pool_op.cc 26.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16

17
#include <unordered_map>
18 19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
21 22 23
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif
24 25 26
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
27 28 29 30

namespace paddle {
namespace operators {

31 32
int PoolOutputSize(int input_size, int filter_size, int padding_1,
                   int padding_2, int stride, bool ceil_mode) {
33 34
  int output_size;
  if (!ceil_mode) {
35 36
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
37 38
  } else {
    output_size =
39 40 41
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
42
  }
43 44
  PADDLE_ENFORCE_GT(
      output_size, 0,
45 46 47 48 49 50
      platform::errors::InvalidArgument(
          "the output size must be greater than 0. But received: "
          "output_size = %d due to the settings of input_size(%d), "
          "padding(%d,%d), "
          "k_size(%d) and stride(%d). Please check again!",
          output_size, input_size, padding_1, padding_2, filter_size, stride));
51 52 53
  return output_size;
}

C
chengduo 已提交
54
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
55 56 57 58 59 60
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("X"), true,
      platform::errors::NotFound("Input(X) of Pool operator is not found."));
  PADDLE_ENFORCE_EQ(
      ctx->HasOutput("Out"), true,
      platform::errors::NotFound("Output(Out) of Pool operator is not found."));
61

C
chengduoZH 已提交
62
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
63 64 65
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
66
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
67
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
68 69 70 71
  bool global_pooling = ctx->Attrs().Get<bool>("global_pooling");
  std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
72

73
  auto in_x_dims = ctx->GetInputDim("X");
74 75
  PADDLE_ENFORCE_EQ(
      in_x_dims.size() == 4 || in_x_dims.size() == 5, true,
76 77 78 79
      platform::errors::InvalidArgument(
          "the input of Op(pool) should be 4-D or 5-D Tensor. But "
          "received: %u-D Tensor and it's shape is [%s].",
          in_x_dims.size(), in_x_dims));
80 81 82

  PADDLE_ENFORCE_EQ(
      in_x_dims.size() - ksize.size(), 2U,
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
      platform::errors::InvalidArgument(
          "the dimension of input minus the size of "
          "Attr(ksize) must be euqal to 2 in Op(pool). "
          "But received: the dimension of input minus the size "
          "of Attr(ksize) is %d, the "
          "input's dimension is %d, the shape of input "
          "is [%s], the Attr(ksize)'s size is %d, the Attr(ksize) is [%s].",
          in_x_dims.size() - ksize.size(), in_x_dims.size(), in_x_dims,
          ksize.size(), framework::make_ddim(ksize)));

  PADDLE_ENFORCE_EQ(
      ksize.size(), strides.size(),
      platform::errors::InvalidArgument(
          "the size of Attr(ksize) and Attr(strides) in "
          "Op(pool) must be equal. "
          "But received: Attr(ksize)'s size is %d, Attr(strides)'s "
          "size is %d, Attr(ksize) is [%s], Attr(strides)is [%s].",
          ksize.size(), strides.size(), framework::make_ddim(ksize),
          framework::make_ddim(strides)));
102

103 104 105 106
  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  // update paddings if "SAME" or global_pooling
  framework::DDim data_dims;
  if (channel_last) {
    data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
  } else {
    data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
  }
  UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                data_dims, strides, ksize);

  if (global_pooling) {
    UpdateKsize(&ksize, data_dims);
  }

  std::vector<int64_t> output_shape;
123 124 125
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
126
    for (int i = 0; i < data_dims.size(); ++i) {
127
      if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) {
128
        output_shape.push_back(data_dims[i]);
K
Kaipeng Deng 已提交
129
      } else {
130 131 132
        output_shape.push_back(
            PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i],
                           paddings[2 * i + 1], strides[i], ceil_mode));
K
Kaipeng Deng 已提交
133
      }
134
    }
135
  }
136 137 138 139 140 141 142 143 144 145

  // output_N = input_N
  output_shape.insert(output_shape.begin(), in_x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(in_x_dims[in_x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, in_x_dims[1]);
  }

146
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
147
  ctx->ShareLoD("X", "Out");
148 149
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
bool CanMKLDNNSupportPool(const framework::ExecutionContext& ctx) {
  if (ctx.Attr<bool>("adaptive") == false) return true;
  // (jczaja): oneDNN is supporting only unchangable in size pool window
  auto src_tz = paddle::framework::vectorize(ctx.Input<Tensor>("X")->dims());
  std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
  // Fast but not exhustive check
  if ((src_tz[src_tz.size() - 1] % ksize[1] == 0) &&
      (src_tz[src_tz.size() - 2] % ksize[0] == 0))
    return true;

  // Exhustive check
  auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
  auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
  auto OH = static_cast<double>(ksize[0]);
  auto OW = static_cast<double>(ksize[1]);

  auto SH = static_cast<int>(floor((IH * 2.0) / OH) - floor(IH / OH));
  auto SW = static_cast<int>(floor((IW * 2.0) / OW) - floor(IW / OW));
  auto KH = static_cast<int>(ceil((IH * 2.0) / OH) - floor(IH / OH));
  auto KW = static_cast<int>(ceil((IW * 2.0) / OW) - floor(IW / OW));

  auto PH = (SH * (static_cast<int>(OH) - 1) + KH - static_cast<int>(IH));
  auto PW = (SW * (static_cast<int>(OW) - 1) + KW - static_cast<int>(IW));
  // If there is additional padding needed then
  // this is situation that oneDNN cannot comply with
  // paddlepaddle reference implementation
  return (PH == 0) && (PW == 0);
}

179
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
180
    const framework::ExecutionContext& ctx) const {
181
  framework::LibraryType library_{framework::LibraryType::kPlain};
182
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
183
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
184
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
185

186
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
187 188
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
189 190
  }
#endif
191 192
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
193
      this->CanMKLDNNBeUsed(ctx, data_type) && CanMKLDNNSupportPool(ctx)) {
194
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
195
    layout_ = framework::DataLayout::kMKLDNN;
196
  }
197
#endif
198

199
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout_, library_);
200 201
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
framework::OpKernelType PoolOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

C
chengduo 已提交
224
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
225 226 227
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    platform::errors::NotFound(
                        "Input(X) of Pool Gradoperator is not found."));
228
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
229 230
                    platform::errors::NotFound(
                        "Input(X@GRAD) of Pool Gradoperator is not found."));
231 232 233
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

234
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
235
    const framework::ExecutionContext& ctx) const {
236
  framework::LibraryType library_{framework::LibraryType::kPlain};
237
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
238
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
239
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
240

241
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
242 243
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
244 245
  }
#endif
246 247
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
248 249
      this->CanMKLDNNBeUsed(ctx, input_data_type) &&
      CanMKLDNNSupportPool(ctx)) {
250
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
251
    layout_ = framework::DataLayout::kMKLDNN;
252
  }
253
#endif
254

K
Kexin Zhao 已提交
255 256
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
257 258
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
framework::OpKernelType PoolOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   framework::StringToDataLayout(data_format));
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
277
void Pool2dOpMaker::Make() {
278 279
  AddInput(
      "X",
C
chengduoZH 已提交
280
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
281 282 283
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
284
  AddOutput("Out",
K
kexinzhao 已提交
285 286 287 288
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
289
            "and W is the width of the feature.");
290

C
chengduoZH 已提交
291
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
292 293
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
294
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
295
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
296 297
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
298
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
299 300
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
301
  // TypedAttrChecker don't support vector type.)
302 303
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
304 305 306
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False.")
307
      .SetDefault(false);
K
kexinzhao 已提交
308 309 310
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
311 312
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
313 314 315
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
316 317
      "(vector<int>, default {0,0}), paddings(height_top, height_bottom, "
      "width_left, wifth_right) of pooling operator."
318
      "If global_pooling = true, paddings and kernel size will be ignored.")
319
      .SetDefault({0, 0});
320 321
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
322
      "(bool) When true, will exclude the zero-padding in the "
323
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
324 325
      "is only used when pooling_type is avg. The default is True. "
      "Default True.")
326
      .SetDefault(true);
327 328
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
329
      "(bool) When true, will perform adaptive pooling instead, "
330 331
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
332 333
      "pooling in each grid area to get output pooling value. "
      "Default False.")
334 335
      .SetDefault(false);

336 337
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
338
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
339
      .SetDefault(false);
340 341
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
342
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
343
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
344
      "the floor function will be used. Default False")
345
      .SetDefault(false);
346
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
347
                "(bool) Only used in mkldnn kernel. Default False")
348
      .SetDefault(false);
349 350 351 352
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
353
      .SetDefault(false);
354 355 356 357 358
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
359 360 361 362 363 364
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
365
      .SetDefault("NCHW");
366 367 368 369 370
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

371 372 373 374 375 376
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
377
  // TODO(dzhwinter): need to registered layout transform function
378 379

  AddComment(R"DOC(
K
Kaipeng Deng 已提交
380 381 382
This operation calculates the pooling output based on
the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
K
kexinzhao 已提交
383
number of channels, H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
384
Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
C
fix doc  
chengduoZH 已提交
385
These two elements represent height and width, respectively.
C
chengduoZH 已提交
386 387
The input(X) size and output(Out) size may be different.

388
Example:
F
fengjiayi 已提交
389

C
chengduoZH 已提交
390
  Input:
F
fengjiayi 已提交
391

K
kexinzhao 已提交
392
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
393

C
chengduoZH 已提交
394
  Output:
F
fengjiayi 已提交
395

K
kexinzhao 已提交
396
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
397

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
  For pool_padding = "SAME":
       $$
       H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]}
       $$

  For pool_padding = "VALID":
       $$
       H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]}
       $$

414 415
  For ceil_mode = false:
       $$
416
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1
F
fengjiayi 已提交
417 418
       $$
       $$
419
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1
K
kexinzhao 已提交
420
       $$
421

422 423
  For ceil_mode = true:
       $$
424
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
425 426
       $$
       $$
427
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1
428
       $$
K
kexinzhao 已提交
429

430
  For exclusive = false:
431
       $$
432
       hstart = i * strides[0] - pad_height_top
433 434 435 436 437
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
438
       wstart = j * strides[1] - pad_width_left
439 440 441 442 443 444 445
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
446

447
  For exclusive = true:
448
       $$
449
       hstart = max(0, i * strides[0] - pad_height_top)
450 451 452 453 454
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
455
       wstart = max(0, j * strides[1] - pad_width_left)
456 457 458 459 460 461 462
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
463

464
)DOC");
465 466
}

C
chengduo 已提交
467 468
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
469
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
470
      const override {
471 472
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
473 474 475
  }
};

Y
Yu Yang 已提交
476
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
477 478
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
479 480
           "The format of input tensor is NCDHW or NDHWC, where N is batch "
           "size, C is "
K
kexinzhao 已提交
481 482 483
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
484
  AddOutput("Out",
C
chengduoZH 已提交
485
            "(Tensor) The output tensor of pooling operator."
486
            "The format of output tensor is also NCDHW or NDHWC, "
K
kexinzhao 已提交
487 488
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
489
            "width of the feature, respectively.");
490

C
chengduoZH 已提交
491
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
492
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
493
                       "and \"avg\" for average-pooling.")
494
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
495 496 497 498
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
499
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
500 501
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
502
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
503 504
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
505 506 507
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False")
508
      .SetDefault(false);
K
kexinzhao 已提交
509 510 511 512
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
513 514
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
515 516
  AddAttr<std::vector<int>>(
      "paddings",
517 518 519 520
      "(vector<int>, default {0,0,0}), paddings(pad_depth_front, "
      "pad_depth_back, "
      "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right"
      ") of pooling operator. "
C
chengduoZH 已提交
521
      "If global_pooling = true, ksize and paddings will be ignored.")
522 523
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
524 525
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
526
      "(bool) When true, will exclude the zero-padding in the "
527
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
528 529
      "is only used when pooling_type is avg. The default is True. "
      "Default True")
530
      .SetDefault(true);
531 532
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
533
      "(bool) When true, will perform adaptive pooling instead, "
534 535
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
536 537
      "pooling in each grid area to get output pooling value. "
      "Default False")
538
      .SetDefault(false);
539

540 541
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
542
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
543
      .SetDefault(false);
544 545
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
546
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
547
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
548
      "the floor function will be used. Default False")
549
      .SetDefault(false);
550
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
551
                "(bool) Only used in mkldnn kernel. Default False")
552
      .SetDefault(false);
553 554
  AddAttr<std::string>(
      "data_format",
555 556 557
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
558
      "the input will be transformed automatically. ")
559 560 561 562 563 564 565
      .SetDefault("NCDHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
566 567
  // TODO(dzhwinter): need to registered layout transform function

568
  AddComment(R"DOC(
K
Kaipeng Deng 已提交
569 570
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
571
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
K
kexinzhao 已提交
572
size, C is the number of channels, and D, H and W are the depth, height and
K
Kaipeng Deng 已提交
573 574
width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
hold three integer elements. These three elements represent depth, height and
K
kexinzhao 已提交
575
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
576 577 578

Example:
  Input:
K
kexinzhao 已提交
579
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
580
  Output:
K
kexinzhao 已提交
581
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

  For pool_padding = "SAME":
       $$
       D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]}
       $$

  For pool_padding = "VALID":
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]}
       $$

605
  For ceil_mode = false:
606
       $$
607
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1
608 609
       $$
       $$
610
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1
611 612
       $$
       $$
613
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1
614
       $$
615
  For ceil_mode = true:
616
       $$
617
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1
618 619
       $$
       $$
620
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1
621 622
       $$
       $$
623
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1
624
       $$
D
dengkaipeng 已提交
625

626
  For exclusive = false:
627
       $$
628
       dstart = i * strides[0] - pad_depth_front
629 630 631 632 633
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
634
       hstart = j * strides[1] - pad_height_top
635 636 637 638 639
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
640
       wstart = k * strides[2] -  pad_width_left
641 642 643 644 645 646 647
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
648

649
  For exclusive = true:
650
       $$
651
       dstart = max(0, i * strides[0] - pad_depth_front)
652 653 654 655 656
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
657 658 659
       hstart = max(0, j * strides[1] - pad_height_top)
       $$
       $$
660 661 662
       hend = min(H, hstart + ksize[1])
       $$
       $$
663
       wstart = max(0, k * strides[2] - pad_width_left)
664 665 666 667 668 669 670
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
671

672
)DOC");
673
}
674 675 676 677 678
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
679 680 681 682
REGISTER_OPERATOR(
    pool2d, ops::PoolOp, ops::Pool2dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
683
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
684

Q
QI JUN 已提交
685 686 687 688 689
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
690
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
691

H
hong 已提交
692 693 694 695
REGISTER_OPERATOR(
    pool3d, ops::PoolOp, ops::Pool3dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
696
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
697

Q
QI JUN 已提交
698 699 700 701 702 703
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);