pool_op.cc 14.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
                   bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
C
chengduoZH 已提交
35 36 37 38 39
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
40 41 42
  return output_size;
}

43 44 45 46 47 48 49
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
50
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
51 52 53
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
54
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
55 56

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
57
                 "Pooling intput should be 4-D or 5-D tensor.");
58

C
chengduoZH 已提交
59
  if (ctx->Attrs().Get<bool>("global_pooling")) {
60
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
61 62
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
63
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
64
    }
65
  }
66 67 68 69 70 71 72 73 74 75

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
76 77
    output_shape.push_back(PoolOutputSize(in_x_dims[i + 2], ksize[i],
                                          paddings[i], strides[i], ceil_mode));
78
  }
79
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
80
  ctx->ShareLoD("X", "Out");
81 82
}

83 84
framework::OpKernelType PoolOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
85
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
86 87 88
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
89
#ifdef PADDLE_WITH_CUDA
90 91
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
92 93
  }
#endif
94 95 96 97
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
98
    layout_ = framework::DataLayout::kMKLDNN;
99
  }
100
#endif
101 102 103 104 105 106

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

107 108 109 110 111 112 113
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

114 115
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
116
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
117 118 119
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
120
#ifdef PADDLE_WITH_CUDA
121 122
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
123 124
  }
#endif
125 126 127 128
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
129
    layout_ = framework::DataLayout::kMKLDNN;
130
  }
131
#endif
132

K
Kexin Zhao 已提交
133 134 135 136 137 138 139
  auto input_data_type = framework::ToDataType(ctx.Input<Tensor>("X")->type());
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
140 141
}

Y
Yu Yang 已提交
142
void Pool2dOpMaker::Make() {
143 144
  AddInput(
      "X",
C
chengduoZH 已提交
145
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
146 147 148
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
149
  AddOutput("Out",
K
kexinzhao 已提交
150 151 152 153
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
154 155
            "and W is the width of the feature.")
      .Reuse("X");
156

C
chengduoZH 已提交
157
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
158 159
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
160
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
161
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
162 163
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
164
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
165 166
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
167
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
168
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
169
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
170
                "If global_pooling = true, ksize and paddings will be ignored.")
171
      .SetDefault(false);
K
kexinzhao 已提交
172 173 174
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
175 176
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
177 178 179
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
180
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
181
      "operator."
C
chengduoZH 已提交
182
      "If global_pooling = true, paddings and ksize will be ignored.")
183 184 185 186 187
      .SetDefault({0, 0});
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
188 189 190
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
191 192
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
193
      .SetDefault(false);
194 195 196
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
197 198 199 200 201 202 203 204
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
205 206

  AddComment(R"DOC(
C
chengduoZH 已提交
207
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
208
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
209 210
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
211 212
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
213 214
The input(X) size and output(Out) size may be different.

215
Example:
F
fengjiayi 已提交
216

C
chengduoZH 已提交
217
  Input:
F
fengjiayi 已提交
218

K
kexinzhao 已提交
219
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
220

C
chengduoZH 已提交
221
  Output:
F
fengjiayi 已提交
222

K
kexinzhao 已提交
223
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
224

225 226
  For ceil_mode = false:
       $$
F
fengjiayi 已提交
227 228 229
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
       $$
       $$
C
chengduoZH 已提交
230
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
231
       $$
232 233
  For ceil_mode = true:
       $$
F
fengjiayi 已提交
234 235 236
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
       $$
       $$
237 238
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
       $$
K
kexinzhao 已提交
239

240
)DOC");
241 242
}

Y
Yu Yang 已提交
243
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
244 245 246 247 248 249
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
250
  AddOutput("Out",
C
chengduoZH 已提交
251
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
252 253 254
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
255 256
            "width of the feature, respectively.")
      .Reuse("X");
257

C
chengduoZH 已提交
258
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
259
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
260
                       "and \"avg\" for average-pooling.")
261
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
262 263 264 265
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
266
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
267 268
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
269
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
270 271 272 273
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
274
      .SetDefault(false);
K
kexinzhao 已提交
275 276 277 278
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
279 280
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
281 282
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
283
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
284
      "width) of pooling operator. "
C
chengduoZH 已提交
285
      "If global_pooling = true, ksize and paddings will be ignored.")
286 287 288
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

289 290 291 292
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
293 294 295
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
296 297
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
298
      .SetDefault(false);
299 300 301
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
302 303 304 305 306 307 308 309 310
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

311
  AddComment(R"DOC(
K
kexinzhao 已提交
312 313
Pool3d Operator.

C
chengduoZH 已提交
314
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
315
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
316 317
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
318 319
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
K
kexinzhao 已提交
320
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
321 322 323

Example:
  Input:
K
kexinzhao 已提交
324
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
325
  Output:
K
kexinzhao 已提交
326
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
327
  For ceil_mode = false:
C
chengduoZH 已提交
328 329 330 331 332
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
333 334 335 336 337 338
  For ceil_mode = true:
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
  $$
K
kexinzhao 已提交
339

340
)DOC");
341
}
342 343 344 345 346
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
347
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
348 349
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
350

Q
QI JUN 已提交
351 352 353 354 355
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
356
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
357

Y
Yang Yang 已提交
358
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
359 360
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
361

Q
QI JUN 已提交
362 363 364 365 366 367
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);