layers.py 209.3 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
    'classification_cost',
    'LayerOutput',
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
    'seq_concat_layer',
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
    'scaling_projection',
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
    'rotate_layer',
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'gru_step_naive_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
    'warp_ctc_layer',
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'printer_layer',
    'print_layer',
    'priorbox_layer',
    'cross_channel_norm_layer',
    'multibox_loss_layer',
    'detection_output_layer',
    'spp_layer',
    'pad_layer',
    'eos_layer',
    'smooth_l1_cost',
    'layer_support',
    'multiplex_layer',
    'row_conv_layer',
    'dropout_layer',
    'prelu_layer',
    'gated_unit_layer',
    'crop_layer',
136
    'sub_nested_seq_layer',
137
    'clip_layer',
138
    'slice_projection',
139
    'seq_slice_layer',
140
    'kmax_sequence_score_layer',
G
guosheng 已提交
141
    'scale_shift_layer',
Q
qijun 已提交
142
]
Z
zhangjinchao01 已提交
143 144 145 146 147 148 149


class LayerType(object):
    """
    Layer type enumerations.
    """

150 151 152 153 154 155 156 157
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
158
    POOLING_AVG = 'average'
159
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
160
    COST = 'cost'
161 162
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
163
    HSIGMOID = 'hsigmoid'
164 165 166 167 168 169
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
170 171 172
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
173
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
174 175 176 177
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
178
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
179 180 181 182 183 184 185

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
186
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
187 188 189
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
190
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
191
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
192
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
193 194 195 196 197 198 199 200 201 202 203

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
204
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
205
    BLOCK_EXPAND = "blockexpand"
206
    MAXOUT = "maxout"
Q
qijun 已提交
207
    SPP_LAYER = "spp"
D
dangqingqing 已提交
208
    PAD_LAYER = "pad"
W
wwhu 已提交
209
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
210
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
211 212 213

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
214 215
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
216 217 218 219 220

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
221
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
222

223 224
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
225
    HUBER_REGRESSION = 'huber_regression'
226
    HUBER_CLASSIFICATION = 'huber_classification'
227 228
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
229
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
230 231 232 233 234 235
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
236
    CROP_LAYER = 'crop'
C
caoying03 已提交
237
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
238
    CLIP_LAYER = 'clip'
239
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
240

241
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
242
    SCALE_SHIFT_LAYER = 'scale_shift'
243

Z
zhangjinchao01 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
264
    """
L
Luo Tao 已提交
265
    PaddlePaddle supports three sequence types:
266 267 268

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
269 270
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
271

L
Luo Tao 已提交
272
    Accordingly, AggregateLevel supports two modes:
273

L
Luo Tao 已提交
274
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
275
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
276 277
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
278
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
279 280 281
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
282 283
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
284 285 286
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
309
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
310 311
    """

Q
qijun 已提交
312 313 314 315 316 317 318 319 320
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
321
                 reverse=None):
Z
zhangjinchao01 已提交
322 323
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
324
        assert size is not None
Z
zhangjinchao01 已提交
325 326
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
327
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
328
        self.layer_type = layer_type
329 330
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
331 332 333 334 335 336 337 338
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
339
        self.reverse = reverse
Z
zhangjinchao01 已提交
340

341 342 343 344 345 346 347 348
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

349 350 351 352 353 354 355 356
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
357 358 359

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
360
DEVICE = 'device'
Z
zhangjinchao01 已提交
361 362 363


def layer_support(*attrs):
364
    attrs_list = list(attrs)
365
    attrs_list.append(DEVICE)
Q
qijun 已提交
366

Z
zhangjinchao01 已提交
367 368 369
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
370
            for attr in attrs_list:
Z
zhangjinchao01 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
387 388 389 390 391
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
431 432
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
433 434 435 436
    proj.origin = input
    return proj


437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
467 468
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
469 470 471 472
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
512 513
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
514 515 516 517
    proj.origin = input
    return proj


518
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
549
    :type input: LayerOutput
Z
zhangjinchao01 已提交
550 551
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
552
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
553 554 555 556 557 558
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
559 560
        if size is None:
            size = input.size - offset
Q
qijun 已提交
561
        proj = IdentityOffsetProjection(
562
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
563 564 565 566
        proj.origin = input
    return proj


567 568
def slice_projection(input, slices):
    """
569 570
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
571 572

    .. math::
573
       output = [input.slices()]
574 575 576 577 578 579 580 581 582 583 584 585 586 587

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
588
    :type slices: pair of int
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
628
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
629 630 631 632
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
633
@wrap_param_attr_default()
634
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
635
    """
636
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

650 651 652 653 654 655 656
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
657 658
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
659
    proj.origin = input
660
    return proj
Z
zhangjinchao01 已提交
661

662 663

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
664 665
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
666

Z
zhangjinchao01 已提交
667
    .. math::
L
Luo Tao 已提交
668
       out.row[i] += scale * (a.row[i] .* b.row[i])
669

Z
zhangjinchao01 已提交
670 671
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
672

Z
zhangjinchao01 已提交
673
    The example usage is:
674

Z
zhangjinchao01 已提交
675
    .. code-block:: python
676

L
Luo Tao 已提交
677
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
678

679 680 681 682
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
683 684
    :param scale: config scalar, default value is one.
    :type scale: float
685 686
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
687
    """
688 689 690
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
691
    a = kwargs.get('x', a)  # For Backward capacity.
692 693 694 695 696 697
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
698
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
699
    op.origin = [a, b]
700
    return op
Z
zhangjinchao01 已提交
701

702

Z
zhangjinchao01 已提交
703
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
704 705 706
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
743 744 745 746 747 748
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
762
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
779 780 781 782 783 784 785
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
786 787 788 789 790
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

791
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
792 793 794 795 796 797 798 799
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
800
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
801
            self.inputs.append(other)
802 803 804 805
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
806 807 808 809 810 811 812 813
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

814
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
815 816
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
817
        assert len(self.inputs) != 0
818
        ml = MixedLayer(
Z
zhangjinchao01 已提交
819 820 821 822 823
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
824
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
825 826 827
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
828
        self.finalized = True
Z
zhangjinchao01 已提交
829 830 831 832 833 834


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
835 836 837 838 839
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
884 885 886 887 888 889
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
890
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
891 892 893 894 895 896 897 898
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
899
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
900 901 902 903 904 905 906
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
907
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
908 909 910 911 912

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
913
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
914
    :type height: int|None
L
Luo Tao 已提交
915
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
916
    :type width: int|None
Z
zhangjinchao01 已提交
917 918
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
919
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
920 921
    :rtype: LayerOutput
    """
Q
qijun 已提交
922 923 924 925
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
926 927
        height=height,
        width=width,
Q
qijun 已提交
928
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
929

930 931 932 933 934 935 936
    num_filters = None
    if height is not None and width is not None:
        num_filters = size / (width * height)
        assert num_filters * width * height == size, \
            "size=%s width=%s height=%s" % (size, width, height)

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
937 938 939 940


@wrap_name_default("embedding")
@wrap_param_attr_default()
941
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
957
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
958 959
    :rtype: LayerOutput
    """
Q
qijun 已提交
960 961 962 963 964 965
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
966 967 968 969 970 971 972 973 974
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
975 976 977 978 979 980 981
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
982 983 984 985 986 987 988 989 990 991 992 993
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
994
    which is equal to:
Z
zhangjinchao01 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1017
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1018 1019 1020 1021
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1022
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1023 1024
        param_attr = [param_attr]
    else:
1025
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1026 1027 1028 1029
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1030
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1031 1032

    Layer(
Q
qijun 已提交
1033 1034 1035
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1036 1037 1038 1039 1040
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1041 1042 1043
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1044

1045

1046
@wrap_name_default("print")
1047
def printer_layer(input, format=None, name=None):
1048 1049
    """
    Print the output value of input layers. This layer is useful for debugging.
1050 1051 1052 1053 1054

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1055
    :return: LayerOutput
1056
    """
1057 1058 1059 1060 1061
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1062 1063 1064

    Layer(
        name=name,
1065
        format=format,
1066
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1067
        inputs=[l.name for l in input], )
1068
    # this layer don't return anything, can not be input of other layer.
1069

X
xuwei06 已提交
1070 1071 1072 1073 1074 1075 1076
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1077

Y
yuan 已提交
1078
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1079
def priorbox_layer(input,
G
gaoyuan 已提交
1080
                   image,
G
gaoyuan 已提交
1081 1082 1083 1084 1085
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1086 1087 1088 1089 1090 1091 1092
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1093 1094
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1106
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1107 1108 1109
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1110
        inputs=[input.name, image.name],
Y
yuan 已提交
1111 1112 1113 1114 1115 1116
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1117 1118
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1119
        parents=[input, image],
G
gaoyuan 已提交
1120 1121 1122
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1140 1141
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1142
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1143
    :type input_conf: LayerOutput | List of LayerOutput
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1165
    input_loc_num = len(input_loc)
1166 1167 1168 1169 1170 1171

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1172
    input_conf_num = len(input_conf)
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1214 1215
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1216
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1217
    :type input_conf: LayerOutput | List of LayerOutput.
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1239
    input_loc_num = len(input_loc)
1240 1241 1242 1243 1244 1245

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1246 1247
    input_conf_num = len(input_conf)

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1276 1277
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1278 1279 1280 1281 1282
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1283

G
gaoyuan 已提交
1284 1285 1286 1287 1288 1289 1290 1291
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1292
    assert input.num_filters is not None
G
gaoyuan 已提交
1293 1294
    Layer(
        name=name,
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1308 1309
    return LayerOutput(
        name,
1310
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1311 1312 1313 1314 1315
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1316 1317 1318 1319
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1320 1321 1322 1323
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1324
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1325
                  stride=-1,
Z
zhangjinchao01 已提交
1326 1327 1328 1329
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1330 1331
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1332 1333 1334
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1335
    operation. Note that for sequence with sub-sequence, the default value
1336 1337
    of stride is -1.

Z
zhangjinchao01 已提交
1338 1339 1340 1341 1342 1343
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1344
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1345

L
Luo Tao 已提交
1346 1347
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1348 1349 1350 1351 1352 1353 1354 1355
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1356
    :param stride: The step size between successive pooling regions.
1357
    :type stride: Int
Z
zhangjinchao01 已提交
1358 1359 1360 1361
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1362
    :return: LayerOutput object.
Y
Yu Yang 已提交
1363
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1364 1365
    """
    extra_dict = dict()
1366
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1367 1368
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1369 1370 1371 1372
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1373 1374
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1375 1376 1377
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1378 1379 1380 1381 1382 1383
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1384
        stride=stride,
Q
qijun 已提交
1385
        **extra_dict)
Z
zhangjinchao01 已提交
1386

Q
qijun 已提交
1387 1388
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1389

Q
qijun 已提交
1390

Z
zhangjinchao01 已提交
1391 1392
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1393
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1394 1395
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1396
@layer_support()
Q
qijun 已提交
1397 1398
def lstmemory(input,
              name=None,
1399
              size=None,
Q
qijun 已提交
1400 1401 1402 1403 1404 1405
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1406 1407 1408 1409 1410 1411 1412 1413
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1414
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1415

L
luotao02 已提交
1416
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1417

L
luotao02 已提交
1418
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1419

L
luotao02 已提交
1420
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1421

L
luotao02 已提交
1422
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1423 1424


C
caoying03 已提交
1425
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1426
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1427 1428 1429 1430
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1431

C
caoying03 已提交
1432
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1433 1434
    to config a simple plain lstm layer.

C
caoying03 已提交
1435 1436 1437 1438
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1439 1440 1441 1442 1443

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1444 1445
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1464
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1465 1466 1467 1468 1469 1470
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1471
    assert input.size is not None and input.size % 4 == 0
1472

1473 1474 1475 1476 1477
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1478 1479 1480
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1481

Q
qijun 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1492

Q
qijun 已提交
1493 1494 1495 1496 1497
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1498

Z
zhangjinchao01 已提交
1499 1500 1501

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1502
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1503 1504
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1505
@layer_support()
Q
qijun 已提交
1506
def grumemory(input,
1507
              size=None,
Q
qijun 已提交
1508 1509 1510 1511 1512 1513
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1535 1536
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1537 1538 1539 1540 1541

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1542 1543 1544
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1545 1546 1547 1548 1549

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1550
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1551
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1552 1553 1554
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1555

C
caoying03 已提交
1556 1557 1558
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1570 1571
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1572
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1588
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1589 1590 1591 1592
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1593 1594 1595 1596 1597 1598
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1599 1600 1601
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1602

Q
qijun 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1612

Q
qijun 已提交
1613 1614 1615 1616 1617
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1618

Z
zhangjinchao01 已提交
1619 1620 1621

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1622 1623
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1624
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1625
             stride=-1,
Z
zhangjinchao01 已提交
1626 1627 1628 1629
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1630 1631 1632
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1633
    of stride is -1.
1634

L
Luo Tao 已提交
1635 1636 1637 1638 1639 1640
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1641 1642 1643 1644 1645
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1646
    :param stride: The step size between successive pooling regions.
1647
    :type stride: Int
Z
zhangjinchao01 已提交
1648 1649
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1650
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1651 1652
    :rtype: LayerOutput
    """
1653 1654 1655 1656 1657 1658
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1659
    if agg_level == AggregateLevel.TO_SEQUENCE:
1660 1661
        assert stride == -1

Z
zhangjinchao01 已提交
1662 1663 1664 1665 1666
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1667
        stride=stride,
Q
qijun 已提交
1668 1669 1670 1671 1672 1673
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1674 1675 1676 1677


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1678 1679
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1680
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1681
              stride=-1,
Z
zhangjinchao01 已提交
1682 1683 1684 1685
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1686 1687 1688
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1689
    of stride is -1.
1690

L
Luo Tao 已提交
1691 1692 1693 1694 1695 1696
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1697 1698 1699 1700 1701
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1702
    :param stride: The step size between successive pooling regions.
1703
    :type stride: Int
Z
zhangjinchao01 已提交
1704 1705
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1706
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1707 1708
    :rtype: LayerOutput
    """
1709 1710 1711 1712 1713 1714 1715

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1716
    if agg_level == AggregateLevel.TO_SEQUENCE:
1717 1718
        assert stride == -1

Z
zhangjinchao01 已提交
1719 1720 1721 1722 1723
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1724
        stride=stride,
Q
qijun 已提交
1725 1726 1727 1728 1729 1730
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1731 1732 1733


class ExpandLevel(object):
1734 1735 1736 1737 1738
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1739 1740
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1741 1742
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1743 1744
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1745 1746
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1747 1748
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1749 1750
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1751

1752

Z
zhangjinchao01 已提交
1753 1754
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1755 1756
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1757 1758
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1759
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1771
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1786
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1796 1797 1798 1799 1800 1801
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1802 1803


X
xuwei06 已提交
1804
@wrap_name_default()
X
xuwei06 已提交
1805
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1806
@layer_support()
X
xuwei06 已提交
1807 1808 1809
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1810
                 act=None,
X
xuwei06 已提交
1811 1812
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1813
    """
X
xuwei06 已提交
1814
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1815

X
xuwei06 已提交
1816
    If as_row_vector:
X
xuwei06 已提交
1817
    .. math::
X
xuwei06 已提交
1818 1819 1820 1821 1822
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1823 1824 1825 1826 1827

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1828
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1829 1830 1831 1832 1833 1834

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1835 1836 1837 1838 1839 1840
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1841 1842
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1853
        active_type=act.name,
X
xuwei06 已提交
1854
        num_filters=num_repeats,
X
xuwei06 已提交
1855
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1856
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1857 1858 1859 1860 1861
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1862
        activation=act,
Q
qijun 已提交
1863 1864
        parents=[input])

X
xuwei06 已提交
1865

1866 1867 1868
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1869
@layer_support(ERROR_CLIPPING, DROPOUT)
1870 1871 1872 1873 1874 1875 1876 1877
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1878
    the dimension of each instance is M, and the input reshape_size is N, then the
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1949
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1950 1951
    :rtype: LayerOutput
    """
1952
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1953
    assert len(input) == 2
1954 1955 1956 1957 1958 1959 1960
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1961 1962 1963 1964
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1965 1966 1967 1968 1969 1970
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1971 1972


L
liaogang 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1989
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1990

L
liaogang 已提交
1991
    :param   input:        A input layer.
L
liaogang 已提交
1992
    :type    input:        LayerOutput.
L
liaogang 已提交
1993
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1994
    :type    out_size_x:   int|None
L
liaogang 已提交
1995
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1996
    :type    out_size_y:   int|None
L
liaogang 已提交
1997
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1998
    :type    name:         None|basestring
L
liaogang 已提交
1999
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2000 2001 2002 2003 2004 2005 2006
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2007
    assert input.num_filters is not None
L
liaogang 已提交
2008
    num_channels = input.num_filters
Q
qijun 已提交
2009 2010 2011 2012 2013 2014 2015
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2016
                channels=num_channels)),
Q
qijun 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2026

Z
zhangjinchao01 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2054
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2055 2056
    :rtype: LayerOutput
    """
2057 2058 2059
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2060 2061 2062
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2063
        inputs=[weight.name, input.name],
Q
qijun 已提交
2064 2065 2066
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2067 2068 2069 2070 2071 2072


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2073
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2074 2075

    .. math::
2076
       y  = w x
Z
zhangjinchao01 已提交
2077

2078 2079 2080 2081 2082
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2098
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2099 2100
    :rtype: LayerOutput
    """
2101 2102 2103
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2104 2105 2106 2107
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2108 2109 2110
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2111 2112 2113 2114 2115 2116


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2117
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2136
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2137 2138 2139 2140 2141 2142
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2143 2144 2145
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2146 2147


2148 2149
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2150
def rotate_layer(input, height, width, name=None, layer_attr=None):
2151
    """
H
Haonan 已提交
2152 2153
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2154 2155

    .. math::
H
Haonan 已提交
2156
       y(j,i,:) = x(M-i-1,j,:)
2157

H
Haonan 已提交
2158
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2159 2160 2161 2162 2163 2164

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2165 2166
                          height=100,
                          width=100)
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2180 2181 2182
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2183
        width=width,
H
Haonan 已提交
2184 2185 2186 2187 2188 2189 2190 2191
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2192 2193


Z
zhangjinchao01 已提交
2194 2195
@wrap_name_default()
@layer_support()
2196
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2197 2198 2199 2200
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2201
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2202 2203 2204 2205 2206
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2207

2208 2209
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2210

L
Luo Tao 已提交
2211 2212 2213 2214 2215 2216
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2229
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2230 2231
    :rtype: LayerOutput
    """
2232
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2233 2234 2235 2236 2237 2238
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2239
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2240
    else:
2241 2242
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2243 2244 2245 2246 2247 2248
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2249
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2250
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2251

2252

Z
zhangjinchao01 已提交
2253 2254
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2255
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2256
@layer_support()
Q
qijun 已提交
2257 2258
def hsigmoid(input,
             label,
2259
             num_classes=None,
Q
qijun 已提交
2260 2261 2262 2263
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2275
                        label=data_layer)
Z
zhangjinchao01 已提交
2276 2277 2278 2279 2280 2281 2282

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2283
    :type num_classes: int|None
L
luotao02 已提交
2284 2285
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2286 2287 2288
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2289 2290
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2291 2292
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2293
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2294 2295 2296 2297
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2298 2299 2300 2301 2302 2303 2304 2305 2306
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2307 2308 2309
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2310 2311 2312 2313 2314
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2315 2316
    ipts_for_layer = []
    parents = []
2317
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2318
        assert isinstance(each_input, LayerOutput)
2319
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2320 2321 2322 2323
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2324
    l = Layer(
Z
zhangjinchao01 已提交
2325 2326 2327 2328 2329
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2330 2331 2332
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2333

2334

Z
zhangjinchao01 已提交
2335 2336 2337 2338 2339
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2349
                   dilation=1,
Q
qijun 已提交
2350 2351 2352 2353 2354 2355 2356
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2357
                   dilation_y=None,
2358 2359
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2360
    """
2361
    Convolution layer for image. Paddle can support both square and non-square
2362
    input currently.
Z
zhangjinchao01 已提交
2363 2364 2365 2366

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2367

2368
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2369
    and non-square input currently.
2370

X
xuwei06 已提交
2371
    The details of convolution transpose layer,
2372 2373 2374
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2375 2376 2377 2378
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2379 2380 2381
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2382
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2383 2384
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2385

L
Luo Tao 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2396 2397 2398 2399
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2400 2401 2402
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2403 2404 2405
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2406
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2407 2408 2409 2410 2411
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2412 2413 2414
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2415 2416
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2417 2418 2419
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2420 2421
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2422 2423 2424
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
    :type dilation: int|tuple|list
W
wanghaoshuang 已提交
2425 2426
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
Z
zhangjinchao01 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2439 2440
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2441
    :param layer_type: specify the layer_type, default is None. If trans=True,
2442 2443
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2444
                       "cudnn_conv"
2445
    :type layer_type: String
D
dangqingqing 已提交
2446
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2447 2448 2449 2450 2451
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2452

Z
zhangjinchao01 已提交
2453
    if filter_size_y is None:
2454 2455 2456 2457 2458 2459
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2460
    if stride_y is None:
2461 2462 2463 2464 2465 2466
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2467
    if padding_y is None:
2468 2469 2470 2471 2472 2473
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2474 2475 2476 2477 2478 2479 2480
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2481 2482
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2483
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2484 2485 2486 2487
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2488

2489
    if layer_type:
W
wanghaoshuang 已提交
2490 2491
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2492
        if trans:
2493
            assert layer_type in ["exconvt", "cudnn_convt"]
2494 2495 2496 2497 2498
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2499

X
xuwei06 已提交
2500
    l = Layer(
Z
zhangjinchao01 已提交
2501
        name=name,
Q
qijun 已提交
2502 2503 2504 2505 2506
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2507
                dilation=dilation,
Q
qijun 已提交
2508 2509 2510 2511 2512
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2513
                dilation_y=dilation_y,
Q
qijun 已提交
2514 2515
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2516 2517 2518 2519
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2520
        type=lt,
Q
qijun 已提交
2521 2522 2523 2524 2525 2526 2527 2528
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2529 2530 2531 2532


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2543 2544
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2545 2546 2547 2548 2549 2550 2551
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2580
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2581
    :type padding: int
2582 2583
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2584 2585 2586 2587
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2588
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2589
    :type pool_size: int
2590 2591
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2592 2593
    :param num_channels: number of input channel.
    :type num_channels: int
2594
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2595 2596
                      MaxPooling.
    :type pool_type: BasePoolingType
2597
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2598
    :type stride: int
2599 2600
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2601 2602
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2603 2604 2605 2606
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2607 2608
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2619 2620 2621 2622
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2623
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2624
        if (
Y
Yu Yang 已提交
2625
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2626
        else pool_type.name
2627 2628 2629 2630
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2631
    l = Layer(
Z
zhangjinchao01 已提交
2632 2633
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2646
                    padding_y=padding_y))
Q
qijun 已提交
2647
        ],
2648
        ceil_mode=ceil_mode,
Q
qijun 已提交
2649 2650 2651 2652 2653 2654 2655
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2656 2657


Q
qijun 已提交
2658 2659
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2660 2661 2662 2663 2664 2665
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2666 2667 2668 2669 2670
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2671 2672 2673 2674
    The example usage is:

    ..  code-block:: python

2675 2676 2677
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2678 2679
                        pool_type=MaxPooling())

Q
qijun 已提交
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2708
    l = Layer(
Q
qijun 已提交
2709 2710
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2711 2712 2713 2714 2715
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2716
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2728 2729 2730 2731
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2732
    l = Layer(
Q
qijun 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2752 2753 2754 2755


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2756 2757 2758 2759 2760 2761
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2762
                      layer_attr=None):
Z
zhangjinchao01 已提交
2763
    """
2764
    Response normalization across feature maps.
D
dangqingqing 已提交
2765 2766
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2767

L
Luo Tao 已提交
2768 2769 2770
    The example usage is:

    ..  code-block:: python
2771

L
Luo Tao 已提交
2772 2773
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2774
    :param name: layer name.
D
dangqingqing 已提交
2775
    :type name: None|basestring
Z
zhangjinchao01 已提交
2776 2777
    :param input: layer's input.
    :type input: LayerOutput
2778
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2779
    :type size: int
D
dangqingqing 已提交
2780
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2781
    :type scale: float
D
dangqingqing 已提交
2782
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2783 2784 2785 2786 2787
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2788
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2789 2790 2791
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2792
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2793 2794 2795


@wrap_bias_attr_default()
2796 2797
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2798 2799
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2800
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2801 2802 2803 2804 2805 2806 2807
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2829 2830 2831
    The example usage is:

    ..  code-block:: python
2832

L
Luo Tao 已提交
2833 2834
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2849
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2877
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2888
    l = Layer(
Z
zhangjinchao01 已提交
2889
        name=name,
Q
qijun 已提交
2890 2891
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2892 2893 2894 2895 2896 2897
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2898
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2899

Q
qijun 已提交
2900 2901 2902 2903 2904 2905 2906
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2934
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2935 2936 2937 2938 2939 2940
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2941 2942 2943
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2944 2945


G
guosheng 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
2982 2983 2984
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
2985
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2986
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3009 3010 3011
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3012 3013

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3014 3015
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3030
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3031 3032 3033 3034 3035 3036
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3037
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3038 3039 3040 3041 3042 3043 3044
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3045
    l = Layer(
Q
qijun 已提交
3046 3047 3048
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3049 3050
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3051
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3052

Q
qijun 已提交
3053 3054 3055 3056 3057 3058 3059
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3060 3061 3062 3063


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3064
@layer_support(DROPOUT, ERROR_CLIPPING)
3065
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3066 3067 3068 3069
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3070 3071 3072 3073 3074 3075
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
3076 3077 3078
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
3079
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3080 3081 3082 3083
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3084
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3085 3086 3087 3088 3089 3090 3091 3092
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3093
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3094 3095

    def __is_type__(o, tp):
3096
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3118 3119
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3120

Q
qijun 已提交
3121 3122
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3123

3124 3125
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3126

3127
    layer = Layer(
Q
qijun 已提交
3128 3129
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3130 3131
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3132
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3133
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3134

3135
    sz = layer.config.size
Z
zhangjinchao01 已提交
3136

Q
qijun 已提交
3137 3138 3139 3140 3141 3142 3143 3144
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3145 3146
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3147
@wrap_bias_attr_default(has_bias=False)
3148
@layer_support(DROPOUT, ERROR_CLIPPING)
3149 3150 3151 3152
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3153

3154
    Inputs:
X
xuwei06 已提交
3155
      - a = [a1, a2, ..., am]
3156
      - b = [b1, b2, ..., bn]
3157

X
xuwei06 已提交
3158 3159 3160 3161
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3179 3180 3181 3182
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3204
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3205 3206
def memory(name,
           size,
3207
           memory_name=None,
Q
qijun 已提交
3208 3209 3210 3211
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3232 3233 3234 3235 3236 3237 3238 3239 3240
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3241

3242 3243 3244 3245 3246 3247 3248
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3249 3250 3251
    :type name: basestring
    :param size: size of memory.
    :type size: int
3252 3253 3254
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3255
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3265
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3276 3277
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3278

3279 3280 3281 3282 3283 3284 3285 3286
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3287 3288

    lout = LayerOutput(
3289
        name=memory_name,
Q
qijun 已提交
3290 3291 3292
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3293 3294 3295 3296
    return lout


@wrap_bias_attr_default()
3297 3298
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3299 3300
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
3301
@layer_support()
Q
qijun 已提交
3302 3303
def lstm_step_layer(input,
                    state,
3304
                    size=None,
Q
qijun 已提交
3305 3306 3307 3308 3309 3310
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3311
    """
3312 3313
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3314 3315 3316

    ..  math::

3317
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3318

3319
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3320

3321
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3322

3323
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3324

L
luotao02 已提交
3325
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3326 3327


L
luotao02 已提交
3328
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3329
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3330
    input vectors.
Z
zhangjinchao01 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3341 3342
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3343 3344 3345 3346
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3347 3348
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3367
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3368 3369
    :rtype: LayerOutput
    """
3370 3371 3372

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3373 3374 3375 3376 3377 3378 3379
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3380
        size=state.size,
Q
qijun 已提交
3381 3382
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3383

Q
qijun 已提交
3384 3385 3386 3387 3388 3389 3390
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3391 3392 3393


@wrap_bias_attr_default()
W
wangyang59 已提交
3394
@wrap_param_attr_default()
Q
qijun 已提交
3395
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3396 3397 3398
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3399 3400 3401 3402 3403 3404 3405
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3406
                   param_attr=None,
Q
qijun 已提交
3407
                   layer_attr=None):
Z
zhangjinchao01 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3418 3419
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3420
    :param layer_attr:
D
dangqingqing 已提交
3421
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3422 3423 3424 3425 3426 3427 3428 3429
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3430 3431 3432 3433
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3434
        # backward model compatibility.
3435
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3436 3437 3438 3439
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3440
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3441
    return LayerOutput(
Q
qijun 已提交
3442 3443
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3444
        parents=[input, output_mem],
Q
qijun 已提交
3445 3446
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3447 3448


Y
Yu Yang 已提交
3449 3450 3451 3452
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3453
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3521 3522 3523 3524
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3525 3526 3527 3528
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3538
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3539 3540 3541 3542 3543 3544 3545
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3546 3547 3548 3549 3550 3551 3552
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3553

Q
qijun 已提交
3554 3555 3556 3557 3558
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3559 3560 3561 3562 3563 3564 3565


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3566 3567 3568 3569 3570 3571 3572
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3573
    """
3574 3575
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3576

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3604
    :return: LayerOutput object.
3605
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3606
    """
Q
qijun 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3622 3623 3624 3625 3626 3627


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3628 3629
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3630
    """
3631

Z
zhangjinchao01 已提交
3632 3633 3634
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3635
        assert input.size is not None
Z
zhangjinchao01 已提交
3636
        if size is not None:
3637
            assert input.size == size
Z
zhangjinchao01 已提交
3638 3639


3640
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3641
    """
3642
    DEPRECATED.
Z
zhangjinchao01 已提交
3643 3644 3645 3646 3647 3648 3649 3650
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3651
    return input
Z
zhangjinchao01 已提交
3652 3653 3654


@wrap_name_default("recurrent_group")
3655
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3656
    """
C
caoying03 已提交
3657 3658 3659 3660 3661
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3706 3707
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3708
    :type reverse: bool
3709

3710 3711
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3712 3713 3714 3715 3716 3717 3718 3719 3720

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3721
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3722 3723 3724 3725
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3726
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3727
        input = [input]
3728
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3729 3730

    def is_in_links(x):
3731
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3732 3733 3734 3735

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3736
        name=name,
3737 3738
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3739 3740
    in_args = []
    for each_input in input:
3741
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3742
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3743
            mem = memory(
3744
                name=None,
Q
qijun 已提交
3745 3746
                size=each_input.input.size,
                boot_layer=each_input.input)
3747
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3748
            in_args.append(mem)
3749 3750
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3751

Z
zhangjinchao01 已提交
3752 3753 3754 3755 3756
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3757 3758 3759 3760 3761 3762
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3763 3764 3765

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3766
    for layer_out in layer_outs:
3767 3768
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3769 3770
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3771 3772 3773 3774 3775
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3776

Z
zhangjinchao01 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
3805 3806

    def before_real_step(self):
Q
qijun 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3816 3817 3818
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3819
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3843
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3844 3845 3846 3847
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3858

3859

H
Haonan 已提交
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3896

Z
zhangjinchao01 已提交
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3913 3914
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3915 3916 3917 3918 3919 3920
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3921
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3922 3923
    :rtype: LayerOutput
    """
Q
qijun 已提交
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3935 3936 3937


@wrap_name_default()
Q
qijun 已提交
3938 3939 3940 3941 3942 3943 3944
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3945
                num_results_per_sample=None):
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3957
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3958 3959 3960 3961
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3962 3963 3964 3965 3966
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3967 3968
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3969 3970
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3971 3972
                               bos_id=0,
                               eos_id=1,
3973
                               beam_size=5)
3974 3975 3976 3977 3978 3979 3980 3981 3982

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3983
                 step, and it is applied to sequences with arbitrary length by
3984 3985 3986 3987 3988
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3989 3990
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3991
                  In beam_search, none of the input's type should be LayerOutput.
3992
    :type input: list
3993 3994 3995
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3996
                   symbol is essential, since it is used to initialize the RNN
3997 3998 3999 4000 4001 4002 4003 4004
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4005 4006
    :param max_length: Max generated sequence length.
    :type max_length: int
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4017 4018
    :return: The generated word index.
    :rtype: LayerOutput
4019 4020
    """

Z
zhangjinchao01 已提交
4021 4022 4023 4024 4025
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4026
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4027 4028 4029 4030 4031 4032
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4033 4034 4035
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4036
        if isinstance(each_input, BaseGeneratedInput):
4037 4038
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4039
            generated_input_index = i
4040

Z
zhangjinchao01 已提交
4041 4042 4043
        else:
            real_input.append(each_input)

4044
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4045 4046 4047 4048 4049 4050 4051 4052

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4053 4054 4055 4056 4057 4058
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4059 4060 4061 4062 4063 4064

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4065
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4066 4067
        return predict

4068 4069
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4070

Q
qijun 已提交
4071

4072 4073
def __cost_input__(input, label, weight=None):
    """
4074
    inputs and parents for cost layers.
4075
    """
C
caoying03 已提交
4076 4077 4078 4079 4080 4081
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4082
    if weight is not None:
4083
        assert weight.size == 1
4084 4085 4086
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4087

Z
zhangjinchao01 已提交
4088 4089

@wrap_name_default()
L
luotao1 已提交
4090
@layer_support()
4091
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
4092
    """
L
Luo Tao 已提交
4093 4094 4095 4096
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
4097
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4098 4099

    :param name: layer name.
4100
    :type name: basestring
Z
zhangjinchao01 已提交
4101
    :param input: Network prediction.
4102
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4103
    :param label: Data label.
4104 4105 4106 4107
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4108 4109
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4110 4111
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4112
    :return: LayerOutput object.
4113
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4114
    """
4115 4116
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4117 4118 4119 4120
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4121
        coeff=coeff,
Q
qijun 已提交
4122
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4123
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4124 4125


L
Luo Tao 已提交
4126 4127 4128
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4129
@wrap_name_default("cost")
4130
@layer_support()
Q
qijun 已提交
4131 4132 4133 4134
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4135
                        evaluator=classification_error_evaluator,
4136 4137
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4147 4148 4149
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4150
    :param evaluator: Evaluator method.
4151 4152
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4153 4154
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4155
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4156 4157 4158 4159 4160
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4161 4162 4163

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4164 4165 4166 4167
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4168
        coeff=coeff,
Q
qijun 已提交
4169
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4180
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4181

4182
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4183 4184 4185 4186 4187
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4188
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4189

4190

Q
qijun 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4200 4201
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4212 4213
       op = conv_operator(img=input1,
                          filter=input2,
4214
                          filter_size=3,
Z
zhangjinchao01 已提交
4215 4216 4217
                          num_filters=64,
                          num_channels=64)

4218 4219 4220 4221
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4222 4223
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4224 4225 4226
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4227
    :type filter_size_y: int
4228 4229
    :param num_filters: channel of output data.
    :type num_filters: int
4230 4231
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4232
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4233
    :type stride: int
Z
zhangjinchao01 已提交
4234
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4235
    :type stride_y: int
Z
zhangjinchao01 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4249

4250 4251
    if num_channels is None:
        num_channels = img.num_filters
4252 4253

    assert isinstance(filter, LayerOutput)
4254
    assert filter.size is not None
4255

4256 4257 4258
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4270

4271
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4272 4273
    return op

Q
qijun 已提交
4274

4275
@wrap_param_attr_default()
Q
qijun 已提交
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4286 4287
                    param_attr=None,
                    trans=False):
4288 4289 4290 4291 4292 4293 4294 4295 4296
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4297
       proj = conv_projection(input=input1,
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4312 4313
    :param num_channels: channel of input data.
    :type num_channels: int
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4326 4327
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4358
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4359 4360 4361 4362 4363
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4364 4365 4366
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4379 4380 4381 4382

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4383

D
dangqingqing 已提交
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4401

D
dangqingqing 已提交
4402
    For example,
4403

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4425 4426

    The simply usage is:
D
dangqingqing 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4488
@wrap_name_default()
L
luotao1 已提交
4489 4490
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4502 4503 4504 4505
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4506 4507 4508 4509 4510

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4511
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4512 4513 4514

    :param name: layer name
    :type name: basestring
4515 4516
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4517
    :param b: input layer b.
4518
    :type b: LayerOutput
L
luotao1 已提交
4519 4520
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4521
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4522 4523
    :rtype: LayerOutput
    """
4524 4525
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4526 4527 4528
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4529
        inputs=[a.name, b.name],
Q
qijun 已提交
4530
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4531

Q
qijun 已提交
4532 4533
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4534 4535 4536 4537 4538


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4539
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4540
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4541 4542 4543 4544 4545 4546 4547 4548
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4549 4550 4551 4552 4553
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4554
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4555 4556

    In this formular:
4557 4558
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4559 4560
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4561
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4562 4563 4564 4565 4566

    The simple usage is:

    .. code-block:: python

4567
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4568 4569 4570

    :param name: layer name
    :type name: basestring
4571 4572 4573 4574
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4575
    :param size: the layer dimension.
L
luotao02 已提交
4576
    :type size: int.
Z
zhangjinchao01 已提交
4577 4578 4579
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4580
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4581 4582 4583 4584 4585 4586
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4587
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4588 4589
    :rtype: LayerOutput
    """
4590
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4591 4592 4593 4594 4595 4596
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4597 4598 4599 4600
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4601 4602 4603 4604 4605 4606


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4607
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4608 4609
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4610
                       select=None,
Q
qijun 已提交
4611 4612
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4613 4614 4615
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4616 4617 4618
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4629
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4630 4631 4632 4633 4634

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4635 4636
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4637
                   If is None, acts exactly like fc_layer.
4638
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4651
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4652 4653 4654 4655
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4656
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4657 4658
        param_attr = [param_attr]
    else:
4659
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4660 4661 4662 4663
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4664 4665 4666 4667
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4668
    Layer(
Q
qijun 已提交
4669 4670 4671
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4672 4673 4674
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4675
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4676 4677 4678 4679
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4680 4681 4682 4683 4684 4685 4686
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4687 4688 4689


@wrap_name_default()
L
luotao1 已提交
4690 4691
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4706 4707
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4708
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4709 4710
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4711
    l = Layer(
Z
zhangjinchao01 已提交
4712 4713 4714
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4715 4716 4717
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4718 4719 4720


@wrap_name_default()
L
luotao1 已提交
4721
@layer_support()
Q
qijun 已提交
4722 4723 4724 4725
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4726
                          layer_attr=None):
Z
zhangjinchao01 已提交
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4748 4749
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4750
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4751 4752 4753 4754 4755 4756 4757 4758
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4759 4760 4761
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4762 4763 4764


@wrap_name_default()
L
luotao1 已提交
4765
@layer_support()
Q
qijun 已提交
4766
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4767
    """
4768 4769 4770 4771
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4772 4773 4774

    .. math::

4775
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4776

4777 4778 4779 4780 4781
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4782

4783
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4784 4785

    In this formular:
4786 4787 4788 4789 4790 4791
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4792 4793 4794 4795 4796

    The simple usage is:

    .. code-block:: python

4797
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4798 4799
                                       size=elem_dim)

4800 4801 4802 4803
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4804 4805 4806 4807
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4808 4809
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4810
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4811 4812
    :rtype: LayerOutput
    """
4813 4814 4815 4816
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4817
            size = vectors.size / weights.size
4818 4819
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4820 4821
    Layer(
        name=name,
4822
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4823
        size=size,
4824
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4825 4826 4827
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4828

4829

4830
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4831

4832

Z
zhangjinchao01 已提交
4833
@wrap_name_default()
L
luotao1 已提交
4834
@layer_support()
Z
zhangjinchao01 已提交
4835 4836 4837 4838 4839 4840 4841
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4842
                       num_channels=None,
L
luotao1 已提交
4843 4844
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4845 4846
    """
    Expand feature map to minibatch matrix.
4847
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4848
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4859
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4860 4861
    convolution neural network, and before recurrent neural network.

4862 4863 4864 4865
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4866
       block_expand = block_expand_layer(input=layer,
4867
                                         num_channels=128,
4868 4869 4870 4871 4872
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4873 4874
    :param input: The input layer.
    :type input: LayerOutput
4875 4876
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4891 4892
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4893
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4894 4895
    :rtype: LayerOutput
    """
4896 4897 4898
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4916 4917


4918 4919
@wrap_name_default()
@layer_support()
4920
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4921 4922 4923 4924 4925
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4926
    So groups should be larger than 1, and the num of channels should be able
4927 4928
    to devided by groups.

X
xuwei06 已提交
4929 4930 4931 4932 4933 4934 4935 4936
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

4937
    Please refer to Paper:
4938 4939 4940 4941
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4942

4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4971 4972 4973 4974 4975 4976 4977 4978 4979
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4980 4981


Z
zhangjinchao01 已提交
4982
@wrap_name_default()
L
luotao1 已提交
4983
@layer_support()
Q
qijun 已提交
4984 4985 4986 4987 4988
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4989
              layer_attr=None):
Z
zhangjinchao01 已提交
4990 4991 4992 4993 4994
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4995 4996
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4997 4998
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4999 5000 5001 5002 5003 5004 5005 5006

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5007
    The example usage is:
Z
zhangjinchao01 已提交
5008 5009 5010 5011 5012 5013 5014 5015

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

5016
    :param input: The input layer.
Z
zhangjinchao01 已提交
5017 5018 5019
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5020
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5021
    :type size: int
5022 5023
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
5024 5025
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5026 5027
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5028
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5029 5030 5031 5032
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5033 5034 5035 5036 5037
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5038
    Layer(
5039 5040 5041 5042
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5043
        inputs=[input.name, label.name],
Q
qijun 已提交
5044
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5045 5046
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5047

5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5059
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5060
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5061 5062 5063 5064 5065 5066 5067
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5068 5069 5070
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5071
    icml2006_GravesFGS06.pdf>`_.
5072 5073 5074

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5075 5076 5077
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5078 5079
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5080
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5081
          'linear' activation is expected instead in the 'input' layer.
5082

C
caoying03 已提交
5083
    The example usage is:
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5129
@wrap_name_default()
5130
@wrap_param_attr_default()
L
luotao1 已提交
5131
@layer_support()
Q
qijun 已提交
5132 5133 5134 5135 5136 5137
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5138
              coeff=1.0,
L
luotao1 已提交
5139
              layer_attr=None):
Z
zhangjinchao01 已提交
5140 5141 5142 5143
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5144
    The example usage is:
Z
zhangjinchao01 已提交
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5155
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5156 5157 5158 5159 5160 5161 5162 5163 5164
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5165 5166
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5167 5168
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5169
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5170 5171 5172 5173 5174
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5175 5176 5177 5178 5179 5180
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5181

Q
qijun 已提交
5182
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5183 5184 5185 5186
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5187 5188 5189 5190
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5191
        coeff=coeff,
Q
qijun 已提交
5192
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5193 5194 5195
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5196 5197 5198 5199
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5200

5201

Z
zhangjinchao01 已提交
5202
@wrap_name_default()
5203
@wrap_param_attr_default()
L
luotao1 已提交
5204
@layer_support()
Q
qijun 已提交
5205 5206 5207 5208 5209
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5210
                       layer_attr=None):
Z
zhangjinchao01 已提交
5211 5212 5213 5214 5215 5216 5217
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5218
    The example usage is:
L
Luo Tao 已提交
5219 5220 5221 5222 5223 5224

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5235 5236
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5237
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5238 5239 5240 5241 5242 5243
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5244
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5245 5246 5247 5248
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5249 5250 5251 5252
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5253
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5254 5255 5256
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5257 5258 5259 5260
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5261

Q
qijun 已提交
5262

Y
Yu Yang 已提交
5263
@wrap_act_default(act=SigmoidActivation())
5264
@wrap_bias_attr_default(has_bias=True)
5265
@wrap_param_attr_default()
5266 5267
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5268 5269
def nce_layer(input,
              label,
C
caoying03 已提交
5270
              num_classes=None,
Y
Yu Yang 已提交
5271
              act=None,
5272
              param_attr=None,
Q
qijun 已提交
5273 5274 5275 5276 5277 5278
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5279 5280 5281 5282 5283 5284 5285 5286 5287
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5288 5289
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5301
    :type num_classes: int
Y
Yu Yang 已提交
5302 5303
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5304 5305
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5306
    :param num_neg_samples: number of negative samples. Default is 10.
5307
    :type num_neg_samples: int
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5321 5322 5323 5324 5325 5326 5327 5328
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5329
    assert isinstance(input, collections.Sequence)
5330

5331 5332
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5333 5334
    if num_classes is None:
        num_classes = label.size
5335 5336 5337
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5338
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5339 5340
    if not isinstance(act, BaseActivation):
        raise TypeError()
5341

5342 5343
    ipts_for_layer = []
    parents = []
5344
    for each_input, attr in zip(input, param_attr):
5345
        assert isinstance(each_input, LayerOutput)
5346
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5357
    l = Layer(
5358 5359 5360 5361
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5362
        active_type=act.name,
5363 5364 5365
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5366 5367
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5368 5369 5370 5371 5372
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5373

5374

Z
zhangjinchao01 已提交
5375 5376 5377
"""
following are cost Layers.
"""
5378 5379


Z
zhangjinchao01 已提交
5380
@wrap_name_default()
L
luotao1 已提交
5381
@layer_support()
Q
qijun 已提交
5382 5383 5384 5385 5386 5387 5388
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5389
    """
5390
    A cost Layer for learning to rank using gradient descent. Details can refer
5391 5392
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5393 5394 5395 5396 5397
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5398
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5399

L
luotao02 已提交
5400
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5401

L
luotao02 已提交
5402
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5403 5404 5405 5406 5407 5408 5409 5410

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5411
    The example usage is:
Z
zhangjinchao01 已提交
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5432 5433
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5434
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5447 5448 5449 5450 5451 5452
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5453

X
xuwei06 已提交
5454
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5455

5456

Z
zhangjinchao01 已提交
5457
@wrap_name_default()
L
luotao1 已提交
5458
@layer_support()
Q
qijun 已提交
5459 5460 5461 5462 5463 5464
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5465 5466 5467
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5468
    The example usage is:
Z
zhangjinchao01 已提交
5469 5470 5471 5472 5473 5474 5475 5476

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5477
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5489 5490 5491
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5492 5493 5494
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5495 5496
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5497
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5498 5499
    :rtype: LayerOutput
    """
5500 5501 5502
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5503 5504 5505 5506 5507 5508 5509
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5510

Q
qijun 已提交
5511 5512
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5513

5514

Z
zhangjinchao01 已提交
5515
@wrap_name_default()
L
luotao1 已提交
5516
@layer_support()
5517 5518 5519 5520 5521 5522
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5523 5524 5525
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5526 5527
    The example usage is:

Z
zhangjinchao01 已提交
5528 5529
    .. code-block:: python

X
xuwei06 已提交
5530
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5531
                            label=label_layer)
Z
zhangjinchao01 已提交
5532 5533 5534 5535 5536 5537 5538

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5539 5540
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5541
    :type coeff: float.
5542 5543 5544 5545
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5546 5547
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5548
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5549 5550 5551
    :rtype: LayerOutput.
    """

5552
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5553 5554 5555
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5556
        inputs=ipts,
Q
qijun 已提交
5557 5558
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5559
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5560

5561

Z
zhangjinchao01 已提交
5562
@wrap_name_default()
L
luotao1 已提交
5563
@layer_support()
Q
qijun 已提交
5564 5565 5566 5567
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5568 5569
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5570 5571
    """
    A loss layer for multi class entropy with selfnorm.
5572
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5573

C
caoying03 已提交
5574 5575
    The example usage is:

Z
zhangjinchao01 已提交
5576 5577
    .. code-block:: python

X
xuwei06 已提交
5578
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5579
                                          label=label_layer)
Z
zhangjinchao01 已提交
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5591 5592
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5593
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5594 5595
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5596 5597 5598 5599 5600 5601 5602
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5603

Q
qijun 已提交
5604 5605 5606 5607 5608
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5609

5610

X
xuwei06 已提交
5611 5612 5613 5614 5615 5616
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5617 5618
    The example usage is:

X
xuwei06 已提交
5619 5620
    .. code-block:: python

L
Luo Tao 已提交
5621
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5632
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5633 5634 5635 5636 5637
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5638

Q
qijun 已提交
5639
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5640 5641


Z
zhangjinchao01 已提交
5642
@wrap_name_default()
L
luotao1 已提交
5643
@layer_support()
L
Luo Tao 已提交
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
    """
    In statistics, the Huber loss is a loss function used in robust regression, 
    that is less sensitive to outliers in data than the squared error loss. 
    Given a prediction f(x), a label y and :math:`\delta`, the loss function 
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise

    The example usage is:

    .. code-block:: python

       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param delta: The difference between the observed and predicted values.
    :type delta: float.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5693
@wrap_name_default()
L
luotao1 已提交
5694
@layer_support()
5695 5696 5697 5698 5699
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5700
    """
5701 5702 5703 5704 5705 5706 5707 5708
    For classification purposes, a variant of the Huber loss called modified Huber 
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and 
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber 
    loss is defined as:

    .. math:
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1 
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5709

C
caoying03 已提交
5710 5711
    The example usage is:

Z
zhangjinchao01 已提交
5712 5713
    .. code-block:: python

5714
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5715 5716 5717 5718 5719 5720 5721 5722 5723

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5724 5725
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5726
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5727 5728
    :rtype: LayerOutput.
    """
5729 5730 5731
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5732 5733
    Layer(
        name=name,
5734
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5735 5736 5737
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5738 5739
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5740

5741

Z
zhangjinchao01 已提交
5742
@wrap_name_default()
L
luotao1 已提交
5743
@layer_support()
Q
qijun 已提交
5744 5745 5746 5747
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5748
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5749 5750 5751
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5752 5753
    The example usage is:

Z
zhangjinchao01 已提交
5754 5755
    .. code-block:: python

X
xuwei06 已提交
5756
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5757
                                               label=label_layer)
Z
zhangjinchao01 已提交
5758 5759 5760 5761 5762 5763 5764 5765 5766

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5767 5768
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5769
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5770 5771 5772
    :rtype: LayerOutput
    """

5773 5774
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
5775 5776 5777 5778
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5791 5792


C
caoying03 已提交
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
5815 5816
@wrap_name_default()
@layer_support()
C
caoying03 已提交
5817
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
5818
    """
C
caoying03 已提交
5819 5820 5821
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
5822

C
caoying03 已提交
5823 5824 5825 5826 5827
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
5828

C
caoying03 已提交
5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

    This cost layer always works together with kmax_sequence_score_layer,
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


    :param input: input beams for this layer.
    :type input: BeamInput
    :param name: input beams for this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
5897 5898 5899
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
5900 5901
@wrap_name_default()
@layer_support()
5902
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5903 5904
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5905
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5906 5907 5908 5909 5910 5911 5912 5913 5914

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5915
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5916

D
dangqingqing 已提交
5917 5918 5919
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5920 5921
    The example usage is:

D
dangqingqing 已提交
5922 5923
    .. code-block:: python

5924 5925
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5926 5927 5928 5929 5930 5931 5932

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5933 5934
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5948
        coeff=coeff,
D
dangqingqing 已提交
5949 5950 5951
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5971 5972
    The example usage is:

W
wwhu 已提交
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6005 6006


6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6023 6024


D
dangqingqing 已提交
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
6047

D
dangqingqing 已提交
6048 6049 6050 6051 6052
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6053

D
dangqingqing 已提交
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6097 6098


6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6118 6119 6120 6121 6122 6123
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6124 6125 6126 6127 6128
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
6129 6130 6131 6132 6133 6134

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
6135 6136 6137 6138 6139 6140 6141 6142
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6143
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6144
    assert isinstance(param_attr, ParameterAttribute)
6145 6146 6147

    l = Layer(
        name=name,
C
caoying03 已提交
6148
        type=LayerType.PRELU,
C
caoying03 已提交
6149
        inputs=Input(input.name, **param_attr.attr),
6150 6151 6152 6153 6154 6155 6156
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6157 6158


6159
@wrap_name_default()
C
caoying03 已提交
6160
@layer_support(ERROR_CLIPPING, DROPOUT)
6161 6162 6163 6164 6165 6166 6167
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6168 6169
                     gate_bias_attr=True,
                     inproj_attr=None,
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
    prodict between :match:`X'` and :math:`\sigma` is finally returned.

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
    :param name: name of this layer.
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
6206 6207 6208 6209 6210 6211
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6234
        layer_attr=inproj_attr,
6235 6236 6237 6238 6239 6240 6241 6242 6243
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6244
        param_attr=gate_param_attr,
6245 6246 6247 6248 6249
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6250 6251


6252 6253
@wrap_name_default()
@layer_support()
6254
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6255
    """
6256
    The crop layer crops images by offset and shape. User can set crop shape by
6257
    args 'shape' explicitly or by reference input layer.
6258

6259 6260 6261
    The example usage is:

    .. code-block:: python
W
whs 已提交
6262
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6263 6264 6265 6266

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6267 6268
    :param offset: The crop offset
    :type offset: Sequence
6269 6270 6271 6272 6273 6274 6275
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6276
    :type shape: Sequence | None
6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
    :param name: Name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6299 6300


C
caoying03 已提交
6301 6302
@wrap_name_default()
@layer_support()
6303
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6304
    """
6305
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6306
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6307

C
caoying03 已提交
6308 6309 6310
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6311 6312 6313 6314

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6315 6316

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6317

C
caoying03 已提交
6318

6319 6320 6321
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6322 6323 6324 6325 6326 6327
    :type input: LayerOutput
    :param name: name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6328

6329 6330 6331 6332 6333 6334 6335
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6336
    l = Layer(
6337 6338
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6339 6340 6341 6342 6343 6344 6345
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6346 6347


G
guosheng 已提交
6348
@wrap_name_default("clip")
6349
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6350 6351 6352 6353 6354 6355 6356 6357 6358
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6359
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6360 6361 6362 6363 6364

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6365 6366 6367 6368
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6369 6370
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6371 6372 6373 6374 6375
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6376 6377
        min=min,
        max=max)
G
guosheng 已提交
6378 6379
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6380 6381


6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

    :param name: name of this layer.
    :type name: basestring
    :param input: input for this layer, it should be a sequence.
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
    :type starts: LayerOutput|None
    :param ends: end indices to slice the input sequence.
    :type ends: LayerOutput|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6446 6447


6448 6449 6450
@wrap_name_default()
@layer_support()
def kmax_sequence_score_layer(input, name=None, beam_size=1):
6451
    """
C
caoying03 已提交
6452
    This layer accepts one input which are scores over a sequence or a nested
6453 6454 6455 6456 6457 6458 6459 6460 6461
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

        kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)


    :param name: The Layer Name.
    :type name: basestring
C
caoying03 已提交
6462
    :param input: The input layer. It stores scores over a sequence or a nested
6463 6464 6465 6466 6467 6468 6469
        sequence and its size must be 1.
    :type input: LayerOutput.
    :param beam_size: squence indices with top beam_size scores are returned.
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6470
    assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer "
6471
                                            "accepts only one input.")
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
    assert input.size == 1, (
        "input of kmax_sequence_score_layer is a score"
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6484 6485 6486 6487 6488 6489 6490


@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
C
caoying03 已提交
6491 6492
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6493 6494
    adds a bias to it.

C
caoying03 已提交
6495
    This layer is very like the SlopeInterceptLayer, except the scale and
6496 6497
    bias are trainable.

G
guosheng 已提交
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
    :param bias_attr: The parameter attribute of shifting.
    :type bias_attr: ParameterAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)