pool_op.cc 12.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19

namespace paddle {
namespace operators {

Y
Yang Yang 已提交
20
int PoolOutputSize(int input_size, int filter_size, int padding, int stride) {
21
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
C
chengduoZH 已提交
22 23 24 25 26
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
27 28 29
  return output_size;
}

30 31 32 33 34 35 36
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
37
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
38 39 40 41 42
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
43
                 "Pooling intput should be 4-D or 5-D tensor.");
44

C
chengduoZH 已提交
45
  if (ctx->Attrs().Get<bool>("global_pooling")) {
46
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
47 48
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
49
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
50
    }
51
  }
52 53 54 55 56 57 58 59 60 61 62

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    output_shape.push_back(
Y
Yang Yang 已提交
63
        PoolOutputSize(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
64
  }
65
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
66
  ctx->ShareLoD("X", "Out");
67 68
}

69 70 71
framework::OpKernelType PoolOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
72
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
73 74 75 76 77 78
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
79 80 81 82 83 84 85 86 87 88 89 90 91 92
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

93 94 95 96 97 98 99
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

100 101 102
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
103
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
104 105 106 107 108 109
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
110 111 112 113 114 115 116 117 118 119 120 121 122 123
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

124
Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
125 126 127
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
128
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
129 130 131
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
132
  AddOutput("Out",
K
kexinzhao 已提交
133 134 135 136 137
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
            "and W is the width of the feature.");
138

C
chengduoZH 已提交
139
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
140 141
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
142
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
143
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
144 145
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
146
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
147 148
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
149
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
150
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
151
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
152
                "If global_pooling = true, ksize and paddings will be ignored.")
153
      .SetDefault(false);
K
kexinzhao 已提交
154 155 156
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
157 158
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
159 160 161
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
162
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
163
      "operator."
C
chengduoZH 已提交
164
      "If global_pooling = true, paddings and ksize will be ignored.")
165 166 167 168 169 170 171 172 173 174 175 176 177
      .SetDefault({0, 0});
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
178 179

  AddComment(R"DOC(
K
kexinzhao 已提交
180 181
Pool2d Operator.

C
chengduoZH 已提交
182
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
183
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
184 185
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
186 187
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
188 189
The input(X) size and output(Out) size may be different.

C
chengduoZH 已提交
190
Example:   
C
chengduoZH 已提交
191
  Input:
K
kexinzhao 已提交
192
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
193
  Output:
K
kexinzhao 已提交
194
       Out shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
195
  Where
K
kexinzhao 已提交
196
       $$ 
C
chengduoZH 已提交
197 198
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
199 200
       $$

201
)DOC");
202 203
}

204
Pool3dOpMaker::Pool3dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
205
    : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
206 207 208 209 210 211
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
212
  AddOutput("Out",
C
chengduoZH 已提交
213
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
214 215 216 217
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
            "width of the feature, respectively.");
218

C
chengduoZH 已提交
219
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
220
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
221
                       "and \"avg\" for average-pooling.")
222
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
223 224 225 226
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
227
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
228 229
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
230
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
231 232 233 234
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
235
      .SetDefault(false);
K
kexinzhao 已提交
236 237 238 239
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
240 241
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
242 243
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
244
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
245
      "width) of pooling operator. "
C
chengduoZH 已提交
246
      "If global_pooling = true, ksize and paddings will be ignored.")
247 248 249
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

250 251 252 253 254 255 256 257 258 259 260 261 262
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

263
  AddComment(R"DOC(
K
kexinzhao 已提交
264 265
Pool3d Operator.

C
chengduoZH 已提交
266
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
267
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
268 269 270 271 272
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings) 
are three elements. These three elements represent depth, height and 
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
273 274 275

Example:
  Input:
K
kexinzhao 已提交
276
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
277
  Output:
K
kexinzhao 已提交
278
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
279 280 281 282 283 284
  Where
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
K
kexinzhao 已提交
285

286
)DOC");
287
}
288 289 290 291 292 293 294 295
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
296 297 298 299 300 301
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>)
302 303 304 305

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
306 307 308 309 310 311
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);