framework.py 104.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
116
@signature_safe_contextmanager
117 118 119 120 121 122 123 124 125 126 127 128
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
129

130 131 132 133
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
134 135
          with name_scope("attention"):
             ...
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
155 156 157
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
158 159 160 161


def grad_var_name(var_name):
    """
162 163
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
164 165 166
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
167

168
def convert_np_dtype_to_dtype_(np_dtype):
169 170
    """
    Convert the data type in numpy to the data type in Paddle
171

172
    Args:
173
        np_dtype(np.dtype): the data type in numpy.
174

175 176
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
177 178

    """
179 180
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
181
        return core.VarDesc.VarType.FP32
182
    elif dtype == np.float64:
183
        return core.VarDesc.VarType.FP64
184
    elif dtype == np.float16:
185
        return core.VarDesc.VarType.FP16
186
    elif dtype == np.int32:
187
        return core.VarDesc.VarType.INT32
188
    elif dtype == np.int16:
189
        return core.VarDesc.VarType.INT16
190
    elif dtype == np.int64:
191
        return core.VarDesc.VarType.INT64
192
    elif dtype == np.bool:
193
        return core.VarDesc.VarType.BOOL
194 195
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
196 197
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
198 199
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
200
    else:
M
minqiyang 已提交
201
        raise ValueError("Not supported numpy dtype %s" % dtype)
202 203 204


def dtype_is_floating(dtype):
205 206 207
    """
    Check the data type is floating or not.
    Args:
208
        dtype(np.dtype|core.VarDesc.VarType): data type.
209 210 211 212 213
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
214
    if not isinstance(dtype, core.VarDesc.VarType):
215 216
        dtype = convert_np_dtype_to_dtype_(dtype)

217 218 219 220
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
221 222


Y
Yang Yang(Tony) 已提交
223
def _debug_string_(proto, throw_on_error=True):
224 225 226 227 228 229 230 231 232 233 234
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
235
    error_fields = list()
Y
Yang Yang(Tony) 已提交
236
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
237 238
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
239 240 241
    return proto.__str__()


X
Xin Pan 已提交
242
class Variable(object):
243
    """
244 245 246
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
247
    two variables in different blocks could have the same name.
248

249 250
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
251

252
    Most of a Variable's member variables can be setted to be None. It mean
253
    it is not available or will be specified later.
254 255

    Args:
256
        block(Block): The block that the variable belongs to.
257 258
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
259 260
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
261
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
262
            Some kinds of variable do not contain shape, just set it to None.
263 264 265
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
266
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
267
            series data.
268
            Default: None
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
291 292
    """

Y
Yu Yang 已提交
293 294
    def __init__(self,
                 block,
Y
Yu Yang 已提交
295
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
296 297 298 299
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
300
                 capacity=None,
Q
QI JUN 已提交
301
                 persistable=None,
F
fengjiayi 已提交
302
                 error_clip=None,
Y
Yu Yang 已提交
303
                 stop_gradient=False,
F
fengjiayi 已提交
304
                 is_data=False,
Y
Yu Yang 已提交
305
                 **kwargs):
Y
Yu Yang 已提交
306 307
        self.block = block
        if name is None:
Y
Yu Yang 已提交
308
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
309

Y
Yu Yang 已提交
310
        if dtype is not None:
311
            if not isinstance(dtype, core.VarDesc.VarType):
312
                dtype = convert_np_dtype_to_dtype_(dtype)
313

X
Xin Pan 已提交
314
        if _in_imperative_mode():
M
minqiyang 已提交
315
            # record vars in tracer rather than blocks
M
minqiyang 已提交
316 317
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
318 319 320 321 322
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
                    _current_expected_place(), True
                    if persistable else False, stop_gradient)
M
minqiyang 已提交
323
            if persistable:
324
                _imperative_tracer().trace_var(name, self)
M
minqiyang 已提交
325
        else:
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
398
            self.block.vars[name] = self
399 400 401
            self.op = None
            self.stop_gradient = stop_gradient
            self.is_data = is_data
Y
Yu Yang 已提交
402

403
    def _numpy(self):
M
minqiyang 已提交
404
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
405
        return np.array(new_ivar.value().get_tensor())
406 407

    def _backward(self):
X
Xin Pan 已提交
408
        self._ivar._run_backward()
409 410

    def _gradient(self):
M
minqiyang 已提交
411 412
        new_ivar = self._ivar._grad_ivar._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
413

X
Xin Pan 已提交
414 415
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
416

417
    def __str__(self):
Y
Yang Yang(Tony) 已提交
418 419
        return self.to_string(True)

F
update  
fengjiayi 已提交
420
    def to_string(self, throw_on_error, with_details=False):
421 422 423 424
        """
        Get debug string.

        Args:
425 426
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
427
            with_details(bool): more details about variables and parameters
428 429
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
430

431 432
        Returns:
            str: The debug string.
433
        """
F
update  
fengjiayi 已提交
434 435
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
436
        protostr = self.desc.serialize_to_string()
437
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
438 439 440 441
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
442 443
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
444
        return res_str
445 446 447

    __repr__ = __str__

W
Wu Yi 已提交
448
    def _set_desc(self, input):
449 450 451 452 453 454 455 456 457
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
458 459
        self.desc = input

460 461
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
462 463 464 465
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
466 467 468

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
469 470
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
471 472
        else:
            self.stop_gradient = s
473

474 475
    @property
    def persistable(self):
476 477 478 479
        if _in_imperative_mode():
            return self._ivar.persistable
        else:
            return self.desc.persistable()
480

Y
Yu Yang 已提交
481 482
    @persistable.setter
    def persistable(self, p):
483 484 485 486
        if _in_imperative_mode():
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
487

Y
Yu Yang 已提交
488 489
    @property
    def name(self):
490 491 492 493
        if _in_imperative_mode():
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
494

T
typhoonzero 已提交
495 496
    @name.setter
    def name(self, new_name):
497 498 499 500
        if _in_imperative_mode():
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
501

Y
Yu Yang 已提交
502 503 504
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
505 506 507 508
        if _in_imperative_mode():
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
509 510

    @property
F
fengjiayi 已提交
511
    def dtype(self):
512 513 514 515
        if _in_imperative_mode():
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
516 517 518

    @property
    def lod_level(self):
519
        # TODO(minqiyang): Support lod_level in imperative mode
520
        return self.desc.lod_level()
Y
Yu Yang 已提交
521

Y
Yu Yang 已提交
522 523
    @property
    def type(self):
524 525 526 527
        if _in_imperative_mode():
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
528

W
Wu Yi 已提交
529
    def _set_error_clip(self, error_clip):
530 531 532 533 534 535 536 537 538
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
539 540
        self.error_clip = error_clip

Y
Yu Yang 已提交
541

F
fengjiayi 已提交
542 543 544
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
545

546 547
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
548 549 550 551
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
552
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
553 554 555 556 557
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
558 559 560 561
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
562 563 564 565 566 567 568 569 570
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
571
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
572 573 574 575 576 577
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
578 579 580 581 582 583 584 585
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
586 587
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
588 589
        return self.op_proto_map[type]

590 591 592 593
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
594
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
595 596
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
597 598
        }

F
fengjiayi 已提交
599

X
Xin Pan 已提交
600
class Operator(object):
601
    """
602 603 604 605 606 607 608
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
609
        type(str): The type of operator. Default None.
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
630
        Block.append_op or Block._prepend_op instead.
631 632 633 634 635 636 637 638 639 640

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
641
    """
642 643 644
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
645 646
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
647
    }
648

Y
Yu Yang 已提交
649 650
    def __init__(self,
                 block,
Y
Yu Yang 已提交
651
                 desc,
Y
Yu Yang 已提交
652 653 654
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
655
                 attrs=None):
X
Xin Pan 已提交
656
        if _in_imperative_mode():
657 658 659 660
            if type is None:
                raise ValueError(
                    "`type` to initilized an Operator can not be None.")
            self.iop = core.OpBase(type)
M
minqiyang 已提交
661

662 663
            # TODO(minqiyang): remove these lines after we take apart all
            # backward grads and forward variables
X
Xin Pan 已提交
664
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
665
            if inputs is not None:
X
Xin Pan 已提交
666 667 668 669 670
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
671

X
Xin Pan 已提交
672
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
673
            if outputs is not None:
X
Xin Pan 已提交
674 675 676 677 678
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
679

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
            self.attrs = attrs if attrs else {}
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
                )] = self.block.program.op_role

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
                   op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program.op_role_var

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
                    "`type` to initilized an Operator can not be None.")
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)

                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
                        for arg in in_args:
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
                            else:
                                in_arg_names.append(cpt.to_text(arg.name))
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
                        if not _in_imperative_mode():
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
795
    def _has_kernel(self, op_type):
796 797
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
798
    def to_string(self, throw_on_error):
799
        """
800 801
        Get debug string.

802
        Args:
803 804
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
805

806 807
        Returns:
            str: The debug string.
808 809

        """
810
        protostr = self.desc.serialize_to_string()
811
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
812 813 814 815
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
816 817 818

    __repr__ = __str__

F
fengjiayi 已提交
819 820 821 822 823
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
824
        """
825
        Get the input arguments according to the input parameter name.
826

827 828
        Args:
            name(str): The input parameter name.
829

830 831 832
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
833
        """
F
fengjiayi 已提交
834 835
        return self.desc.input(name)

W
Wu Yi 已提交
836
    def _rename_input(self, old_name, new_name):
837 838 839 840 841 842 843 844 845 846
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
847
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
848

W
Wu Yi 已提交
849
    def _rename_output(self, old_name, new_name):
850 851 852 853 854 855 856 857 858 859
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
860
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
861

F
fengjiayi 已提交
862 863 864 865
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
866 867 868 869 870 871 872 873
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
874
    def output(self, name):
875
        """
876
        Get output arguments by the output parameter name.
877

878 879
        Args:
            name(str): The output parameter name.
880

881 882 883
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
884
        """
F
fengjiayi 已提交
885 886 887 888 889 890
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

891 892 893 894 895 896 897 898
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
899
    def has_attr(self, name):
900
        """
901 902
        Whether this Operator has the attribute with name or not.

903
        Args:
904
            name(str): the attribute name.
905

906 907
        Returns:
            bool: True if has this attribute.
908 909

        """
F
fengjiayi 已提交
910 911 912
        return self.desc.has_attr(name)

    def attr_type(self, name):
913
        """
914
        Get the type of attribute by attribute's name.
915

916 917
        Args:
            name(str): the attribute name.
918

919 920
        Returns:
            core.AttrType: the attribute type.
921
        """
F
fengjiayi 已提交
922 923
        return self.desc.attr_type(name)

W
Wu Yi 已提交
924
    def _set_attr(self, name, val):
925 926 927 928 929 930 931 932 933 934
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
948 949
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
950 951
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
952
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
953 954 955 956
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
957
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
958

F
fengjiayi 已提交
959 960 961 962 963
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
964
        """
965 966
        Get the attribute by name.

967
        Args:
968
            name(str): the attribute name.
969

970 971
        Returns:
            bool|int|str|float|list: The attribute value. The return value
972 973
            can be any valid attribute type.
        """
F
fengjiayi 已提交
974
        return self.desc.attr(name)
Y
Yu Yang 已提交
975

W
Wu Yi 已提交
976
    def _block_attr_id(self, name):
977
        """
G
gongweibao 已提交
978
        Get the block attribute's id by name.
979

980 981
        Args:
            name(str): the attribute name.
982

983 984
        Returns:
            int: the block index.
985
        """
W
Wu Yi 已提交
986
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
987

W
Wu Yi 已提交
988
    def _block_attr(self, name):
G
gongweibao 已提交
989 990 991 992 993 994 995 996 997 998
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
999
        id = self._block_attr_id(name)
G
gongweibao 已提交
1000 1001 1002
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1003
    def _blocks_attr(self, name):
G
gongweibao 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1014
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1015 1016 1017 1018 1019
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1020
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1031
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1032

J
JiayiFeng 已提交
1033
    def all_attrs(self):
F
fengjiayi 已提交
1034
        """
1035 1036 1037
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1038
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1039 1040 1041 1042
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1043 1044
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1045
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1046 1047 1048
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1049
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1050 1051 1052 1053
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1054 1055
        return attr_map

Y
Yu Yang 已提交
1056

Y
Yu Yang 已提交
1057
class Block(object):
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1072
        use `Program._create_block()` to create a block.
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1087
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1088
        self.desc = program.desc.block(idx)
1089
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1090
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1091
        self.program = program
1092
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1093

1094
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1095 1096
        return self.to_string(True)

F
fengjiayi 已提交
1097 1098
    def to_string(self, throw_on_error, with_details=False):
        """
1099 1100
        Get debug string.

F
fengjiayi 已提交
1101 1102
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1103
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1104
            with_details(bool): more details about variables and parameters
1105 1106
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1107

1108 1109
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1110 1111 1112 1113
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1114
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1115 1116
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1117
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1118
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1119
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1120
            for op in self.ops:
F
fengjiayi 已提交
1121 1122
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1123 1124 1125
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1126 1127
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1128 1129
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1130 1131 1132

    __repr__ = __str__

Y
Yu Yang 已提交
1133 1134
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1135
        return self.desc.parent
Y
Yu Yang 已提交
1136

Y
Yu Yang 已提交
1137 1138 1139 1140
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1141
    def _set_forward_block_idx(self, idx):
1142 1143 1144 1145 1146 1147 1148 1149 1150
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1151
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1152

Y
Yu Yang 已提交
1153 1154
    @property
    def idx(self):
Y
Yu Yang 已提交
1155
        return self.desc.id
Y
Yu Yang 已提交
1156

Q
Qiao Longfei 已提交
1157
    def var(self, name):
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1171
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1172 1173 1174
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1175 1176
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1177
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1178
        return v
Q
Qiao Longfei 已提交
1179

X
Xin Pan 已提交
1180
    def _find_var_recursive(self, name):
1181 1182 1183 1184 1185 1186 1187
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1188
            Variable: the Variable with the giving name. Or None if not found.
1189
        """
Y
Yu Yang 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1214
        return None
Y
Yu Yang 已提交
1215

X
Xin Pan 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1235

Q
Qiao Longfei 已提交
1236
    def all_parameters(self):
1237
        return list(self.iter_parameters())
1238

1239
    def iter_parameters(self):
M
minqiyang 已提交
1240
        return (item[1] for item in six.iteritems(self.vars)
1241
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1242

Y
Yu Yang 已提交
1243
    def create_var(self, *args, **kwargs):
1244
        var = Variable(block=self, *args, **kwargs)
1245 1246
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1247
        return var
Y
Yu Yang 已提交
1248

Q
Qiao Longfei 已提交
1249 1250 1251
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1252
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1253 1254
        """
        Rename variable in vars and ops' inputs and outputs
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1267
        """
M
minqiyang 已提交
1268 1269
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1270

T
typhoonzero 已提交
1271
        if not self.has_var(name):
1272
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1273 1274
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1275
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1276 1277 1278 1279 1280 1281 1282
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1283
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1284 1285 1286 1287
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1288
        orig_var_type = v.type
M
minqiyang 已提交
1289
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1290
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1291
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1292
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1293 1294 1295 1296
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1297
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1298 1299 1300 1301 1302 1303 1304
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1305
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1306 1307
            var = Variable(
                self,
T
typhoonzero 已提交
1308
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1309 1310 1311 1312
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1313
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1314 1315 1316
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1317
        self._sync_with_cpp()
1318
        return var
T
typhoonzero 已提交
1319

W
Wu Yi 已提交
1320 1321
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1322
        self.desc._remove_var(cpt.to_bytes(name))
1323 1324
        del self.vars[name]

Y
Yu Yang 已提交
1325 1326
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1327
        param = Parameter(global_block, *args, **kwargs)
1328
        if 'initializer' in kwargs:
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1349
        return param
Y
Yu Yang 已提交
1350

Y
Yu Yang 已提交
1351
    def append_op(self, *args, **kwargs):
1352 1353 1354 1355 1356 1357
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
M
minqiyang 已提交
1358
        if _in_imperative_mode():
1359 1360 1361 1362 1363 1364 1365 1366
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1367 1368 1369 1370
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1371 1372 1373
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
1374 1375 1376 1377 1378 1379 1380 1381 1382
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1383
            self.ops.append(op)
M
minqiyang 已提交
1384

1385 1386
        return op

W
Wu Yi 已提交
1387
    def _insert_op(self, index, *args, **kwargs):
1388 1389 1390 1391 1392 1393 1394 1395 1396
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1397 1398
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1399 1400 1401 1402
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1403
    def _remove_op(self, index):
1404 1405 1406 1407 1408 1409 1410 1411 1412
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1413 1414
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1415 1416
        del self.ops[index]

W
Wu Yi 已提交
1417
    def _slice_ops(self, start, end):
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1428
        return self.ops[start:end]
Y
Yancey1989 已提交
1429

W
Wu Yi 已提交
1430
    def _prepend_op(self, *args, **kwargs):
M
minqiyang 已提交
1431
        if _in_imperative_mode():
1432 1433 1434 1435 1436 1437 1438
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1439 1440 1441
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
1442 1443 1444 1445 1446 1447 1448 1449
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1450
            self.ops.insert(0, op)
1451

Y
Yu Yang 已提交
1452 1453
        return op

W
Wu Yi 已提交
1454
    def _sync_with_cpp(self):
1455
        """
1456 1457
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1458
        """
Q
Qiao Longfei 已提交
1459 1460 1461 1462 1463
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1464
        # sync variables removed from c++ end
1465
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1466
            if not self.desc.find_var(cpt.to_bytes(var)):
1467 1468
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1469
        # sync operators from cpp
1470 1471 1472 1473
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1490 1491 1492 1493 1494

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1495
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1496 1497 1498 1499 1500 1501 1502

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1516 1517 1518 1519
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1520
    def _copy_param_info_from(self, other):
1521
        """
1522 1523
        Copy the information of parameters from the other block.

1524
        Args:
1525 1526 1527 1528 1529
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1530 1531 1532 1533 1534

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1535 1536
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1537
        for p in other.iter_parameters():
1538 1539 1540
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1541
                raise ValueError("_copy_param_info_from should be invoked with "
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1554
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1555
                error_clip=p.error_clip,
1556 1557 1558
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1559
    def _clone_variable(self, var):
1560 1561
        """
        Clone a variable into current block.
1562

1563 1564 1565 1566
        Args:
            var: the variable to be cloned.

        Returns:
1567
            Variable: the new  variable cloned from 'var' in current block.
1568 1569
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1570 1571 1572 1573 1574
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1575 1576
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1577
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1578 1579 1580 1581 1582 1583
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1584 1585
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1586 1587 1588 1589 1590 1591 1592
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1593 1594
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1595
        return ret_var
1596

Y
Yu Yang 已提交
1597

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

1693
    def remove_input_by_id(self, node_id):
1694 1695 1696 1697 1698 1699
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1700
        self.node.remove_input(node_id)
1701

1702
    def remove_input(self, node):
1703 1704 1705 1706
        """
        Remove a node from inputs.

        Args:
1707
            node(IrNode): the node being removed.
1708
        """
1709
        self.node.remove_input(node.node)
1710

1711
    def append_input(self, node):
1712 1713 1714 1715
        """
        Append a node in inputs.

        Args:
1716
            node(IrNode): the node being appended.
1717
        """
1718
        self.node.append_input(node.node)
1719 1720 1721 1722 1723 1724 1725 1726

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

1727
    def remove_output_by_id(self, node_id):
1728 1729 1730 1731 1732 1733
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1734
        self.node.remove_output(node_id)
1735

1736
    def remove_output(self, node):
1737 1738 1739 1740
        """
        Remove a node from outputs.

        Args:
1741
            node(IrNode): the node being removed.
1742
        """
1743
        self.node.remove_output(node.node)
1744

1745
    def append_output(self, node):
1746 1747 1748 1749
        """
        Append a node in outputs.

        Args:
1750
            node(IrNode): the node being appended.
1751
        """
1752
        self.node.append_output(node.node)
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


1985 1986
class IrGraph(object):
    """
1987
    Python IrGraph. Beneath it is a core.Graph, which is used for
1988
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
1989 1990
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1991 1992 1993 1994
    """

    def __init__(self, graph, for_test=False):
        """
1995 1996
        Construct an IrGraph using core.Graph.

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
2007 2008 2009
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2010 2011
        return self._for_test

W
WangZhen 已提交
2012
    def all_nodes(self):
2013 2014 2015
        """
        Return all nodes included in the graph as a set.
        """
2016
        return {IrNode(node) for node in self.graph.nodes()}
2017

2018
    def all_var_nodes(self):
2019 2020 2021
        """
        Return all variable nodes included in the graph as a set.
        """
2022
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2023

2024
    def all_persistable_nodes(self):
2025 2026 2027
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2028 2029 2030 2031 2032
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2033
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2034

2035
    def all_op_nodes(self):
2036 2037 2038
        """
        Return all operator nodes included in the graph as a set.
        """
2039
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2040

W
WangZhen 已提交
2041 2042
    def var_node(self, name):
        """
2043 2044
        Get a variable node by name from the graph.

W
WangZhen 已提交
2045 2046
        Args:
            name(str): the name of the variable node.
2047

W
WangZhen 已提交
2048 2049 2050
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
2051

W
WangZhen 已提交
2052
        Returns:
2053
            IrVarNode: the variable node with the giving name.
W
WangZhen 已提交
2054 2055 2056 2057 2058 2059
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
2060
        var_nodes = self.all_var_nodes()
W
WangZhen 已提交
2061 2062 2063 2064 2065 2066 2067
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

2068
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2080
            IrVarNode: the created persistable variable node.
2081
        """
2082 2083 2084 2085 2086
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2087
        return IrVarNode(self.graph.create_var_node(var_desc))
2088 2089

    def create_var_node(self, name, var_type, shape, var_dtype):
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2101
            IrVarNode: the created variable node.
2102 2103
        """

2104 2105 2106 2107
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2108
        return IrVarNode(self.graph.create_var_node(var_desc))
2109 2110

    def create_var_node_from_desc(self, var_desc):
2111 2112 2113 2114 2115 2116 2117 2118
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2119
            IrVarNode: the created variable node.
2120
        """
2121
        return IrVarNode(self.graph.create_var_node(var_desc))
2122 2123

    def create_op_node(self, op_type, attrs, inputs, outputs):
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2134
            IrOpNode: the created operator node.
2135
        """
2136 2137
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2138
        for attr, value in six.iteritems(attrs):
2139
            self._update_desc_attr(op_desc, attr, value)
2140
        for input_name, var_nodes in six.iteritems(inputs):
2141 2142 2143 2144
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2145
        for output_name, var_nodes in six.iteritems(outputs):
2146 2147 2148 2149
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2150
        return IrOpNode(self.graph.create_op_node(op_desc))
2151 2152

    def create_op_node_from_desc(self, op_desc):
2153 2154 2155 2156 2157 2158 2159
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2160
            IrOpNode: the created operator node.
2161
        """
2162
        return IrOpNode(self.graph.create_op_node(op_desc))
2163 2164

    def update_input_link(self, old_input_node, new_input_node, op_node):
2165 2166 2167 2168
        """
        Update the input's link of a operator node.

        Args:
2169 2170 2171
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2172
        """
2173 2174
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2175
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2176 2177 2178 2179
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2180
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2181 2182

    def link_to(self, node_in, node_out):
2183 2184 2185 2186
        """
        Connect two nodes.

        Args:
2187 2188
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2189
        """
2190
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2191
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2192 2193
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2194 2195

    def safe_remove_nodes(self, remove_nodes):
2196 2197 2198 2199 2200 2201 2202
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2203
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2204 2205 2206 2207
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2208 2209
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2210

W
WangZhen 已提交
2211
    def has_circle(self):
2212 2213 2214 2215 2216 2217
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2218 2219 2220
        return core.has_circle(self.graph)

    def graph_num(self):
2221 2222 2223 2224 2225 2226
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2227 2228 2229
        return core.graph_num(self.graph)

    def topology_sort(self):
2230 2231 2232 2233 2234 2235
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
2236
            set(IrNode): nodes in topology order.
2237
        """
2238 2239
        ordered_nodes = core.topology_sort(self.graph)
        return {IrNode(n) for n in ordered_nodes}
W
WangZhen 已提交
2240 2241

    def build_adjacency_list(self):
2242 2243 2244 2245
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2246
            dict{IrNode: set(IrNode)}: the adjacency list.
2247
        """
2248 2249 2250 2251 2252
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2253

2254 2255 2256 2257 2258 2259 2260 2261
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2262
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2263 2264 2265 2266 2267
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2268 2269 2270 2271 2272 2273 2274 2275 2276
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2277
        remove_ctr_vars = set()
2278
        if remove_ctr_var:
2279
            for node in self.all_var_nodes():
2280 2281 2282
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2283 2284
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2285 2286
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2287 2288 2289 2290 2291 2292
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2314
        convert_pass = core.get_pass('graph_to_program_pass')
2315 2316
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2337
class Program(object):
D
dzhwinter 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2349
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2350 2351

    Returns:
Y
yuyang18 已提交
2352
        A empty program.
D
dzhwinter 已提交
2353 2354

    Examples:
Y
yuyang18 已提交
2355 2356 2357 2358 2359 2360
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2361 2362 2363

    """

2364 2365
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2366 2367
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2368
        self._seed = 0
Y
yuyang18 已提交
2369
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2370
        self._op_role_var = []
T
tangwei12 已提交
2371

2372 2373
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2374
        self._is_distributed = False
2375
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2376
        self._is_chief = False
2377 2378 2379
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2380
        self._endpoints = []
2381 2382 2383
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2384
        self._trainers_endpoints = []
2385
        # the distributed lookup table names
T
tangwei12 已提交
2386
        self._distributed_lookup_table = None
D
dzhwinter 已提交
2387
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2388
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2389
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2390 2391

    @property
D
dzhwinter 已提交
2392
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2393 2394
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2395
        return self.__is_mem_optimized
D
dzhwinter 已提交
2396

D
dzhwinter 已提交
2397 2398 2399
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2400 2401 2402

    @property
    def op_role(self):
Y
yuyang18 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2416 2417 2418
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2419
    def op_role(self, role):
Y
yuyang18 已提交
2420 2421 2422 2423
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2424 2425 2426 2427 2428 2429 2430
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2431 2432 2433 2434
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2435
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2436

S
rename  
sneaxiy 已提交
2437
    @signature_safe_contextmanager
W
Wu Yi 已提交
2438
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2439 2440 2441 2442 2443 2444 2445
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2446
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2447 2448 2449 2450

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2451
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2452 2453
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2454 2455 2456
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2457 2458
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2459 2460 2461 2462
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2463
        yield
X
Xin Pan 已提交
2464 2465
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2466

S
rename  
sneaxiy 已提交
2467
    @signature_safe_contextmanager
X
Xin Pan 已提交
2468
    def _lr_schedule_guard(self, is_with_opt=False):
2469 2470 2471 2472 2473 2474 2475
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2476 2477 2478 2479
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2480 2481 2482 2483 2484 2485 2486

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2487 2488 2489 2490

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2491 2492
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2493 2494
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2495 2496 2497
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2498 2499
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2500

2501
    def __str__(self):
Y
yuyang18 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2511 2512
        return self.to_string(True)

F
fengjiayi 已提交
2513 2514 2515
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2516

F
fengjiayi 已提交
2517
        Args:
Y
yuyang18 已提交
2518 2519
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2520

Y
yuyang18 已提交
2521 2522 2523 2524
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2525 2526
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2527 2528 2529 2530

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2541 2542
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2543 2544
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2545

W
Wu Yi 已提交
2546
    def _get_desc(self):
Y
yuyang18 已提交
2547 2548 2549 2550 2551 2552 2553
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2554 2555
        return self.desc

X
version  
Xin Pan 已提交
2556 2557 2558
    def _version(self):
        return self.desc._version()

2559
    def clone(self, for_test=False):
Y
yuyang18 已提交
2560 2561 2562
        """
        Create a new, duplicated program.

2563

Y
yuyang18 已提交
2564 2565 2566 2567
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2568

Y
yuyang18 已提交
2569 2570 2571 2572
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2573 2574 2575 2576 2577
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2578 2579

        Args:
Y
yuyang18 已提交
2580 2581
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2582

D
dzhwinter 已提交
2583
        Returns:
Y
yuyang18 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2637 2638
        """
        if for_test:
X
Xin Pan 已提交
2639
            p = self._inference_optimize(prune_read_op=False)
2640
        else:
2641
            p = Program()
G
gongweibao 已提交
2642 2643
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2644
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2645 2646 2647
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2648 2649 2650 2651

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2652
            p._sync_with_cpp()
2653

W
Wu Yi 已提交
2654
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2655
        p._copy_data_info_from(self)
2656
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2657
        return p
2658

W
Wu Yi 已提交
2659
    def _prune(self, targets):
Y
yuyang18 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2675 2676 2677 2678 2679 2680
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2681 2682
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2683
                    # and we need to find the current op that generate this
2684 2685 2686 2687 2688 2689 2690 2691
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2692
                    t = t.op
2693 2694 2695 2696
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2697
                else:
2698 2699
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2700 2701 2702 2703

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2704 2705 2706
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2707
        res._sync_with_cpp()
2708 2709
        return res

X
Xin Pan 已提交
2710
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2711
        """
F
fengjiayi 已提交
2712 2713 2714 2715 2716
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2717
        3. change the :code:`is_test`
Y
yuyang18 已提交
2718 2719 2720
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2721
        Args:
X
Xin Pan 已提交
2722 2723
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2724

Y
yuyang18 已提交
2725 2726 2727 2728 2729 2730
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2731
        res = Program()
2732
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2733 2734 2735 2736

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2737
        if prune_read_op:
2738 2739 2740 2741 2742 2743 2744 2745 2746
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2747
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2748 2749

        # change all `is_test` attributes to True
M
minqiyang 已提交
2750
        for i in six.moves.range(res.desc.num_blocks()):
2751
            block = res.desc.block(i)
M
minqiyang 已提交
2752
            for j in six.moves.range(block.op_size()):
2753 2754
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2755
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2756 2757 2758
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2759
        res._sync_with_cpp()
2760 2761
        return res

2762 2763
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2764 2765 2766 2767 2768 2769 2770
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2771
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2772 2773 2774 2775

        Returns:
            Program: A deserialized program desc.
        """
2776 2777
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2778
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2779
        p._sync_with_cpp()
2780
        return p
Y
Yu Yang 已提交
2781

2782
    @staticmethod
2783
    def _construct_from_desc(desc):
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2799 2800
    @property
    def random_seed(self):
Y
yuyang18 已提交
2801 2802 2803 2804 2805 2806
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2807 2808
        return self._seed

Q
qiaolongfei 已提交
2809 2810
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2811 2812 2813
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2814 2815
        return self.desc.num_blocks()

D
dzhwinter 已提交
2816 2817 2818 2819 2820 2821
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2822
    def __repr__(self):
2823
        return self.__str__()
2824

Y
Yu Yang 已提交
2825
    def global_block(self):
Y
yuyang18 已提交
2826 2827 2828
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2829 2830
        return self.blocks[0]

Q
Qiao Longfei 已提交
2831
    def block(self, index):
Y
yuyang18 已提交
2832 2833 2834 2835 2836 2837 2838 2839
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2840 2841
        return self.blocks[index]

Y
Yu Yang 已提交
2842
    def current_block(self):
Y
yuyang18 已提交
2843 2844 2845 2846
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2847 2848
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2849
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2860
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2861 2862 2863
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2864 2865 2866 2867
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2868
    def _rollback(self):
Y
yuyang18 已提交
2869 2870 2871 2872 2873
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2874 2875
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2876
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2887 2888 2889
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2890
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2891

W
Wu Yi 已提交
2892
    def _copy_param_info_from(self, other):
2893
        """
2894
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2895

Y
yuyang18 已提交
2896 2897 2898
        Notes: This is a very low level API. Users should not invoke it
        directly.

2899 2900 2901 2902 2903 2904 2905
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2906
            raise TypeError("_copy_param_info_from should be invoked with "
2907 2908 2909
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2910
            raise ValueError("_copy_param_info_from should be invoked with two "
2911
                             "program, with represent the same topology")
W
Wu Yi 已提交
2912
        self.global_block()._copy_param_info_from(other.global_block())
2913

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2929
        self._parameters_on_pservers = other._parameters_on_pservers
2930
        self._endpoints = other._endpoints
2931
        self._ps_endpoint = other._ps_endpoint
2932 2933
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2934
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2935 2936
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2937

Y
yuyang18 已提交
2938 2939 2940
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2941 2942 2943 2944 2945 2946 2947
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2948
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2949 2950 2951
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2952
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2953
                             "program, with represent the same topology")
2954
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2955 2956 2957
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2958
    def list_vars(self):
Y
yuyang18 已提交
2959 2960 2961 2962 2963 2964
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2965
        for each_block in self.blocks:
2966
            for each_var in list(each_block.vars.values()):
2967 2968
                yield each_var

Y
Yu Yang 已提交
2969

Y
Yu Yang 已提交
2970
class Parameter(Variable):
2971
    """
2972
    Parameter is derived from Variable. A parameter is a persistable
2973
    Variable, and will be updated by optimizers after each iteration.
2974
    The training of a neural network is essentially the updating of
2975 2976
    its parameters.

2977
    Relative to a general Variable, a Parameter has several its own
2978 2979
    member variables:

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2992 2993
    """

Y
Yu Yang 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3004 3005 3006

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3007 3008 3009 3010
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3011 3012
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3013
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3014

W
wanghaoshuang 已提交
3015
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3016

F
fengjiayi 已提交
3017 3018 3019
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3020 3021 3022
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3023

F
update  
fengjiayi 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3038
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3039
            for attr_name in additional_attr:
3040 3041
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3042 3043
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3044 3045 3046 3047
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3048

Y
Yu Yang 已提交
3049
# program is a global instance.
Y
Yu Yang 已提交
3050 3051
_main_program_ = Program()
_startup_program_ = Program()
3052

3053

3054
def default_startup_program():
Y
Yu Yang 已提交
3055
    """
Y
yuyang18 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3065

Y
Yu Yang 已提交
3066 3067 3068
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
3069
    return _startup_program_
3070

3071

3072
def default_main_program():
Y
Yu Yang 已提交
3073
    """
Y
yuyang18 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3083

Y
Yu Yang 已提交
3084 3085 3086
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3087
    return _main_program_
Y
Yu Yang 已提交
3088 3089 3090 3091 3092


def switch_main_program(program):
    """
    Switch the main program to a new program.
3093

Y
Yu Yang 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3108
    Switch the startup program to a new program
Y
Yu Yang 已提交
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3121
@signature_safe_contextmanager
Y
Yu Yang 已提交
3122 3123
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3124 3125 3126
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3127

Y
Yu Yang 已提交
3128
    Examples:
Y
yuyang18 已提交
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3139

Y
Yu Yang 已提交
3140
    Examples:
Y
yuyang18 已提交
3141 3142 3143 3144 3145 3146

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
3147

Y
Yu Yang 已提交
3148
    Args:
Y
yuyang18 已提交
3149
        main_program(Program): New main program inside `with` statement.
3150
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3164 3165


W
Wu Yi 已提交
3166
def _get_var(name, program=None):
X
xuwei06 已提交
3167
    """
Y
yuyang18 已提交
3168
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3169

X
xuwei06 已提交
3170 3171 3172
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3173
        If None, default_global_program() will be used.
X
xuwei06 已提交
3174 3175 3176 3177 3178 3179 3180

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3181
    assert isinstance(program, Program)
X
xuwei06 已提交
3182 3183

    return program.global_block().var(name)
3184 3185


S
rename  
sneaxiy 已提交
3186
@signature_safe_contextmanager
3187 3188 3189 3190
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
3191

3192
    yield
P
Paddle CI 已提交
3193

3194
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
3195 3196


S
rename  
sneaxiy 已提交
3197
@signature_safe_contextmanager
P
Paddle CI 已提交
3198
def _imperative_place_guard(place):
M
minqiyang 已提交
3199 3200 3201
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
3202

3203
    yield
M
minqiyang 已提交
3204

M
minqiyang 已提交
3205
    _imperative_current_expected_place_ = tmp_place