pool_op.cc 14.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
                   bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
C
chengduoZH 已提交
35 36 37 38 39
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
40 41 42
  return output_size;
}

43 44 45 46 47 48 49
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
50
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
51 52 53
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
54
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
55 56

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
57
                 "Pooling intput should be 4-D or 5-D tensor.");
58

C
chengduoZH 已提交
59
  if (ctx->Attrs().Get<bool>("global_pooling")) {
60
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
61 62
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
63
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
64
    }
65
  }
66 67 68 69 70 71 72 73 74 75

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
76 77
    output_shape.push_back(PoolOutputSize(in_x_dims[i + 2], ksize[i],
                                          paddings[i], strides[i], ceil_mode));
78
  }
79
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
80
  ctx->ShareLoD("X", "Out");
81 82
}

83 84
framework::OpKernelType PoolOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
85
  framework::LibraryType library_{framework::LibraryType::kPlain};
C
chengduoZH 已提交
86
#ifdef PADDLE_WITH_CUDA
87 88
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
89 90
  }
#endif
91 92 93 94
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
95
  }
96
#endif
97 98 99 100 101 102 103 104

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

105 106 107 108 109 110 111
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

112 113
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
114
  framework::LibraryType library_{framework::LibraryType::kPlain};
C
chengduoZH 已提交
115
#ifdef PADDLE_WITH_CUDA
116 117
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
118 119
  }
#endif
120 121 122 123
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
124
  }
125
#endif
126

K
Kexin Zhao 已提交
127 128 129 130 131
  auto input_data_type = framework::ToDataType(ctx.Input<Tensor>("X")->type());
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
132 133
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
K
Kexin Zhao 已提交
134 135
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
136 137
}

Y
Yu Yang 已提交
138
void Pool2dOpMaker::Make() {
139 140
  AddInput(
      "X",
C
chengduoZH 已提交
141
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
142 143 144
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
145
  AddOutput("Out",
K
kexinzhao 已提交
146 147 148 149 150
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
            "and W is the width of the feature.");
151

C
chengduoZH 已提交
152
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
153 154
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
155
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
156
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
157 158
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
159
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
160 161
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
162
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
163
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
164
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
165
                "If global_pooling = true, ksize and paddings will be ignored.")
166
      .SetDefault(false);
K
kexinzhao 已提交
167 168 169
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
170 171
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
172 173 174
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
175
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
176
      "operator."
C
chengduoZH 已提交
177
      "If global_pooling = true, paddings and ksize will be ignored.")
178 179 180 181 182
      .SetDefault({0, 0});
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
183 184 185
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
186 187
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
188
      .SetDefault(false);
189 190 191
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
192 193 194 195 196 197 198 199
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
200 201

  AddComment(R"DOC(
K
kexinzhao 已提交
202 203
Pool2d Operator.

C
chengduoZH 已提交
204
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
205
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
206 207
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
208 209
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
210 211
The input(X) size and output(Out) size may be different.

212
Example:
C
chengduoZH 已提交
213
  Input:
K
kexinzhao 已提交
214
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
215
  Output:
K
kexinzhao 已提交
216
       Out shape: $(N, C, H_{out}, W_{out})$
217 218
  For ceil_mode = false:
       $$
C
chengduoZH 已提交
219 220
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
221
       $$
222 223 224 225 226
  For ceil_mode = true:
       $$
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
       $$
K
kexinzhao 已提交
227

228
)DOC");
229 230
}

Y
Yu Yang 已提交
231
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
232 233 234 235 236 237
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
238
  AddOutput("Out",
C
chengduoZH 已提交
239
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
240 241 242 243
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
            "width of the feature, respectively.");
244

C
chengduoZH 已提交
245
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
246
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
247
                       "and \"avg\" for average-pooling.")
248
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
249 250 251 252
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
253
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
254 255
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
256
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
257 258 259 260
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
261
      .SetDefault(false);
K
kexinzhao 已提交
262 263 264 265
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
266 267
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
268 269
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
270
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
271
      "width) of pooling operator. "
C
chengduoZH 已提交
272
      "If global_pooling = true, ksize and paddings will be ignored.")
273 274 275
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

276 277 278 279
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
280 281 282
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
283 284
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
285
      .SetDefault(false);
286 287 288
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
289 290 291 292 293 294 295 296 297
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

298
  AddComment(R"DOC(
K
kexinzhao 已提交
299 300
Pool3d Operator.

C
chengduoZH 已提交
301
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
302
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
303 304
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
305 306
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
K
kexinzhao 已提交
307
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
308 309 310

Example:
  Input:
K
kexinzhao 已提交
311
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
312
  Output:
K
kexinzhao 已提交
313
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
314
  For ceil_mode = false:
C
chengduoZH 已提交
315 316 317 318 319
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
320 321 322 323 324 325
  For ceil_mode = true:
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
  $$
K
kexinzhao 已提交
326

327
)DOC");
328
}
329 330 331 332 333
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
334
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
335 336
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
337

Q
QI JUN 已提交
338 339 340 341 342
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
343
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
344

Y
Yang Yang 已提交
345
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
346 347
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
348

Q
QI JUN 已提交
349 350 351 352 353 354
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);