test_layers.py 89.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib
import inspect
Q
Qiao Longfei 已提交
17 18
import unittest

19
import numpy as np
20
from decorator_helper import prog_scope
21
from test_imperative_base import new_program_scope
22 23 24

import paddle
import paddle.fluid as fluid
25
import paddle.fluid.layers as layers
26
import paddle.fluid.nets as nets
27
import paddle.nn.functional as F
28
from paddle.fluid import core
29
from paddle.fluid.dygraph import base, to_variable
30
from paddle.fluid.framework import Program, default_main_program, program_guard
31
from paddle.tensor import random
32 33 34 35 36 37 38 39 40 41 42


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

43 44 45 46 47 48 49 50
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
51 52 53 54

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
55
            paddle.seed(self.seed)
L
Leo Chen 已提交
56
            paddle.framework.random._manual_program_seed(self.seed)
57 58
            yield

59 60 61
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
62
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
63
        exe.run(fluid.default_startup_program())
64 65 66 67 68 69
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
70 71

    @contextlib.contextmanager
72
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
73
        with fluid.dygraph.guard(
74 75
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
76
            paddle.seed(self.seed)
L
Leo Chen 已提交
77
            paddle.framework.random._manual_program_seed(self.seed)
78 79 80 81
            yield


class TestLayer(LayerTest):
82 83
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
84
            def __init__(self, input_size, linear1_size=4):
85
                super().__init__()
86
                self.linear1 = paddle.nn.Linear(
87 88
                    input_size, linear1_size, bias_attr=False
                )
89 90 91
                self.linear2 = paddle.nn.Linear(
                    linear1_size, 1, bias_attr=False
                )
92 93 94 95 96

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
97 98 99 100 101
                return ret

        with self.dynamic_graph():
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
102 103
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
104
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
105
            ret = custom(x, do_linear2=True)
106
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
107

C
ccrrong 已提交
108 109 110
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
G
GGBond8488 已提交
111
            t = paddle.static.data(
C
ccrrong 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
            )
            dropout = paddle.nn.Dropout(p=0.35)
            ret = dropout(t)
            ret2 = paddle.nn.functional.dropout(t, p=0.35)
            static_ret, static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
        with self.dynamic_graph():
            t = base.to_variable(inp)
            dropout = paddle.nn.Dropout(p=0.35)
            dy_ret = dropout(t)
            dy_ret2 = paddle.nn.functional.dropout(t, p=0.35)
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)

S
songyouwei 已提交
134 135 136
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
G
GGBond8488 已提交
137 138
            t = paddle.static.data(
                name='data', shape=[3, 32, 32], dtype='float32'
139
            )
140
            linear = paddle.nn.Linear(
141 142
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
143
            ret = linear(t)
144 145 146
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
147 148
        with self.dynamic_graph():
            t = base.to_variable(inp)
149
            linear = paddle.nn.Linear(
150 151
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
152 153 154
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

155
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
156

157 158 159 160 161
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
162
                linear = paddle.nn.Linear(
163 164
                    32,
                    4,
165 166
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
167 168 169 170 171 172 173 174
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
175
                linear = paddle.nn.Linear(
176 177
                    32,
                    4,
178 179
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
180 181 182 183
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

W
wangzhen38 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    def test_cvm(self):
        inp = np.ones([10, 10], dtype='float32')
        arr = [[0.6931472, -1.904654e-09, 1, 1, 1, 1, 1, 1, 1, 1]] * 10
        cvm1 = np.array(arr, dtype='float32')
        cvm2 = np.ones([10, 8], dtype='float32')
        show_clk = np.ones([10, 2], dtype='float32')
        with self.static_graph():
            x = paddle.static.data(
                name='data',
                shape=[10, 10],
                dtype='float32',
            )
            u = paddle.static.data(
                name='show_click',
                shape=[10, 2],
                dtype='float32',
            )
            no_cvm = paddle.static.nn.continuous_value_model(x, u, True)
            static_ret1 = self.get_static_graph_result(
                feed={'data': inp, 'show_click': show_clk},
                fetch_list=[no_cvm],
            )[0]
        with self.static_graph():
            x = paddle.static.data(
                name='data',
                shape=[10, 10],
                dtype='float32',
            )
            u = paddle.static.data(
                name='show_click',
                shape=[10, 2],
                dtype='float32',
            )
            cvm = paddle.static.nn.continuous_value_model(x, u, False)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp, 'show_click': show_clk}, fetch_list=[cvm]
            )[0]
        np.testing.assert_allclose(static_ret1, cvm1, rtol=1e-5, atol=1e-06)
        np.testing.assert_allclose(static_ret2, cvm2, rtol=1e-5, atol=1e-06)

224 225 226
    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
G
GGBond8488 已提交
227 228
            t = paddle.static.data(
                name='data', shape=[3, 4, 4, 5], dtype='float32'
229
            )
230
            flatten = paddle.nn.Flatten()
231
            ret = flatten(t)
232 233 234
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
235 236
        with self.dynamic_graph():
            t = base.to_variable(inp)
237
            flatten = paddle.nn.Flatten()
238 239 240
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

241
        np.testing.assert_array_equal(static_ret, dy_ret_value)
242 243 244 245 246 247

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
248
                linear = paddle.nn.Linear(
249 250
                    32,
                    4,
251 252
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
253 254 255 256 257 258 259 260
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
261
                linear = paddle.nn.Linear(
262 263
                    32,
                    4,
264 265
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
266 267 268 269
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

C
ceci3 已提交
270 271 272
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
G
GGBond8488 已提交
273 274 275
                t = paddle.static.data(
                    name='t', shape=[-1, 3, 5, 5], dtype='float32'
                )
C
ceci3 已提交
276
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
277 278
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
279
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
280 281
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
282 283 284 285 286 287

            with self.dynamic_graph():
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
288
            np.testing.assert_array_equal(static_ret, dy_ret_value)
C
ceci3 已提交
289

290 291
    def test_relu(self):
        with self.static_graph():
G
GGBond8488 已提交
292
            t = paddle.static.data(name='t', shape=[-1, 3, 3], dtype='float32')
293
            ret = F.relu(t)
294
            static_ret = self.get_static_graph_result(
295 296
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
297 298 299

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
300
            dy_ret = F.relu(base.to_variable(t))
301
            dy_ret_value = dy_ret.numpy()
302

303
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
C
ceci3 已提交
304

305 306
    def test_matmul(self):
        with self.static_graph():
G
GGBond8488 已提交
307 308 309 310
            t = paddle.static.data(name='t', shape=[-1, 3, 3], dtype='float32')
            t2 = paddle.static.data(
                name='t2', shape=[-1, 3, 3], dtype='float32'
            )
K
kangguangli 已提交
311
            ret = paddle.matmul(t, t2)
312 313 314 315 316 317 318
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
319 320 321 322

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
K
kangguangli 已提交
323
            dy_ret = paddle.matmul(base.to_variable(t), base.to_variable(t2))
324
            dy_ret_value = dy_ret.numpy()
325

326
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
327

X
Xin Pan 已提交
328 329 330 331 332 333 334 335 336
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
G
GGBond8488 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
            t = paddle.static.data(name='t', shape=[-1, 3, 3], dtype='float32')
            t2 = paddle.static.data(
                name='t2', shape=[-1, 3, 3], dtype='float32'
            )
            t3 = paddle.static.data(
                name='t3', shape=[-1, 3, 3], dtype='float32'
            )
            t4 = paddle.static.data(
                name='t4', shape=[-1, 3, 3], dtype='float32'
            )
            t5 = paddle.static.data(
                name='t5', shape=[-1, 3, 3], dtype='float32'
            )
            t6 = paddle.static.data(
                name='t6', shape=[-1, 3, 3], dtype='float32'
            )
X
Xin Pan 已提交
353

354
            ret = paddle.add(t, t2)
355
            ret = paddle.pow(ret, t3)
356 357 358
            ret = paddle.divide(ret, t4)
            ret = paddle.subtract(ret, t5)
            ret = paddle.multiply(ret, t6)
X
Xin Pan 已提交
359

360 361 362 363
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
364 365

        with self.dynamic_graph():
366
            ret = paddle.add(to_variable(n), to_variable(n2))
367
            ret = paddle.pow(ret, to_variable(n3))
368 369 370
            ret = paddle.divide(ret, to_variable(n4))
            ret = paddle.subtract(ret, to_variable(n5))
            dy_ret = paddle.multiply(ret, to_variable(n6))
371
            dy_ret_value = dy_ret.numpy()
372

373
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
X
Xin Pan 已提交
374 375 376 377 378 379

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
380
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
381
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
382 383
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
384

385 386
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
X
Xin Pan 已提交
387

388 389 390
    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
G
GGBond8488 已提交
391 392 393
            img = paddle.static.data(
                name='pixel', shape=[-1, 3, 2, 2], dtype='float32'
            )
394
            out = paddle.static.nn.conv2d_transpose(
395 396
                input=img,
                num_filters=10,
397
                filter_size=27,
398
                act='sigmoid',
399 400 401 402 403
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
404
        with self.static_graph():
G
GGBond8488 已提交
405 406 407
            img = paddle.static.data(
                name='pixel', shape=[-1, 3, 2, 2], dtype='float32'
            )
408 409 410 411
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
412 413
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
414
            out = conv2d_transpose(img)
415
            out = paddle.nn.functional.sigmoid(out)
416 417 418
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
419
        with self.dynamic_graph():
420 421 422 423
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
424 425
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
426
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
427
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
428
            dy_rlt_value = dy_rlt.numpy()
429 430
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
431

432 433 434
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
435 436 437 438 439
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
440 441 442 443 444 445
            conv2d1 = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
            conv2d2 = paddle.nn.Conv2DTranspose(
                3,
                3,
                [2, 2],
                weight_attr=weight_attr,
446
            )
447 448 449 450 451 452 453
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
454 455
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
456
            conv2d2.weight.set_value(conv2d1_weight_np)
457 458 459
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
460 461 462
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
463
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
464 465 466

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
467 468 469 470 471 472
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
473

474 475 476 477 478
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
479
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
480 481 482 483 484 485 486
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
G
GGBond8488 已提交
487 488
                images = paddle.static.data(
                    name='pixel', shape=[-1, 3, 5, 5], dtype='int32'
489
                )
490
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
491 492 493 494
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

495 496 497 498 499
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
G
GGBond8488 已提交
500 501
            data_x = paddle.static.data(name='x', shape=[1, 3], dtype="float32")
            data_y = paddle.static.data(name='y', shape=[1, 3], dtype="float32")
502
            out = paddle.static.nn.common.bilinear_tensor_product(
503 504 505 506
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
507 508
                act='sigmoid',
            )
509

510 511 512
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
513

514
        with self.static_graph():
G
GGBond8488 已提交
515 516
            data_x = paddle.static.data(name='x', shape=[1, 3], dtype="float32")
            data_y = paddle.static.data(name='y', shape=[1, 3], dtype="float32")
517
            btp = paddle.nn.Bilinear(
518 519
                3,
                3,
520 521
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
522
            )
523
            out = btp(data_x, data_y)
524
            out = paddle.nn.functional.sigmoid(out)
525 526 527
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
528
        with self.dynamic_graph():
529
            btp = paddle.nn.Bilinear(
530 531
                3,
                3,
532 533
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
534
            )
535
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
536
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
537
            dy_rlt_value = dy_rlt.numpy()
538

539
        with self.dynamic_graph():
540
            btp2 = paddle.nn.Bilinear(3, 3, 6)
541 542 543
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
544
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
545
            dy_rlt2_value = dy_rlt2.numpy()
546

547
        with self.static_graph():
G
GGBond8488 已提交
548 549
            data_x2 = paddle.static.data(
                name='x', shape=[1, 3], dtype="float32"
550
            )
G
GGBond8488 已提交
551 552
            data_y2 = paddle.static.data(
                name='y', shape=[1, 3], dtype="float32"
553
            )
554
            out2 = paddle.static.nn.common.bilinear_tensor_product(
555 556 557 558 559 560
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
561

562 563 564
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
565

566 567
        with self.dynamic_graph():
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
568 569 570 571 572
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
573 574
            btp1 = paddle.nn.Bilinear(3, 3, 6)
            btp2 = paddle.nn.Bilinear(3, 3, 6, weight_attr=weight_attr)
575 576 577
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
578
            dy_rlt1 = paddle.nn.functional.sigmoid(dy_rlt1)
579 580 581
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
582
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
583 584 585
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
586 587 588 589 590 591
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
592
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
593 594 595

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
596 597 598
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
599
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
600

601 602 603 604
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
G
GGBond8488 已提交
605 606 607 608
            data_t = paddle.static.data(
                name='word', shape=[-1, 1], dtype='int64'
            )
            data_t.desc.set_need_check_feed(False)
609 610 611 612 613 614 615 616 617
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
618
        with self.static_graph():
G
GGBond8488 已提交
619 620 621 622
            data_t = paddle.static.data(
                name='word', shape=[-1, 1], dtype='int64'
            )
            data_t.desc.set_need_check_feed(False)
623 624
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr='emb.w', sparse=False
625
            )
626
            emb_rlt = emb2(data_t)
627 628 629
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
630
        with self.dynamic_graph():
631

632 633
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr='emb.w', sparse=False
634
            )
635 636
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
637 638

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
639
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
640

641 642
        with self.dynamic_graph():
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
643 644 645 646 647
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
648 649 650
            emb1 = paddle.nn.Embedding(dict_size, 32, sparse=False)
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr=weight_attr, sparse=False
651
            )
652 653 654
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
655
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
656 657 658
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
659
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
660 661

            emb2.weight = emb1.weight
662 663 664
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
665

S
songyouwei 已提交
666 667 668
    def test_one_hot(self):
        with self.dynamic_graph():
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
669 670 671
            one_hot_label1 = paddle.nn.functional.one_hot(label, 4)
            one_hot_label2 = paddle.nn.functional.one_hot(
                label, fluid.dygraph.to_variable(np.array([4]))
672 673 674 675
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
676 677 678 679

    def test_split(self):
        with self.dynamic_graph():
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
680 681
            x0, x1 = paddle.split(input, num_or_sections=2, axis=1)
            x00, x11 = paddle.split(
682 683
                input,
                num_or_sections=2,
684
                axis=fluid.dygraph.to_variable(np.array([1])),
685
            )
686 687
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
688 689 690 691

    def test_topk(self):
        with self.dynamic_graph():
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
692 693
            top5_values1, top5_indices1 = paddle.topk(input, k=5)
            top5_values2, top5_indices2 = paddle.topk(
694 695 696 697 698 699 700 701
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
702

L
lujun 已提交
703 704
    def test_conv3d(self):
        with self.static_graph():
G
GGBond8488 已提交
705 706
            images = paddle.static.data(
                name='pixel', shape=[-1, 3, 6, 6, 6], dtype='float32'
707
            )
708 709 710
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
711
            static_ret = self.get_static_graph_result(
712
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
713 714
                fetch_list=[ret],
            )[0]
L
lujun 已提交
715 716

        with self.static_graph():
G
GGBond8488 已提交
717 718
            images = paddle.static.data(
                name='pixel', shape=[-1, 3, 6, 6, 6], dtype='float32'
719
            )
720 721 722
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
723 724
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
725
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
726 727
                fetch_list=[ret],
            )[0]
L
lujun 已提交
728 729 730

        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
731 732 733
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
734
            dy_ret = conv3d(base.to_variable(images))
735
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
736

737 738
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
739

740 741 742
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
743 744 745 746 747
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
748 749 750 751 752 753 754 755
            conv3d1 = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
            conv3d2 = paddle.nn.Conv3D(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
756
            )
757 758 759 760 761 762 763
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
764 765
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
766
            conv3d2.weight.set_value(conv3d1_weight_np)
767 768 769
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
770 771 772
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
773
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
774 775 776

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
777 778 779 780 781 782
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
783

784
    def test_group_norm(self):
L
lujun 已提交
785 786 787 788 789 790 791 792 793 794
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
G
GGBond8488 已提交
795 796
            X = paddle.static.data(
                name='X', shape=shape, dtype='float32', lod_level=1
797
            )
798
            ret = paddle.static.nn.group_norm(
799 800
                input=X,
                groups=2,
801
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
802 803 804 805 806 807 808 809 810 811 812
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
813 814

        with self.static_graph():
G
GGBond8488 已提交
815 816
            X = paddle.static.data(
                name='X', shape=shape, dtype='float32', lod_level=1
817
            )
818 819 820 821
            groupNorm = paddle.nn.GroupNorm(
                num_channels=shape[1],
                num_groups=2,
                weight_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
822 823
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
824
            ret = groupNorm(X)
825 826 827 828 829 830 831 832 833
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
834 835

        with self.dynamic_graph():
836 837 838 839
            groupNorm = paddle.nn.GroupNorm(
                num_channels=shape[1],
                num_groups=2,
                weight_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
840 841
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
842
            dy_ret = groupNorm(base.to_variable(input))
843
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
844

845 846
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
847

848 849 850 851 852 853 854 855 856 857 858
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
G
GGBond8488 已提交
859
            X = paddle.static.data(name='X', shape=shape, dtype='float32')
860
            ret = paddle.static.nn.instance_norm(input=X)
861 862 863
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
864 865

        with self.static_graph():
G
GGBond8488 已提交
866
            X = paddle.static.data(name='X', shape=shape, dtype='float32')
867
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
868
            ret = instanceNorm(X)
869 870 871
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
872 873

        with self.dynamic_graph():
874
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
875 876 877 878
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
879
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
880 881 882
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

883 884 885
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
886 887 888 889

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
890
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
891 892 893 894 895 896 897
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
898
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
899 900 901 902
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
903 904 905 906 907 908 909 910 911 912 913
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
G
GGBond8488 已提交
914 915
            Weight = paddle.static.data(
                name='Weight', shape=shape, dtype='float32', lod_level=1
916
            )
917 918 919
            ret = paddle.static.nn.spectral_norm(
                weight=Weight, dim=1, power_iters=2
            )
920 921 922 923 924 925 926 927 928
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
929 930

        with self.static_graph():
G
GGBond8488 已提交
931 932
            Weight = paddle.static.data(
                name='Weight', shape=shape, dtype='float32', lod_level=1
933
            )
934
            spectralNorm = paddle.nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
935
            ret = spectralNorm(Weight)
936 937 938 939 940 941 942 943 944
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
945 946

        with self.dynamic_graph():
947
            spectralNorm = paddle.nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
948
            dy_ret = spectralNorm(base.to_variable(input))
949
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
950

951 952
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
953 954

    def test_conv3d_transpose(self):
955 956 957
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
958 959

        with self.static_graph():
G
GGBond8488 已提交
960 961 962
            img = paddle.static.data(
                name='pixel', shape=[-1, 3, 2, 2, 2], dtype='float32'
            )
963
            out = paddle.static.nn.conv3d_transpose(
964
                input=img, num_filters=12, filter_size=12, use_cudnn=True
965
            )
L
lujun 已提交
966
            static_rlt = self.get_static_graph_result(
967 968
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
969
        with self.static_graph():
G
GGBond8488 已提交
970 971 972
            img = paddle.static.data(
                name='pixel', shape=[-1, 3, 2, 2, 2], dtype='float32'
            )
973 974
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
975
            )
L
lujun 已提交
976 977
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
978 979
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
980
        with self.dynamic_graph():
981 982
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
983
            )
L
lujun 已提交
984
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
985
            dy_rlt_value = dy_rlt.numpy()
986 987
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
988

989 990 991
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
992 993 994 995 996
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
997 998 999 1000
            conv3d1 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
1001 1002
                bias_attr='conv3d1_b',
            )
1003 1004 1005 1006 1007
            conv3d2 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
1008 1009
                bias_attr='conv3d2_b',
            )
1010 1011 1012 1013 1014 1015 1016
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1017 1018
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1019
            conv3d2.weight.set_value(conv3d1_weight_np)
1020 1021 1022
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1023 1024 1025
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1026
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1027 1028 1029

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1030 1031 1032 1033 1034 1035
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1036

1037
    def test_while_loop(self):
1038 1039 1040 1041 1042
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
L
LiYuRio 已提交
1043
                return paddle.less_than(i, ten)
1044 1045 1046 1047

            def body(i):
                return i + 1

1048
            out = paddle.static.nn.while_loop(cond, body, [i])
1049 1050 1051 1052 1053 1054
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

1055
            def cond1(i):
L
LiYuRio 已提交
1056
                return paddle.less_than(i, ten)
1057

1058
            def body1(i):
1059 1060
                return i + 1

1061
            dy_ret = paddle.static.nn.while_loop(cond1, body1, [i])
1062 1063 1064 1065 1066 1067
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

1068
                paddle.static.nn.while_loop(cond1, body2, [j])
1069

1070
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
1071

1072 1073 1074 1075 1076
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
G
GGBond8488 已提交
1077 1078
            a = paddle.static.data(name='a', shape=[-1, 1], dtype='int64')
            b = paddle.static.data(name='b', shape=[-1, 1], dtype='int64')
L
LiYuRio 已提交
1079
            cond = paddle.less_than(x=a, y=b)
1080 1081 1082
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
1083 1084 1085
        with self.dynamic_graph():
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
L
LiYuRio 已提交
1086
            dcond = paddle.less_than(x=da, y=db)
1087

1088 1089
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
1090 1091 1092

        # less equal
        with self.static_graph():
G
GGBond8488 已提交
1093 1094
            a1 = paddle.static.data(name='a1', shape=[-1, 1], dtype='int64')
            b1 = paddle.static.data(name='b1', shape=[-1, 1], dtype='int64')
1095
            cond1 = paddle.less_equal(x=a1, y=b1)
1096 1097 1098
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
1099 1100 1101
        with self.dynamic_graph():
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
1102
            dcond1 = paddle.less_equal(x=da1, y=db1)
1103 1104 1105 1106

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

1107
        # greater than
1108
        with self.static_graph():
G
GGBond8488 已提交
1109 1110
            a2 = paddle.static.data(name='a2', shape=[-1, 1], dtype='int64')
            b2 = paddle.static.data(name='b2', shape=[-1, 1], dtype='int64')
1111
            cond2 = paddle.greater_than(x=a2, y=b2)
1112 1113 1114
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
1115 1116 1117
        with self.dynamic_graph():
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
1118
            dcond2 = paddle.greater_than(x=da2, y=db2)
1119 1120 1121 1122

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

1123
        # greater equal
1124
        with self.static_graph():
G
GGBond8488 已提交
1125 1126
            a3 = paddle.static.data(name='a3', shape=[-1, 1], dtype='int64')
            b3 = paddle.static.data(name='b3', shape=[-1, 1], dtype='int64')
1127
            cond3 = paddle.greater_equal(x=a3, y=b3)
1128 1129 1130
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
1131 1132 1133
        with self.dynamic_graph():
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
1134
            dcond3 = paddle.greater_equal(x=da3, y=db3)
1135 1136 1137 1138 1139 1140

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
G
GGBond8488 已提交
1141 1142
            a4 = paddle.static.data(name='a4', shape=[-1, 1], dtype='int64')
            b4 = paddle.static.data(name='b4', shape=[-1, 1], dtype='int64')
1143
            cond4 = paddle.equal(x=a4, y=b4)
1144 1145 1146
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
1147 1148 1149
        with self.dynamic_graph():
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
1150
            dcond4 = paddle.equal(x=da4, y=db4)
1151 1152 1153 1154 1155 1156

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
G
GGBond8488 已提交
1157 1158
            a5 = paddle.static.data(name='a5', shape=[-1, 1], dtype='int64')
            b5 = paddle.static.data(name='b5', shape=[-1, 1], dtype='int64')
1159
            cond5 = paddle.equal(x=a5, y=b5)
1160 1161 1162
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
1163 1164 1165
        with self.dynamic_graph():
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
1166
            dcond5 = paddle.equal(x=da5, y=db5)
1167 1168 1169 1170

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1171 1172
    def test_cond(self):
        def less_than_branch(a, b):
1173
            return paddle.add(a, b)
1174 1175

        def greater_equal_branch(a, b):
1176
            return paddle.subtract(a, b)
1177 1178

        with self.static_graph():
1179 1180 1181 1182 1183 1184
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
1185
            out = paddle.static.nn.cond(
1186 1187 1188 1189 1190 1191 1192 1193 1194
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1195 1196 1197 1198 1199 1200 1201
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
1202
            out = paddle.static.nn.cond(
1203 1204 1205 1206
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
1207
            out2 = paddle.static.nn.cond(
1208 1209 1210 1211
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
1212 1213
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
1214
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
1215
            with self.assertRaises(TypeError):
1216
                paddle.static.nn.cond(a < b, 'str', 'str')
1217
            with self.assertRaises(TypeError):
1218
                paddle.static.nn.cond(a >= b, 'str', 'str')
1219

1220
        np.testing.assert_array_equal(static_res, dynamic_res)
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1237 1238
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1239
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1240

1241
            out_1 = paddle.static.nn.case(
1242 1243
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1244 1245 1246
            out_2 = paddle.static.nn.case(
                pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
            )
1247

1248 1249 1250 1251 1252
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1253 1254 1255 1256 1257 1258 1259 1260
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1261 1262
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1263
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1264

1265
            out_1 = paddle.static.nn.case(
1266 1267
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1268 1269 1270
            out_2 = paddle.static.nn.case(
                pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
            )
1271 1272 1273
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

1274 1275
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1291
            out_1 = paddle.static.nn.switch_case(
1292 1293 1294 1295
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
1296
            out_2 = paddle.static.nn.switch_case(
1297 1298 1299 1300
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
1301
            out_3 = paddle.static.nn.switch_case(
1302 1303 1304 1305 1306 1307 1308 1309 1310
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1311 1312
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
1313 1314
                fetch_list=[out_1, out_2, out_3]
            )
1315 1316 1317 1318 1319

        with self.dynamic_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1320
            out_1 = paddle.static.nn.switch_case(
1321 1322 1323 1324
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
1325
            out_2 = paddle.static.nn.switch_case(
1326 1327 1328 1329
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
1330
            out_3 = paddle.static.nn.switch_case(
1331 1332 1333
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
1334 1335 1336 1337 1338

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

1339 1340 1341
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
1342

1343 1344
    def test_crop_tensor(self):
        with self.static_graph():
G
GGBond8488 已提交
1345 1346
            x = paddle.static.data(
                name="x1", shape=[-1, 6, 5, 8], dtype="float32"
1347
            )
G
GGBond8488 已提交
1348 1349 1350

            dim1 = paddle.static.data(name="dim1", shape=[1], dtype="float32")
            dim2 = paddle.static.data(name="dim2", shape=[1], dtype="float32")
1351
            crop_shape1 = (1, 2, 4, 4)
G
GGBond8488 已提交
1352 1353
            crop_shape2 = paddle.static.data(
                name="crop_shape", shape=[4], dtype="float32"
1354
            )
1355 1356
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
G
GGBond8488 已提交
1357 1358
            crop_offsets2 = paddle.static.data(
                name="crop_offset", shape=[4], dtype="float32"
1359
            )
1360 1361
            crop_offsets3 = [0, dim1, dim2, 0]

1362 1363 1364
            out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3)
1365 1366 1367 1368 1369

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

1370 1371
    def test_shard_index(self):
        with self.static_graph():
G
GGBond8488 已提交
1372 1373 1374
            x = paddle.static.data(
                name="label", shape=[-1, 4, 1], dtype='int64'
            )
1375
            shard_label = paddle.shard_index(
1376 1377
                input=x, index_num=20, nshards=2, shard_id=0
            )
1378 1379 1380

        self.assertIsNotNone(shard_label)

1381 1382 1383 1384 1385 1386
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
C
Charles-hit 已提交
1387 1388
            data_new = paddle.reshape(data, [3, 32 * 32])
            fc_out = paddle.nn.Linear(32 * 32, 10)(data_new)
1389
            predict = paddle.nn.functional.softmax(fc_out)
1390
            result = paddle.static.accuracy(input=predict, label=label, k=5)
1391 1392 1393 1394
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
1395 1396
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
1397 1398 1399
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
1400

L
Leo Chen 已提交
1401
        with self.dynamic_graph(force_to_use_cpu=True):
1402 1403
            data = base.to_variable(x)
            label = base.to_variable(y)
C
Charles-hit 已提交
1404 1405
            data_new = paddle.reshape(data, [3, 32 * 32])
            fc_out = paddle.nn.Linear(32 * 32, 10)(data_new)
1406
            predict = paddle.nn.functional.softmax(fc_out)
1407 1408 1409
            dynamic_out = paddle.static.accuracy(
                input=predict, label=label, k=5
            )
1410

1411
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
1412

Y
Yu Yang 已提交
1413

1414
class TestBook(LayerTest):
H
hong 已提交
1415 1416
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
1417 1418 1419 1420 1421 1422 1423
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_kldiv_loss",
                "make_uniform_random_batch_size_like",
            }
        )
1424
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
1425

1426
    def test_all_layers(self):
1427 1428 1429 1430 1431
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
1432 1433 1434
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
1447 1448
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
1449

1450 1451
                else:
                    continue
H
hong 已提交
1452 1453
            if method.__name__ in self.only_static_set:
                continue
1454 1455 1456 1457 1458

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
1459
                dy_result_value = dy_result.numpy()
1460

1461
            if method.__name__ in self.all_close_compare:
1462 1463 1464 1465 1466 1467
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
1468 1469 1470
                        method.__name__
                    ),
                )
1471 1472
                continue

H
hong 已提交
1473
            if method.__name__ not in self.not_compare_static_dygraph_set:
1474 1475 1476 1477
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
1478 1479 1480
                        method.__name__
                    ),
                )
1481 1482 1483 1484

    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
1485
            shape = [self._batch_size] + shape
1486 1487 1488 1489 1490
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
1491 1492 1493
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
1494
        elif dtype == 'int64':
1495 1496 1497 1498 1499 1500 1501
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
1502
        if base.enabled():
1503 1504 1505 1506 1507
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
1508 1509
        else:
            if set_feed_dict:
1510
                self._feed_dict[name] = self._get_np_data(
1511 1512
                    shape, dtype, append_batch_size
                )
G
GGBond8488 已提交
1513 1514 1515
            if append_batch_size:
                shape = [-1] + shape
            data = paddle.static.data(
1516 1517 1518 1519
                name=name,
                shape=shape,
                dtype=dtype,
            )
G
GGBond8488 已提交
1520 1521
            data.desc.set_need_check_feed(False)
            return data
1522 1523

    def make_fit_a_line(self):
1524 1525 1526 1527
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
1528
            x = self._get_data(name='x', shape=[13], dtype='float32')
C
Charles-hit 已提交
1529
            y_predict = paddle.nn.Linear(13, 1)(x)
1530
            y = self._get_data(name='y', shape=[1], dtype='float32')
1531 1532 1533
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
1534
            avg_cost = paddle.mean(cost)
1535
            return avg_cost
Y
Yu Yang 已提交
1536

1537
    def make_recognize_digits_mlp(self):
1538 1539 1540
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
1541
            # Change g_program, so the rest layers use `g_program`
1542 1543
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
C
Charles-hit 已提交
1544 1545 1546 1547 1548 1549 1550 1551
            hidden1 = paddle.nn.Linear(784, 128)(images)
            hidden1 = paddle.nn.functional.relu(hidden1)
            hidden2 = paddle.nn.Linear(128, 64)(hidden1)
            hidden2 = paddle.nn.functional.relu(hidden2)
            hidden1 = paddle.nn.Linear(128, 10, "sftmax.w1")(hidden1)
            hidden2 = paddle.nn.Linear(64, 10, "sftmax.w2")(hidden2)
            hidden = hidden1 + hidden2
            predict = paddle.nn.functional.softmax(hidden)
1552 1553 1554
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
1555
            avg_cost = paddle.mean(cost)
1556
            return avg_cost
Y
Yu Yang 已提交
1557

1558
    def make_conv2d_transpose(self):
1559 1560 1561
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1562
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
1563
            return paddle.static.nn.conv2d_transpose(
1564 1565
                input=img, num_filters=10, output_size=28
            )
1566

1567
    def make_recognize_digits_conv(self):
1568 1569 1570 1571 1572 1573
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
1574
            label = self._get_data(name='label', shape=[1], dtype='int64')
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
1591

C
Charles-hit 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
            conv_pool_2_new = paddle.reshape(
                conv_pool_2,
                [
                    conv_pool_2.shape[0],
                    conv_pool_2.shape[1]
                    * conv_pool_2.shape[2]
                    * conv_pool_2.shape[3],
                ],
            )
            predict = paddle.nn.Linear(
                conv_pool_2.shape[1]
                * conv_pool_2.shape[2]
                * conv_pool_2.shape[3],
                10,
            )(conv_pool_2_new)
            predict = paddle.nn.functional.softmax(predict)
1608 1609 1610
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
1611
            avg_cost = paddle.mean(cost)
1612
            return avg_cost
Y
Yu Yang 已提交
1613

1614
    def make_word_embedding(self):
1615 1616 1617
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
1618 1619
            dict_size = 10000
            embed_size = 32
1620
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
1621 1622 1623
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
1624 1625 1626
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1627

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
1653 1654 1655

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
1656 1657
                axis=1,
            )
Y
Yu Yang 已提交
1658

C
Charles-hit 已提交
1659 1660 1661 1662 1663
            hidden1 = paddle.static.nn.fc(
                x=concat_embed, size=256, activation='sigmoid'
            )
            predict_word = paddle.static.nn.fc(
                x=hidden1, size=dict_size, activation='softmax'
1664
            )
1665 1666 1667 1668 1669 1670
            cost = paddle.nn.functional.cross_entropy(
                input=predict_word,
                label=next_word,
                reduction='none',
                use_softmax=False,
            )
1671
            avg_cost = paddle.mean(cost)
1672
            return avg_cost
Y
Yu Yang 已提交
1673

1674
    def make_pool2d(self):
1675 1676 1677
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1678
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
C
ccrrong 已提交
1679 1680
            return paddle.nn.functional.max_pool2d(
                x, kernel_size=[5, 3], stride=[1, 2], padding=(2, 1)
1681
            )
1682

K
Kaipeng Deng 已提交
1683
    def make_pool2d_infershape(self):
1684 1685 1686
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
1687
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
1688 1689 1690
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
C
ccrrong 已提交
1691 1692
            return paddle.nn.functional.max_pool2d(
                x, kernel_size=[5, 3], stride=[1, 2], padding=(2, 1)
1693
            )
K
Kaipeng Deng 已提交
1694

1695
    def make_softmax(self):
1696 1697 1698
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1699
            data = self._get_data(name='data', shape=[10], dtype='float32')
C
Charles-hit 已提交
1700
            hid = paddle.nn.Linear(10, 20)(data)
1701
            return paddle.nn.functional.softmax(hid, axis=1)
D
dangqingqing 已提交
1702

1703
    @prog_scope()
1704
    def make_nce(self):
Y
Yang Yu 已提交
1705 1706
        window_size = 5
        words = []
1707
        for i in range(window_size):
Y
Yang Yu 已提交
1708
            words.append(
1709 1710 1711 1712
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
1713 1714

        dict_size = 10000
M
minqiyang 已提交
1715
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
1716 1717

        embs = []
1718
        for i in range(window_size):
Y
Yang Yu 已提交
1719 1720 1721
            if i == label_word:
                continue

1722 1723 1724 1725 1726 1727
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
1728 1729 1730 1731

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
1732
        loss = paddle.static.nn.nce(
1733 1734 1735 1736 1737 1738
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
1739
        avg_loss = paddle.mean(loss)
1740
        return avg_loss
Y
Yang Yu 已提交
1741

1742
    def make_multiplex(self):
1743 1744 1745
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1746 1747 1748
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
1749
            out = paddle.multiplex(inputs=[x1, x2], index=index)
1750
            return out
1751 1752

    def make_softmax_with_cross_entropy(self):
1753 1754 1755
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1756 1757
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
1758
            loss, softmax = paddle.nn.functional.softmax_with_cross_entropy(
1759 1760
                x, y, return_softmax=True
            )
1761 1762 1763
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

1764
            loss = paddle.nn.functional.softmax_with_cross_entropy(x, y)
1765 1766 1767 1768 1769 1770
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
            loss1 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y1, axis=1
            )
            loss2 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y2, axis=2
            )
            loss3 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=3
            )
            loss4 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=-1
            )
1783 1784 1785 1786
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
1787
            return loss4
1788 1789

    def make_scatter(self):
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                dtype='float32',
G
GGBond8488 已提交
1803
                append_batch_size=False,
1804
            )
1805
            out = paddle.scatter(x, index=idx, updates=updates)
1806
            return out
Y
yangyaming 已提交
1807

1808 1809 1810
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
1811
            one_hot_label = paddle.nn.functional.one_hot(label, 10)
1812
            return one_hot_label
1813

1814 1815 1816 1817 1818
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
1819
            one_hot_label = paddle.nn.functional.one_hot(label, 10)
1820
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
1821
            return smooth_label
1822

1823
    def make_topk(self):
1824 1825 1826
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1827
            data = self._get_data(name="label", shape=[200], dtype="float32")
1828
            values, indices = paddle.topk(data, k=5)
1829 1830
            return values
            return indices
J
jerrywgz 已提交
1831

1832
    def make_l2_normalize(self):
1833 1834 1835
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1836
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
1837
            output = paddle.nn.functional.normalize(x, axis=1)
1838
            return output
1839

1840
    def make_shape(self):
1841 1842 1843 1844 1845 1846
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
2
201716010711 已提交
1847
            out = paddle.shape(input)
1848
            return out
B
Bai Yifan 已提交
1849

1850
    def make_pad2d(self):
1851 1852 1853 1854 1855 1856
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
1857 1858 1859

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
1860 1861 1862 1863
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
1864
            out = tmp_pad(input)
1865
            return out
W
whs 已提交
1866

K
Kaipeng Deng 已提交
1867
    def make_mish(self):
1868 1869 1870
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
1871
            input = self._get_data(name="input", shape=[16], dtype="float32")
1872
            out = paddle.nn.functional.mish(input, name='mish')
1873
            return out
K
Kaipeng Deng 已提交
1874

1875
    def make_cross_entropy(self):
1876 1877 1878
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1879 1880
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
1881
            mode = 'channel'
1882 1883 1884 1885 1886 1887 1888 1889
            out = paddle.nn.functional.cross_entropy(
                x,
                label,
                soft_label=False,
                ignore_index=4,
                reduction='none',
                use_softmax=False,
            )
1890
            return out
1891

1892
    def make_uniform_random_batch_size_like(self):
1893 1894 1895 1896 1897 1898
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
1899
            out = random.uniform_random_batch_size_like(input, [-1, 11])
1900
            return out
G
fix  
gongweibao 已提交
1901

1902
    def make_gaussian_random(self):
1903 1904 1905
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1906
            out = random.gaussian(shape=[20, 30])
1907
            return out
G
fix  
gongweibao 已提交
1908

1909
    def make_sum(self):
1910 1911 1912 1913 1914 1915
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
1916

1917
            out = paddle.add_n(input)
1918
            return out
G
fix  
gongweibao 已提交
1919

1920
    def make_slice(self):
G
fix  
gongweibao 已提交
1921 1922 1923 1924
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

1925 1926 1927 1928 1929 1930
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
1931

2
201716010711 已提交
1932
            out = paddle.slice(input, axes=axes, starts=starts, ends=ends)
1933
            return out
G
merge  
gongweibao 已提交
1934

1935
    def make_scale_variable(self):
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2
201716010711 已提交
1948
            out = paddle.scale(input, scale=scale_var)
1949 1950
            return out

1951
    def make_bilinear_tensor_product_layer(self):
1952 1953 1954
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1955 1956 1957
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
1958 1959 1960
            out = paddle.static.nn.common.bilinear_tensor_product(
                data, theta, 6
            )
1961
            return out
1962 1963

    def make_batch_norm(self):
1964 1965 1966 1967 1968 1969
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
1970
            out = paddle.static.nn.batch_norm(data)
1971
            return out
1972

1973
    def make_batch_norm_momentum_variable(self):
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
1986
            out = paddle.static.nn.batch_norm(data, momentum=momentum)
1987
            return out
1988

1989
    def make_range(self):
1990 1991 1992
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
1993 1994 1995
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
1996 1997 1998
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
1999
            y = paddle.arange(start, end, step, 'float64')
2000 2001 2002
            return y

    def make_spectral_norm(self):
2003 2004 2005 2006 2007 2008 2009 2010 2011
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
2012
            out = paddle.static.nn.spectral_norm(weight, dim=1, power_iters=1)
2013
            return out
2014 2015

    def make_kldiv_loss(self):
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
2031 2032 2033
            loss = paddle.nn.functional.kl_div(
                input=x, label=target, reduction='batchmean'
            )
2034
            return loss
2035

M
minqiyang 已提交
2036
    def make_pixel_shuffle(self):
2037 2038 2039
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
2040
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
2041
            out = paddle.nn.functional.pixel_shuffle(x, upscale_factor=3)
2042
            return out
M
minqiyang 已提交
2043

R
ruri 已提交
2044
    def make_mse_loss(self):
2045 2046 2047
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
2048 2049
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2050
            out = paddle.nn.functional.mse_loss(input=x, label=y)
2051
            return out
R
ruri 已提交
2052

2053
    def make_square_error_cost(self):
2054 2055 2056
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2057 2058
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2059
            out = paddle.nn.functional.square_error_cost(input=x, label=y)
2060
            return out
2061

W
whs 已提交
2062
    def test_affine_grid(self):
2063
        with self.static_graph():
G
GGBond8488 已提交
2064 2065 2066
            data = paddle.static.data(
                name='data', shape=[-1, 2, 3, 3], dtype="float32"
            )
2067
            out = paddle.argsort(x=data, axis=1)
W
whs 已提交
2068

G
GGBond8488 已提交
2069 2070 2071 2072 2073 2074
            theta = paddle.static.data(
                name="theta", shape=[-1, 2, 3], dtype="float32"
            )
            out_shape = paddle.static.data(
                name="out_shape", shape=[-1], dtype="int32"
            )
2075 2076
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
2077 2078 2079

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
2080

W
wangchaochaohu 已提交
2081 2082 2083 2084 2085 2086
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
G
GGBond8488 已提交
2087 2088 2089
            x = paddle.static.data(
                name="x", shape=[-1, 245, 30, 30], dtype="float32"
            )
2
201716010711 已提交
2090
            out = paddle.strided_slice(
2091 2092
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
2093 2094
            return out

2095 2096
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
2097 2098 2099 2100 2101 2102
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
2103 2104
            return out

2105 2106 2107
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
G
GGBond8488 已提交
2108 2109 2110
            x = paddle.static.data(name='x', shape=[-1, 10], dtype='float32')
            y = paddle.static.data(
                name='y', shape=[-1, 10, 20], dtype='float32', lod_level=2
2111 2112
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
2113

2114 2115 2116
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
G
GGBond8488 已提交
2117 2118 2119
            x = paddle.static.data(
                name='x', shape=[-1, 8], dtype='float32', lod_level=1
            )
2120
            out = layers.sequence_reshape(input=x, new_dim=16)
2121
            return out
2122

2123 2124 2125
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
G
GGBond8488 已提交
2126 2127 2128 2129
            x = paddle.static.data(name='x', shape=[-1, 10, 5], dtype='float32')
            length = paddle.static.data(
                name='length', shape=[-1], dtype='int64'
            )
2130
            return layers.sequence_unpad(x=x, length=length)
2131

2132 2133 2134
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
G
GGBond8488 已提交
2135 2136 2137 2138 2139
            seq_data = paddle.static.data(
                name='seq_data',
                shape=[-1, 10, 10],
                dtype='float32',
                lod_level=1,
2140
            )
C
Charles-hit 已提交
2141
            seq = paddle.static.nn.fc(x=seq_data, size=20)
2142
            return layers.sequence_softmax(seq)
2143

2144 2145 2146
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
G
GGBond8488 已提交
2147
            x = paddle.static.data(name='x', shape=[-1, 8, 2], dtype='float32')
2148
            out = paddle.unsqueeze(x, axis=[1])
2149
            return out
2150

2151 2152 2153
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
G
GGBond8488 已提交
2154 2155
            x = paddle.static.data(name='x', shape=[3, 6], dtype='float32')
            idx = paddle.static.data(
2156 2157 2158 2159 2160
                name='idx',
                shape=[12, 1],
                dtype='int32',
                lod_level=1,
            )
G
GGBond8488 已提交
2161
            updates = paddle.static.data(
2162 2163 2164 2165 2166
                name='updates',
                shape=[12, 1],
                dtype='float32',
                lod_level=1,
            )
2167
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
2168
            return out
W
whs 已提交
2169

2170 2171 2172 2173
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
2174

G
GGBond8488 已提交
2175 2176
            seqs = paddle.static.data(
                name='x', shape=[-1, 10, 5], dtype='float32', lod_level=1
2177
            )
2178 2179
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
2180 2181 2182 2183
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
2184

Z
zhoushiyu 已提交
2185 2186 2187
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
G
GGBond8488 已提交
2188 2189
            x = paddle.static.data(
                name='X', shape=[-1, 4, 50], dtype='float32', lod_level=0
2190
            )
Z
zhoushiyu 已提交
2191 2192 2193 2194 2195
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
2196
            return out1
Z
zhoushiyu 已提交
2197

2198 2199 2200 2201
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
2202 2203 2204 2205
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
2206

S
ShenLiang 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
2216 2217
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
2218 2219 2220 2221
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
2222 2223 2224 2225 2226
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
2227

S
ShenLiang 已提交
2228 2229 2230
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
2231 2232 2233
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
2234 2235 2236 2237 2238 2239 2240
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
2241 2242 2243 2244 2245
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
2246

2247 2248 2249
    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
G
GGBond8488 已提交
2250 2251 2252
            x = paddle.static.data(
                name="input", shape=[-1, 1], dtype='int32', lod_level=1
            )
2253 2254 2255 2256 2257
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
G
GGBond8488 已提交
2258 2259 2260
            x = paddle.static.data(
                name='x', shape=[-1, 16], dtype='float32', lod_level=1
            )
2261
            out = paddle.static.nn.row_conv(input=x, future_context_size=2)
2262
            return out
2263 2264 2265 2266

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
G
GGBond8488 已提交
2267 2268
            images = paddle.static.data(
                name='pixel', shape=[-1, 3, 48, 48], dtype='float32'
2269
            )
2270
            return paddle.static.nn.conv2d(
2271 2272
                input=images, num_filters=3, filter_size=[4, 4]
            )
2273 2274 2275 2276

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
G
GGBond8488 已提交
2277 2278 2279
            x = paddle.static.data(
                name='x', shape=[-1, 1, 1, 4], dtype='float32'
            )
2280
            out = paddle.squeeze(x, axis=[2])
2281
            return out
2282 2283 2284 2285

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
G
GGBond8488 已提交
2286
            x = paddle.static.data(
2287 2288 2289 2290
                name='x',
                shape=[4, 4, 3],
                dtype="float32",
            )
2291
            out = paddle.flatten(x, 1, -1, name="flatten")
2292
            return out
2293

Z
zhoukunsheng 已提交
2294 2295 2296
    def test_linspace(self):
        program = Program()
        with program_guard(program):
2297
            out = paddle.linspace(20, 10, 5, 'float64')
Z
zhoukunsheng 已提交
2298 2299 2300
            self.assertIsNotNone(out)
        print(str(program))

2301 2302
    def test_unfold(self):
        with self.static_graph():
G
GGBond8488 已提交
2303 2304 2305
            x = paddle.static.data(
                name='x', shape=[-1, 3, 20, 20], dtype='float32'
            )
2306
            out = paddle.nn.functional.unfold(x, [3, 3], 1, 1, 1)
2307
            return out
2308

2309 2310 2311 2312
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
2313 2314 2315 2316 2317 2318
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
2319 2320
            return concat1, concat2

2321
    def test_addmm(self):
2322 2323 2324
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
GGBond8488 已提交
2325
            input = paddle.static.data(
2326 2327 2328 2329
                name='input_data',
                shape=[3, 3],
                dtype='float32',
            )
G
GGBond8488 已提交
2330 2331
            x = paddle.static.data(name='x', shape=[3, 2], dtype='float32')
            y = paddle.static.data(name='y', shape=[2, 3], dtype='float32')
2332 2333

            out = paddle.addmm(input=input, x=x, y=y)
2334
            return out
2335

2336 2337 2338
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2339
            input_length = paddle.static.data(
2340 2341
                name='logits_length', shape=[11], dtype='int64'
            )
2342
            label_length = paddle.static.data(
2343 2344
                name='labels_length', shape=[12], dtype='int64'
            )
2345 2346 2347 2348
            label = paddle.static.data(
                name='label', shape=[12, 1], dtype='int32'
            )
            predict = paddle.static.data(
2349 2350
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
2351 2352 2353 2354 2355 2356
            output = paddle.nn.functional.ctc_loss(
                log_probs=predict,
                labels=label,
                input_lengths=input_length,
                label_lengths=label_length,
                reduction='none',
2357 2358
            )
            return output
2359

Y
Yu Yang 已提交
2360

2361 2362
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
2363
        super().__init__()
2364
        self.weight = self.create_parameter(
2365 2366
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
2397 2398
class MyLayer(paddle.nn.Layer):
    def __init__(self):
2399
        super().__init__()
J
Jiabin Yang 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
2411
        super().__init__()
J
Jiabin Yang 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
2427
if __name__ == '__main__':
2428
    paddle.enable_static()
Y
Yu Yang 已提交
2429
    unittest.main()