pool_op.cc 13.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19

namespace paddle {
namespace operators {

20 21 22 23 24 25 26 27 28
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
                   bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
C
chengduoZH 已提交
29 30 31 32 33
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
34 35 36
  return output_size;
}

37 38 39 40 41 42 43
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
44
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
45 46 47
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
48
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
49 50

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
51
                 "Pooling intput should be 4-D or 5-D tensor.");
52

C
chengduoZH 已提交
53
  if (ctx->Attrs().Get<bool>("global_pooling")) {
54
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
55 56
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
57
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
58
    }
59
  }
60 61 62 63 64 65 66 67 68 69

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
70 71
    output_shape.push_back(PoolOutputSize(in_x_dims[i + 2], ksize[i],
                                          paddings[i], strides[i], ceil_mode));
72
  }
73
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
74
  ctx->ShareLoD("X", "Out");
75 76
}

77 78 79
framework::OpKernelType PoolOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
80
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
81 82 83 84 85 86
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
87 88 89 90 91 92 93 94 95 96 97 98 99 100
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

101 102 103 104 105 106 107
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

108 109 110
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
111
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
112 113 114 115 116 117
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
118 119 120 121 122 123 124 125 126 127 128 129 130 131
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

132
Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
133 134 135
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
136
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
137 138 139
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
140
  AddOutput("Out",
K
kexinzhao 已提交
141 142 143 144 145
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
            "and W is the width of the feature.");
146

C
chengduoZH 已提交
147
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
148 149
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
150
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
151
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
152 153
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
154
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
155 156
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
157
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
158
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
159
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
160
                "If global_pooling = true, ksize and paddings will be ignored.")
161
      .SetDefault(false);
K
kexinzhao 已提交
162 163 164
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
165 166
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
167 168 169
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
170
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
171
      "operator."
C
chengduoZH 已提交
172
      "If global_pooling = true, paddings and ksize will be ignored.")
173 174 175 176 177
      .SetDefault({0, 0});
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
178 179 180 181 182 183 184
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
      "output height and width."
      "True is the default. If it is set to False, the floor function will"
      "be used")
      .SetDefault(false);
185 186 187 188 189 190 191 192
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
193 194

  AddComment(R"DOC(
K
kexinzhao 已提交
195 196
Pool2d Operator.

C
chengduoZH 已提交
197
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
198
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
199 200
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
201 202
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
203 204
The input(X) size and output(Out) size may be different.

205
Example:
C
chengduoZH 已提交
206
  Input:
K
kexinzhao 已提交
207
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
208
  Output:
K
kexinzhao 已提交
209
       Out shape: $(N, C, H_{out}, W_{out})$
210 211
  For ceil_mode = false:
       $$
C
chengduoZH 已提交
212 213
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
214
       $$
215 216 217 218 219
  For ceil_mode = true:
       $$
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
       $$
K
kexinzhao 已提交
220

221
)DOC");
222 223
}

224
Pool3dOpMaker::Pool3dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
225
    : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
226 227 228 229 230 231
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
232
  AddOutput("Out",
C
chengduoZH 已提交
233
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
234 235 236 237
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
            "width of the feature, respectively.");
238

C
chengduoZH 已提交
239
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
240
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
241
                       "and \"avg\" for average-pooling.")
242
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
243 244 245 246
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
247
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
248 249
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
250
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
251 252 253 254
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
255
      .SetDefault(false);
K
kexinzhao 已提交
256 257 258 259
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
260 261
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
262 263
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
264
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
265
      "width) of pooling operator. "
C
chengduoZH 已提交
266
      "If global_pooling = true, ksize and paddings will be ignored.")
267 268 269
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

270 271 272 273
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
274 275 276 277 278 279 280
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
      "output height and width."
      "True is the default. If it is set to False, the floor function will"
      "be used")
      .SetDefault(false);
281 282 283 284 285 286 287 288 289
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

290
  AddComment(R"DOC(
K
kexinzhao 已提交
291 292
Pool3d Operator.

C
chengduoZH 已提交
293
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
294
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
295 296
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
297 298
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
K
kexinzhao 已提交
299
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
300 301 302

Example:
  Input:
K
kexinzhao 已提交
303
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
304
  Output:
K
kexinzhao 已提交
305
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
306
  For ceil_mode = false:
C
chengduoZH 已提交
307 308 309 310 311
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
312 313 314 315 316 317
  For ceil_mode = true:
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
  $$
K
kexinzhao 已提交
318

319
)DOC");
320
}
321 322 323 324 325 326 327 328
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
329 330 331 332 333 334
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>)
335 336 337 338

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
339 340 341 342 343 344
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);