pool_op.cc 18.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
                   bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
C
chengduoZH 已提交
35 36 37 38 39
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
40 41 42
  return output_size;
}

C
chengduo 已提交
43
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
44 45 46 47 48 49
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
50
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
51 52 53
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
54
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
55
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
56 57

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
58
                 "Pooling intput should be 4-D or 5-D tensor.");
59

C
chengduoZH 已提交
60
  if (ctx->Attrs().Get<bool>("global_pooling")) {
61
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
62 63
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
64
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
65
    }
66
  }
67 68 69 70 71 72 73 74 75

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
76 77 78 79 80 81 82
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(PoolOutputSize(
          in_x_dims[i + 2], ksize[i], paddings[i], strides[i], ceil_mode));
    }
83
  }
84
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
85
  ctx->ShareLoD("X", "Out");
86 87
}

88
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
89
    const framework::ExecutionContext& ctx) const {
90
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
91 92 93
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
94
#ifdef PADDLE_WITH_CUDA
95 96
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
97 98
  }
#endif
99 100 101 102
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
103
    layout_ = framework::DataLayout::kMKLDNN;
104
  }
105
#endif
106

Y
Yu Yang 已提交
107 108
  return framework::OpKernelType(ctx.Input<Tensor>("X")->type(), ctx.GetPlace(),
                                 layout_, library_);
109 110
}

C
chengduo 已提交
111
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
112 113 114 115 116 117
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

118
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
119
    const framework::ExecutionContext& ctx) const {
120
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
121 122 123
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
124
#ifdef PADDLE_WITH_CUDA
125 126
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
127 128
  }
#endif
129 130 131 132
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
133
    layout_ = framework::DataLayout::kMKLDNN;
134
  }
135
#endif
136

Y
Yu Yang 已提交
137
  auto input_data_type = ctx.Input<Tensor>("X")->type();
K
Kexin Zhao 已提交
138 139 140 141 142 143
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
144 145
}

Y
Yu Yang 已提交
146
void Pool2dOpMaker::Make() {
147 148
  AddInput(
      "X",
C
chengduoZH 已提交
149
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
150 151 152
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
153
  AddOutput("Out",
K
kexinzhao 已提交
154 155 156 157
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
158
            "and W is the width of the feature.");
159

C
chengduoZH 已提交
160
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
161 162
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
163
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
164
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
165 166
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
167
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
168 169
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
170
  // TypedAttrChecker don't support vector type.)
171 172 173 174
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored.")
175
      .SetDefault(false);
K
kexinzhao 已提交
176 177 178
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
179 180
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
181 182 183
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
184
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
185
      "operator."
186
      "If global_pooling = true, paddings and kernel size will be ignored.")
187
      .SetDefault({0, 0});
188 189 190 191 192 193
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
194 195 196 197 198 199 200 201
  AddAttr<bool>(
      "adaptive",
      "(bool, default False) When true, will perform adaptive pooling instead, "
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
      "pooling in each grid area to get output pooling value.")
      .SetDefault(false);

202 203 204 205
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
206 207
  AddAttr<bool>(
      "ceil_mode",
D
dengkaipeng 已提交
208
      "(bool, default false) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
209 210
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
211
      .SetDefault(false);
212 213 214
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
215 216 217 218 219 220 221
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
222 223 224 225 226
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

227
  // TODO(dzhwinter): need to registered layout transform function
228 229

  AddComment(R"DOC(
C
chengduoZH 已提交
230
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
231
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
232 233
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
234 235
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
236 237
The input(X) size and output(Out) size may be different.

238
Example:
F
fengjiayi 已提交
239

C
chengduoZH 已提交
240
  Input:
F
fengjiayi 已提交
241

K
kexinzhao 已提交
242
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
243

C
chengduoZH 已提交
244
  Output:
F
fengjiayi 已提交
245

K
kexinzhao 已提交
246
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
247

248 249
  For ceil_mode = false:
       $$
F
fengjiayi 已提交
250
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
F
fengjiayi 已提交
251 252
       $$
       $$
F
fengjiayi 已提交
253
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
254
       $$
255 256
  For ceil_mode = true:
       $$
F
fengjiayi 已提交
257
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
258 259
       $$
       $$
F
fengjiayi 已提交
260
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
261
       $$
K
kexinzhao 已提交
262

263
  For exclusive = false:
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
       $$
       hstart = i * strides[0] - paddings[0]
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
       wstart = j * strides[1] - paddings[1]
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
279

280
  For exclusive = true:
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
       $$
       hstart = max(0, i * strides[0] - paddings[0])
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
       wstart = max(0, j * strides[1] - paddings[1])
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
296

297
)DOC");
298 299
}

C
chengduo 已提交
300 301 302 303 304 305 306 307
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

Y
Yu Yang 已提交
308
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
309 310 311 312 313 314
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
315
  AddOutput("Out",
C
chengduoZH 已提交
316
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
317 318 319
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
320
            "width of the feature, respectively.");
321

C
chengduoZH 已提交
322
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
323
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
324
                       "and \"avg\" for average-pooling.")
325
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
326 327 328 329
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
330
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
331 332
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
333
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
334 335 336
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
337
      "If global_pooling = true, kernel size and paddings will be ignored.")
338
      .SetDefault(false);
K
kexinzhao 已提交
339 340 341 342
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
343 344
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
345 346
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
347
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
348
      "width) of pooling operator. "
C
chengduoZH 已提交
349
      "If global_pooling = true, ksize and paddings will be ignored.")
350 351
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
352 353 354 355 356 357
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
358 359 360 361 362 363 364
  AddAttr<bool>(
      "adaptive",
      "(bool, default False) When true, will perform adaptive pooling instead, "
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
      "pooling in each grid area to get output pooling value.")
      .SetDefault(false);
365

366 367 368 369
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
370 371
  AddAttr<bool>(
      "ceil_mode",
D
dengkaipeng 已提交
372
      "(bool, default false) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
373 374
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
375
      .SetDefault(false);
376 377 378
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
379 380 381 382 383 384 385 386 387
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

388
  AddComment(R"DOC(
K
kexinzhao 已提交
389 390
Pool3d Operator.

C
chengduoZH 已提交
391
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
392
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
393 394
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
395 396
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
K
kexinzhao 已提交
397
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
398 399 400

Example:
  Input:
K
kexinzhao 已提交
401
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
402
  Output:
K
kexinzhao 已提交
403
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
404
  For ceil_mode = false:
405 406 407 408 409 410 411 412 413
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[2]} + 1
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
       $$
414
  For ceil_mode = true:
415 416 417 418 419 420 421 422 423
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
       $$
D
dengkaipeng 已提交
424

425
  For exclusive = false:
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
       $$
       dstart = i * strides[0] - paddings[0]
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
       hstart = j * strides[1] - paddings[1]
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
       wstart = k * strides[2] - paddings[2]
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
447

448
  For exclusive = true:
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
       $$
       dstart = max(0, i * strides[0] - paddings[0])
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
       hend = min(H, hstart + ksize[1])
       $$
       $$
       wstart = max(0, k * strides[2] - paddings[2])
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
467

468
)DOC");
469
}
470 471 472 473 474
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
475
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
C
chengduo 已提交
476
                  ops::PoolOpInferVarType,
477 478
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
479

Q
QI JUN 已提交
480 481 482 483 484
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
485
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
486

Y
Yang Yang 已提交
487
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
C
chengduo 已提交
488
                  ops::PoolOpInferVarType,
489 490
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
491

Q
QI JUN 已提交
492 493 494 495 496 497
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);