_size
+
2
*
padding
)
/
stride
+
1
;
return
output_size
;
}
class
PoolOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Input"
),
"Input(Input) of Pooling should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Output"
),
"Output(Output) of Pooling should not be null."
);
// PADDLE_ENFORCE_NOT_NULL(Attr<std::string>("pooling_type"),
// "pooling_type should not be null.");
// PADDLE_ENFORCE_NOT_NULL(Attr<std::vector<int>>("ksize"), "ksize should
// not be null.");
auto
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
output
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Output"
);
int
global_pooling
=
Attr
<
int
>
(
"global_pooling"
);
std
::
string
pooling_type
=
Attr
<
std
::
string
>
(
"pooling_type"
);
std
::
vector
<
int
>
ksize
=
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
PADDLE_ENFORCE
(
pooling_type
==
"max"
||
pooling_type
==
"ave"
,
"pooling_type should be 'max' or 'ave'"
);
PADDLE_ENFORCE
(
ksize
.
size
()
==
2
||
ksize
.
size
()
==
3
,
"Pooling ksize should be 2-D or 3-D"
);
if
(
global_pooling
==
1
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
ksize
[
i
]
=
input
->
dims
()[
i
+
2
];
}
if
(
ksize
.
size
()
==
2
)
{
PADDLE_ENFORCE_EQ
(
input
->
dims
().
size
(),
4
,
"Pool2DOp intput should be 4-D."
);
PADDLE_ENFORCE_EQ
(
strides
.
size
(),
2
,
"Pool2DOp strides should be 2-D."
);
PADDLE_ENFORCE_EQ
(
paddings
.
size
(),
2
,
"Pool2DOp paddings should be 2-D."
);
}
else
{
PADDLE_ENFORCE_EQ
(
input
->
dims
().
size
(),
5
,
"Pool3DOp intput should be 5-D."
);
PADDLE_ENFORCE_EQ
(
strides
.
size
(),
3
,
"Pool3DOp strides should be 3-D."
);
PADDLE_ENFORCE_EQ
(
paddings
.
size
(),
3
,
"Pool3DOp paddings should be 3-D."
);
}
std
::
vector
<
int64_t
>
output_shape
({
input
->
dims
()[
0
],
input
->
dims
()[
1
]});
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
output_shape
.
push_back
(
outputSize
(
input
->
dims
()[
i
+
2
],
ksize
[
i
],
paddings
[
i
],
strides
[
i
]));
}
output
->
Resize
(
framework
::
make_ddim
(
output_shape
));
}
};
class
PoolOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
in
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
d_in
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Input"
));
if
(
d_in
)
d_in
->
Resize
(
in
->
dims
());
}
};
class
Pool3dOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
Pool3dOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Input"
,
"The input tensor of pooling operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is the "
"number of channels, D, H and W is the depth, height and width of "
"image."
);
AddOutput
(
"Output"
,
"The output tensor of pooling operator."
"The format of output tensor is also NCDHW."
);
AddAttr
<
std
::
string
>
(
"pooling_type"
,
"pooling_type of pooling operator.['max' or 'ave']"
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"strides of pooling operator."
);
AddAttr
<
int
>
(
"global_pooling"
,
"whether to use the global_pooling."
)
.
SetDefault
(
0
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of pooling operator."
)
.
SetDefault
({
1
,
1
,
1
});
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings of pooling operator."
)
.
SetDefault
({
0
,
0
,
0
});
AddComment
(
R"DOC(
The pooling3d operation calculates the output based on
the input, pooling_type and ksize, strides, paddings parameters.
)DOC"
);
}
};
class
Pool2dOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
Pool2dOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Input"
,
"The input tensor of pooling operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image."
);
AddOutput
(
"Output"
,
"The output tensor of pooling operator."
"The format of output tensor is also NCHW."
);
AddAttr
<
std
::
string
>
(
"pooling_type"
,
"pooling_type of pooling operator.['max' or 'ave']"
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"strides of pooling operator."
);
AddAttr
<
int
>
(
"global_pooling"
,
"whether to use the global_pooling."
)
.
SetDefault
(
0
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of pooling operator."
)
.
SetDefault
({
1
,
1
});
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings of pooling operator."
)
.
SetDefault
({
0
,
0
});
AddComment
(
R"DOC(
The pooling2d operation calculates the output based on
the input, pooling_type and ksize, strides, paddings parameters.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
pool2d
,
ops
::
PoolOp
,
ops
::
Pool2dOpMaker
,
pool2d_grad
,
ops
::
PoolOpGrad
);
REGISTER_OP_CPU_KERNEL
(
pool2d
,
ops
::
PoolKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
pool2d_grad
,
ops
::
PoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
)
REGISTER_OP
(
pool3d
,
ops
::
PoolOp
,
ops
::
Pool3dOpMaker
,
pool3d_grad
,
ops
::
PoolOpGrad
);
REGISTER_OP_CPU_KERNEL
(
pool3d
,
ops
::
PoolKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
pool3d_grad
,
ops
::
PoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/pool_op.cu
0 → 100644
浏览文件 @
a8477381
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/pool_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
pool2d
,
ops
::
PoolKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
pool2d_grad
,
ops
::
PoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
pool3d
,
ops
::
PoolKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
pool3d_grad
,
ops
::
PoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/pool_op.h
0 → 100644
浏览文件 @
a8477381
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/pooling.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
Place
,
typename
T
>
class
PoolKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
int
global_pooling
=
context
.
Attr
<
int
>
(
"global_pooling"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling_type"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
global_pooling
==
1
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
ksize
[
i
]
=
input
->
dims
()[
i
+
2
];
}
}
auto
*
device_context
=
const_cast
<
platform
::
DeviceContext
*>
(
context
.
device_context_
);
switch
(
ksize
.
size
())
{
case
2
:
{
if
(
pooling_type
==
"max"
)
{
paddle
::
operators
::
math
::
Pool2dForwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
pool_process
;
pool2d_forward
(
*
input
,
*
output
,
ksize
,
strides
,
paddings
,
pool_process
,
device_context
);
}
else
if
(
pooling_type
==
"ave"
)
{
paddle
::
operators
::
math
::
Pool2dForwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
pool_process
;
pool2d_forward
(
*
input
,
*
output
,
ksize
,
strides
,
paddings
,
pool_process
,
device_context
);
}
}
break
;
case
3
:
{
if
(
pooling_type
==
"max"
)
{
paddle
::
operators
::
math
::
Pool3dForwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
,
T
>
pool3d_forward
;
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
pool_process
;
pool3d_forward
(
*
input
,
*
output
,
ksize
,
strides
,
paddings
,
pool_process
,
device_context
);
}
else
if
(
pooling_type
==
"ave"
)
{
paddle
::
operators
::
math
::
Pool3dForwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
,
T
>
pool3d_forward
;
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
pool_process
;
pool3d_forward
(
*
input
,
*
output
,
ksize
,
strides
,
paddings
,
pool_process
,
device_context
);
}
}
break
;
}
}
};
template
<
typename
Place
,
typename
T
>
class
PoolGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
output
=
context
.
Input
<
Tensor
>
(
"Output"
);
const
Tensor
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
Tensor
*
input_grad
=
context
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Input"
));
int
global_pooling
=
context
.
Attr
<
int
>
(
"global_pooling"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling_type"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
global_pooling
==
1
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
ksize
[
i
]
=
input
->
dims
()[
i
+
2
];
}
auto
*
device_context
=
const_cast
<
platform
::
DeviceContext
*>
(
context
.
device_context_
);
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
temp
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
temp
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
temp
.
constant
(
static_cast
<
T
>
(
0
));
switch
(
ksize
.
size
())
{
case
2
:
{
if
(
pooling_type
==
"max"
)
{
paddle
::
operators
::
math
::
Pool2dBackwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
,
T
>
pool2d_backward
;
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
pool_process
;
pool2d_backward
(
*
input
,
*
input_grad
,
*
output
,
*
output_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
device_context
);
}
else
if
(
pooling_type
==
"ave"
)
{
paddle
::
operators
::
math
::
Pool2dBackwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
,
T
>
pool2d_backward
;
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
pool_process
;
pool2d_backward
(
*
input
,
*
input_grad
,
*
output
,
*
output_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
device_context
);
}
}
break
;
case
3
:
{
if
(
pooling_type
==
"max"
)
{
paddle
::
operators
::
math
::
Pool3dBackwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
,
T
>
pool3d_backward
;
paddle
::
operators
::
math
::
pool
::
maxPool
<
T
>
pool_process
;
pool3d_backward
(
*
input
,
*
input_grad
,
*
output
,
*
output_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
device_context
);
}
else
if
(
pooling_type
==
"ave"
)
{
paddle
::
operators
::
math
::
Pool3dBackwardFunctor
<
Place
,
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
,
T
>
pool3d_backward
;
paddle
::
operators
::
math
::
pool
::
avePool
<
T
>
pool_process
;
pool3d_backward
(
*
input
,
*
input_grad
,
*
output
,
*
output_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
device_context
);
}
}
break
;
}
}
}
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录